/* $NetBSD$ */ /*- * Copyright (c) 2017 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Taylor R. Campbell. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD$"); #include #include #include #include #include #include #include #include #include #include #define TASKLET_SCHEDULED ((unsigned)__BIT(0)) #define TASKLET_RUNNING ((unsigned)__BIT(1)) struct tasklet_queue { struct percpu *tq_percpu; /* struct tasklet_cpu */ void *tq_sih; }; SIMPLEQ_HEAD(tasklet_head, tasklet_struct); struct tasklet_cpu { struct tasklet_head tc_head; }; static struct tasklet_queue tasklet_queue __read_mostly; static struct tasklet_queue tasklet_hi_queue __read_mostly; static void tasklet_softintr(void *); static int tasklet_queue_init(struct tasklet_queue *, unsigned); static void tasklet_queue_fini(struct tasklet_queue *); static void tasklet_queue_schedule(struct tasklet_queue *, struct tasklet_struct *); static void tasklet_queue_enqueue(struct tasklet_queue *, struct tasklet_struct *); /* * linux_tasklets_init() * * Initialize the Linux tasklets subsystem. Return 0 on success, * error code on failure. */ int linux_tasklets_init(void) { int error; error = tasklet_queue_init(&tasklet_queue, SOFTINT_CLOCK); if (error) goto fail0; error = tasklet_queue_init(&tasklet_hi_queue, SOFTINT_SERIAL); if (error) goto fail1; /* Success! */ return 0; fail2: __unused tasklet_queue_fini(&tasklet_hi_queue); fail1: tasklet_queue_fini(&tasklet_queue); fail0: KASSERT(error); return error; } /* * linux_tasklets_fini() * * Finalize the Linux tasklets subsystem. All use of tasklets * must be done. */ void linux_tasklets_fini(void) { tasklet_queue_fini(&tasklet_hi_queue); tasklet_queue_fini(&tasklet_queue); } /* * tasklet_queue_init(tq, prio) * * Initialize the tasklet queue tq for running tasklets at softint * priority prio (SOFTINT_*). */ static int tasklet_queue_init(struct tasklet_queue *tq, unsigned prio) { int error; /* Allocate per-CPU memory. percpu_alloc cannot fail. */ tq->tq_percpu = percpu_alloc(sizeof(struct tasklet_cpu)); KASSERT(tq->tq_percpu != NULL); /* Try to establish a softint. softint_establish may fail. */ tq->tq_sih = softint_establish(prio|SOFTINT_MPSAFE, &tasklet_softintr, tq); if (tq->tq_sih == NULL) { error = ENOMEM; goto fail1; } /* Success! */ return 0; fail2: __unused softint_disestablish(tq->tq_sih); tq->tq_sih = NULL; fail1: percpu_free(tq->tq_percpu, sizeof(struct tasklet_cpu)); tq->tq_percpu = NULL; fail0: __unused KASSERT(error); return error; } /* * tasklet_queue_fini(tq) * * Finalize the tasklet queue tq: free all resources associated * with it. */ static void tasklet_queue_fini(struct tasklet_queue *tq) { softint_disestablish(tq->tq_sih); tq->tq_sih = NULL; percpu_free(tq->tq_percpu, sizeof(struct tasklet_cpu)); tq->tq_percpu = NULL; } /* * tasklet_softintr(cookie) * * Soft interrupt handler: Process queued tasklets on the tasklet * queue passed in as cookie. */ static void tasklet_softintr(void *cookie) { struct tasklet_queue *const tq = cookie; struct tasklet_head th = SIMPLEQ_HEAD_INITIALIZER(th); struct tasklet_cpu *tc; int s; /* * With all interrupts deferred, transfer the current CPU's * queue of tasklets to a local variable in one swell foop. * * No memory barriers: CPU-local state only. */ tc = percpu_getref(tq->tq_percpu); s = splhigh(); SIMPLEQ_CONCAT(&th, &tc->tc_head); splx(s); percpu_putref(tq->tq_percpu); /* Go through the queue of tasklets we grabbed. */ while (!SIMPLEQ_EMPTY(&th)) { struct tasklet_struct *tasklet; unsigned ostate, nstate; /* Remove the first tasklet from the queue. */ tasklet = SIMPLEQ_FIRST(&th); SIMPLEQ_REMOVE_HEAD(&th, tl_entry); /* The tasklet had better be scheduled. */ KASSERT(ISSET(tasklet->tl_state, TASKLET_SCHEDULED)); /* * Test and set RUNNING, in case it is already running * on another CPU and got scheduled again on this one * before it completed. */ do { ostate = tasklet->tl_state; if (ISSET(ostate, TASKLET_RUNNING)) break; nstate = ostate | TASKLET_RUNNING; } while (atomic_cas_uint(&tasklet->tl_state, ostate, nstate) != ostate); /* * If it was already running. put it back on the queue * to run it again in a sort of busy-wait, and move on * to the next one. */ if (ISSET(ostate, TASKLET_RUNNING)) { tasklet_queue_enqueue(tq, tasklet); continue; } /* Set RUNNING bit before reading the disable count. */ membar_enter(); /* Check whether it's currently disabled. */ if (tasklet->tl_disablecount) { /* Disabled: requeue it and keep it SCHEDULED. */ tasklet_queue_enqueue(tq, tasklet); } else { /* * Not disabled: clear SCHEDULED, and ensure we * have read the disable count as updated by * tasklet_enable before any caller-relevant * reads or writes in func. */ KASSERT(ISSET(tasklet->tl_state, TASKLET_SCHEDULED)); atomic_and_uint(&tasklet->tl_state, ~TASKLET_SCHEDULED); membar_sync(); (*tasklet->func)(tasklet->data); } /* * Guarantee all caller-relevant reads or writes in * func have completed before clearing RUNNING bit. */ membar_exit(); /* Clear RUNNING to notify tasklet_disable. */ atomic_and_uint(&tasklet->tl_state, ~TASKLET_RUNNING); } } /* * tasklet_queue_schedule(tq, tasklet) * * Schedule tasklet to run on tq. If it was already scheduled and * has not yet run, no effect. */ static void tasklet_queue_schedule(struct tasklet_queue *tq, struct tasklet_struct *tasklet) { unsigned ostate, nstate; /* Test and set the SCHEDULED bit. If already set, we're done. */ do { ostate = tasklet->tl_state; if (ISSET(ostate, TASKLET_SCHEDULED)) return; nstate = ostate | TASKLET_SCHEDULED; } while (atomic_cas_uint(&tasklet->tl_state, ostate, nstate) != ostate); /* * Not already set and we have set it now. Put it on the queue * and kick off a softint. */ tasklet_queue_enqueue(tq, tasklet); } /* * tasklet_queue_enqueue(tq, tasklet) * * Put tasklet on the queue tq and ensure it will run. tasklet * must be marked SCHEDULED. */ static void tasklet_queue_enqueue(struct tasklet_queue *tq, struct tasklet_struct *tasklet) { struct tasklet_cpu *tc; int s; KASSERT(ISSET(tasklet->tl_state, TASKLET_SCHEDULED)); /* * With all interrupts deferred, add tasklet to the current * CPU's queue. Schedule a soft interrupt, while we're still * bound to the CPU, to process it. * * No memory barriers: CPU-local state only. */ tc = percpu_getref(tq->tq_percpu); s = splhigh(); SIMPLEQ_INSERT_TAIL(&tc->tc_head, tasklet, tl_entry); splx(s); softint_schedule(tq->tq_sih); percpu_putref(tq->tq_percpu); } /* * tasklet_init(tasklet, func, data) * * Initialize tasklet to call func(data) when scheduled. The * disable count is initially zero, so the tasklet can run. */ void tasklet_init(struct tasklet_struct *tasklet, void (*func)(unsigned long), unsigned long data) { tasklet->tl_state = 0; tasklet->tl_disablecount = 0; tasklet->func = func; tasklet->data = data; } /* * tasklet_schedule(tasklet) * * Schedule tasklet to run at regular priority. If it was already * scheduled and has not yet run, no effect. */ void tasklet_schedule(struct tasklet_struct *tasklet) { tasklet_queue_schedule(&tasklet_queue, tasklet); } /* * tasklet_hi_schedule(tasklet) * * Schedule tasklet to run at high priority. If it was already * scheduled and has not yet run, no effect. */ void tasklet_hi_schedule(struct tasklet_struct *tasklet) { tasklet_queue_schedule(&tasklet_hi_queue, tasklet); } /* * tasklet_disable(tasklet) * * Increment the disable count of tasklet, and if it was already * running, busy-wait for it to complete. * * As long as the disable count is nonzero, the tasklet's function * will not run, but if already scheduled, the tasklet will remain * so and the softint will repeatedly trigger itself in a sort of * busy-wait, so this should be used only for short durations. * * If tasklet is guaranteed not to be scheduled, e.g. if you have * just invoked tasklet_kill, then tasklet_disable serves to wait * for it to complete in case it might already be running. */ void tasklet_disable(struct tasklet_struct *tasklet) { unsigned int disablecount __diagused; /* Increment the disable count. */ disablecount = atomic_inc_uint_nv(&tasklet->tl_disablecount); KASSERT(disablecount < UINT_MAX); /* Publish disable count update before reading RUNNING bit. */ membar_enter(); /* Wait for it to finish running, if it was running. */ while (tasklet->tl_state & TASKLET_RUNNING) __insn_barrier(); /* * Guarantee we have read the RUNNING bit before any * caller-relevant reads or writes. membar_sync is overkill * because it does (reads, writes | reads, writes), but we * don't have a (reads | reads, writes) membar, so this will * do. */ membar_sync(); } /* * tasklet_enable(tasklet) * * Decrement tasklet's disable count. If it was previously * scheduled to run, it may now run. */ void tasklet_enable(struct tasklet_struct *tasklet) { unsigned int disablecount __diagused; /* * Guarantee all caller-relevant reads or writes have completed * before potentially allowing tasklet to run again by * decrementing the disable count. */ membar_exit(); /* Decrement the disable count. */ disablecount = atomic_dec_uint_nv(&tasklet->tl_disablecount); KASSERT(disablecount != UINT_MAX); } /* * tasklet_kill(tasklet) * * Busy-wait for tasklet to run, if it is currently scheduled. * Caller must guarantee it does not get scheduled again for this * to be useful. */ void tasklet_kill(struct tasklet_struct *tasklet) { KASSERTMSG(!cpu_intr_p(), "deadlock: soft interrupts are blocked in interrupt context"); /* Wait for it to be removed from the queue. */ while (ISSET(tasklet->tl_state, TASKLET_SCHEDULED)) __insn_barrier(); /* * No need for a memory barrier here because writes to the * single state word are globally ordered, and RUNNING is set * before SCHEDULED is cleared, so as long as the caller * guarantees no scheduling, the only possible transitions we * can witness are: * * 0 -> 0 * SCHEDULED -> 0 * SCHEDULED -> RUNNING * RUNNING -> 0 * RUNNING -> RUNNING * SCHEDULED|RUNNING -> 0 * SCHEDULED|RUNNING -> RUNNING */ /* Wait for it to finish running. */ while (ISSET(tasklet->tl_state, TASKLET_RUNNING)) __insn_barrier(); }