/* * struct suspension * * Set of edge-triggered events on which a thread may wait for any * one of. */ struct suspension { kmutex_t s_lock; kcondvar_t s_cv; TAILQ_HEAD(event) s_list; struct event *s_event; int s_flags; }; /* * struct event * * State for an edge-triggered event that a thread may be * preparing to wait for or waiting for. * * Each struct event may be in one of four states: * * uninitialized * initialized * subscribed * * The state transitions are: * * event_init : uninitialized -> initialized * eo_subscribe : initialized -> {subscribed,initialized} * eo_cancel : subscribed -> initialized * event_done : initialized -> uninitialized * * struct event_ops::eo_subscribe returns true, and leaves the * event unsubscribed, if the resource it represents is ready; * otherwise returns false and subscribes the event. * * XXX need another idea of state for notified/done */ struct event { struct suspend *e_suspension; struct event_ops *e_ops; TAILQ_ENTRY(event) e_entry; }; struct event_ops { bool (*eo_subscribe)(struct event *); void (*eo_cancel)(struct event *); }; static struct event presuspend_event; /* * suspension_init(S, wmesg, flags) * * Prepare for the current thread to wait for any of a collection * of events. Caller must have exclusive access to S. */ void suspension_init(struct suspension *S, char *wmesg, int flags) { mutex_init(&S->s_lock, MUTEX_DEFAULT, IPL_SCHED); /* XXX IPL_SCHED? */ cv_init(&S->s_cv, wmesg); TAILQ_INIT(&S->s_list); S->s_event = &presuspend_event; S->s_flags = flags; } /* * suspension_destroy(S) * * Done with a suspension. */ void suspension_destroy(struct suspension *S) { cv_destroy(&S->s_cv); mutex_destroy(&S->s_lock); } /* * suspend(S) * * Wait for any of the events to which S has subscribed. Return * the one that notified us. */ struct event * suspend(struct suspension *S) { struct event *E, *E0; KASSERT(S->s_event == &presuspend_event); /* Subscribe to all the events. */ TAILQ_FOREACH(E, &S->s_list, e_entry) { if ((*E->e_ops->eo_subscribe)(E)) { TAILQ_FOREACH(E0, &S->s_list, e_entry) { if (E0 == E) break; (*E0->e_ops->eo_cancel)(E0); } goto out; } } /* * None were ready. Mark the suspension waiting and wait until * an event has occurred. */ mutex_enter(&S->s_lock); KASSERT(S->s_event == &presuspend_event); S->s_event = NULL; do { cv_wait(&S->s_cv, &S->s_lock); } while ((E = S->s_event) = NULL); mutex_exit(&S->s_lock); out: return E; } /* * event_init(E, O, S) * * Arrange that event_notify(E) will wake suspend(S) after E has * been subscribed by O->eo_subscribe. If another event * notification woke suspend(S), this event subscription will be * cancelled by O->eo_cancel. Caller must have exclusive access * to S. */ void event_init(struct event *E, struct event_ops *O, struct suspension *S) { E->e_suspension = S; E->e_ops = O; TAILQ_INSERT_TAIL(&S->s_list, E, e_entry); } /* * event_done(E, S) * * Done with the event E with suspension S. */ void event_done(struct event *E, struct suspension *S) { KASSERT(E->e_suspension == S); /* ...? */ } /* * event_notify(E) * * If E was initialized with event_init(E, O, S) and subscribed * with O->eo_subscribe, cause any pending call suspend(S) to * wake. * * Return true if this was the first event_notify for S, false if * not. Thus the notifier can learn whether its event was the one * consumed by S or not, e.g. if it was to pass a scarce resource * to S. */ bool event_notify(struct event *E) { struct suspend *S = E->e_suspension; bool consumed; mutex_enter(&S->s_lock); if (S->s_event == NULL) { S->s_event = E; consumed = true; } else { consumed = false; } cv_signal(&S->s_suspension); mutex_exit(&S->s_lock); return consumed; } /* pool example: if pool_get is waiting, pool_put hands off to it */ struct pool { ... /* XXX Priority queue, ordered by thread priority? */ TAILQ_HEAD(, pool_event) pr_activewaiters; TAILQ_HEAD(, pool_event) pr_inactivewaiters; ... }; struct pool_event { struct event pe_event; TAILQ_ENTRY(pool_event) pe_entry; struct pool *pe_pool; void *pe_obj; }; void * pool_get(struct pool *pp, int flags) { struct suspension suspension, *S; void *obj = NULL; if (ISSET(flags, PR_WAITOK)) { S = &suspension; suspension_init(S, pp->pr_wchan, 0); } else { S = NULL; } mutex_enter(&pp->pr_lock); startover: ... if ((ph = pp->pr_curpage) == NULL) { struct pool_event pe; int error; if (ISSET(flags, PR_WAITOK)) pool_event_init(pp, &pe, S); error = pool_grow(pp, flags, S); if (ISSET(flags, PR_WAITOK)) { if ((obj = pool_event_done(pe, &pe, S)) != NULL) { /* * XXX Should we shrink the pool if we * had grown it in this case? */ goto out; } } if (error) { if (pp->pr_curpage != NULL) goto startover; pp->pr_nfail++; goto out; } } ... mutex_exit(&pp->pr_lock); out: if (ISSET(flags, PR_WAITOK)) suspension_destroy(S); return obj; } void pool_put(struct pool *pp, void *obj) { struct pool_event *pe; struct pool_pagelist pq; mutex_enter(&pp->pr_lock); /* * If there's an active pool_get waiting for an object, try to * hand this object to it. */ while ((pe = TAILQ_HEAD(&pp->pr_activewaiters)) != NULL) { TAILQ_REMOVE(pe, pe_entry); TAILQ_INSERT_TAIL(&pp->pr_inactivewaiters, pe, pe_entry); if (pool_event_notify(&pe->pe_event, obj)) goto out; } /* Otherwise, put it back into the pool. */ LIST_INIT(&pq); pool_do_put(pp, obj, &pq); out: mutex_exit(&pp->pr_lock); if (pe == NULL) pr_pagelist_free(pp, &pq); } static void pool_event_init(struct pool *pp, struct pool_event *pe, struct suspension *S) { static const struct pool_event zero_pe; KASSERT(mutex_owned(&pp->pr_lock)); *pe = zero_pe; TAILQ_INSERT_TAIL(&pp->pr_inactivewaiters, pe, pe_entry); pe->pe_pool = pp; event_init(&pe->pe_event, &pool_event_ops, S); } static bool pool_event_subscribe(struct event *E) { struct pool_event *pe = container_of(E, struct pool_event, pe_event); struct pool *pp = pe->pe_pool; bool ready = false; mutex_enter(&pp->pr_lock); /* * Check again whether there are any objects available. Don't * ask the backing allocator -- the caller will also be * subscribing to backing allocation events. */ if (pool has objects) { pe->pe_obj = get the next object; ready = true; goto out; } /* None found. Record this event subscription. */ TAILQ_REMOVE(pe, pe_entry); /* remove from inactive waiters */ TAILQ_INSERT_TAIL(&pp->pr_activewaiters, pe, pe_entry); out: mutex_exit(&pp->pr_lock); return ready; } static void pool_event_cancel(struct event *E) { struct pool_event *pe = container_of(E, struct pool_event, pe_event); struct pool *pp = pe->pe_pool; mutex_enter(&pp->pr_lock); TAILQ_REMOVE(pe, pe_entry); /* remove from active waiters */ TAILQ_INSERT_TAIL(&pp->pr_inactivewaiters, pe, pe_entry); mutex_exit(&pp->pr_lock); } static void * pool_event_done(struct pool *pp, struct pool_event *pe, struct suspension *S) { void *obj; KASSERT(mutex_owned(&pp->pr_lock)); TAILQ_REMOVE(pe, pe_entry); /* remove from whichever list it's on */ obj = pe->pe_obj; pe->pe_obj = NULL; event_done(&pe->pe_event, S); return obj; } static bool pool_event_notify(struct pool_event *pe, void *obj) { KASSERT(mutex_owned(&pp->pr_lock)); if (!event_notify(&pe->pe_event)) /* * Thread waiting for event has already been notified * of another event and so is no longer interested in * recycling this object. */ return false; /* * Pass this object along to the thread that was waiting for * the event of a free object. */ pe->pe_obj = obj; return true; } /* vmem example: if vmem_alloc must sleep, let others wake caller too */ struct vmem { ... LIST_HEAD(, vmem_event) vm_activewaiters; LIST_HEAD(, vmem_event) vm_inactivewaiters; ... }; struct vmem_event { struct event *vme_event; LIST_ENTRY(vmem_event) vme_entry; struct vmem *vme_vm; uint64_t vme_gen; bool vme_triggered; }; int vmem_xalloc(struct vmem *vm, ..., struct suspension *S) { KASSERT(ISSET(flags, VM_SLEEP) == (S != NULL)); ... if (ISSET(flags, VM_SLEEP)) { struct vmem_event vme; vmem_event_init(vm, &vme, S); VMEM_UNLOCK(vm); suspend(S); VMEM_LOCK(vm); /* * If we were woken by a change to the vmem, retry the * vmem allocation. */ if (vmem_event_done(vm, &vme)) goto retry; /* * Otherwise, something else higher up in the stack * happened (first). Tell the caller ENOMEM here so * they know to use another event instead. */ } fail: ... return ENOMEM; } void vmem_xfree(struct vmem *vm, ...) { ... while ((vme = LIST_FIRST(&vm->vm_activewaiters)) != NULL) { LIST_REMOVE(vme, vme_entry); LIST_INSERT_HEAD(&vm->vm_inactivewaiters, vme, vme_entry); vmem_event_notify(vm, vme); } ... } static void vmem_event_init(struct vmem *vm, struct vmem_event *vme, struct suspension *S) { static const struct vmem_event zero_vme; VMEM_ASSERT_LOCKED(vm); *vme = zero_vme; LIST_INSERT_HEAD(&vm->vm_inactivewaiters, vme, vme_entry); vme->vme_vm = vm; vme->vme_gen = vm->vm_gen; vme->vme_triggered = false; event_init(&vme->vme_event, &vmem_event_ops, S); } static bool vmem_event_subscribe(struct event *E) { struct vmem_event *vme = container_of(E, struct vmem_event, vme_event); struct vmem *vm = vme->vme_vm; bool ready = false; VMEM_LOCK(vm); if (vm->vm_gen != vme->vme_gen) { /* * If anything changed, wake. Caller must reexamine * the address space afresh for what it seeks. */ ready = true; goto out; } LIST_REMOVE(vme, vme_entry); /* remove from inactivewaiters */ LIST_INSERT_HEAD(&vm->vm_activewaiters, vme, vme_entry); out: VMEM_UNLOCK(vm); return ready; } static void vmem_event_cancel(struct event *E) { struct vmem_event *vme = container_of(E, struct vmem_event, vme_event); struct vmem *vm = vme->vme_vm; VMEM_LOCK(vm); LIST_REMOVE(vme, vme_entry); /* remove from activewaiters */ LIST_INSERT_HEAD(&vm->vm_inactivewaiters, vme, vme_entry); VMEM_UNLOCK(vm); } static bool vmem_event_done(struct vmem *vm, struct vmem_event *vme) { VMEM_ASSERT_LOCKED(vm); event_done(vme); LIST_REMOVE(vme, vme_entry); return vme->vme_triggered; } static void vmem_event_notify(struct vmem *vm, struct vmem_event *vme) { VMEM_ASSERT_LOCKED(vm); KASSERT(vm->vm_gen != vme->vme_gen); vme->vme_triggered = event_notify(&vme->vme_event); } /* uvm */ struct uvm_free_event { struct event ufe_event; PRIOQ_ENTRY(uvm_free_event) ufe_entry; unsigned long ufe_npages; }; PRIOQ_HEAD(, uvm_free_event) uvm_free_waiters; void uvm_free_event_init(unsigned long npages, struct uvm_free_event *ufe, struct suspension *S) { static const struct uvm_free_event zero_ufe; KASSERT(mutex_owned(&uvm_fpageqlock)); *ufe = zero_ufe; ufe->ufe_npages = npages; PRIOQ_INSERT(&uvm_free_waiters, ufe, ufe_entry); event_init(&ufe->ufe_event, &uvm_free_event_ops, S); uvm_kick_pagedaemon(); } ... void uvm_wait(unsigned long npages, struct suspension *S) { struct uvm_free_event ufe; mutex_spin_enter(&uvm_fpageqlock); uvm_free_event_init(npages, &ufe, S); mutex_spin_exit(&uvm_fpageqlock); (void)suspend(S); }