
How to hold onto things in a multiprocessor world

Taylor ‘Riastradh’ Campbell
campbell@mumble.net

riastradh@NetBSD.org

AsiaBSDcon 2017
Tokyo, Japan

March 12, 2017

Slides’n’code

I Full of code! Please browse at your own pace.

I Slides: https://tinyurl.com/ho2cdhq1

I Paper: https://tinyurl.com/h9kqccf2

Slides: Paper:

1https://www.NetBSD.org/gallery/presentations/riastradh/

asiabsdcon2017/mp-refs-slides.pdf
2https://www.NetBSD.org/gallery/presentations/riastradh/

asiabsdcon2017/mp-refs-paper.pdf

https://tinyurl.com/ho2cdhq
https://tinyurl.com/h9kqccf
https://www.NetBSD.org/gallery/presentations/riastradh/asiabsdcon2017/mp-refs-slides.pdf
https://www.NetBSD.org/gallery/presentations/riastradh/asiabsdcon2017/mp-refs-slides.pdf
https://www.NetBSD.org/gallery/presentations/riastradh/asiabsdcon2017/mp-refs-paper.pdf
https://www.NetBSD.org/gallery/presentations/riastradh/asiabsdcon2017/mp-refs-paper.pdf

Resources

I Network routes
I May be tens of thousands in system.
I Acquired and released by packet-processing path.
I Same route may be used simultaneously by many flows.
I Large legacy code base to update for parallelism.
I Update must be incremental!

I Device drivers
I Only a few dozen in system.
I Even wider range of legacy code to safely parallelize.

I File system objects (‘vnodes’)

I User credential sets

I . . .

The life and times of a resource

I Birth:
I Create: allocate memory, initialize it.
I Publish: reveal to all threads.

I Life:
I Acquire: thread begins to use a resource.
I Release: thread is done using a resource.
I . . . rinse, repeat.
I Concurrently by many threads at a time.

I Death:
I Delete: prevent threads from acquiring.
I Destroy: free memory. . .

after all threads have released.

The life and times of a resource

I Birth:
I Create: allocate memory, initialize it.
I Publish: reveal to all threads.

I Life:
I Acquire: thread begins to use a resource.
I Release: thread is done using a resource.
I . . . rinse, repeat.
I Concurrently by many threads at a time.

I Death:
I Delete: prevent threads from acquiring.
I Destroy: free memory. . . after all threads have released.

Problems for an implementer

If you are building an API for some class of resources. . .

I You MUST ensure nobody frees memory still in use!

I You MUST satisfy other API contracts, e.g. mutex rules.

I You MAY want to allow concurrent users of resources.

I You MAY care about performance.

Serialize all resources — layout

struct foo {

int key;

...;

struct foo *next;

};

struct {

kmutex_t lock;

struct foo *first;

} footab;

Serialize all resources — create/publish

struct foo *f = alloc_foo(key);

mutex_enter(&footab.lock);

f->next = footab.first;

footab.first = f;

mutex_exit(&footab.lock);

Serialize all resources — lookup/use

struct foo *f;

mutex_enter(&footab.lock);

for (f = footab.first; f != NULL; f = f->next) {

if (f->key == key) {

...use f...

break;

}

}

mutex_exit(&footab.lock);

Serialize all resources — delete/destroy

Delete/destroy:

struct foo **fp, *f;

mutex_enter(&footab.lock);

for (fp = &footab.first; (f = *fp) != NULL; fp = &f->next) {

if (f->key == key) {

*fp = f->next;

break;

}

}

mutex_exit(&footab.lock);

if (f != NULL)

free_foo(f);

Serialize all resources — slow and broken!

I No parallelism.

I Not allowed to wait for I/O or do long computation under
mutex lock.

I (This is a NetBSD rule to put bounds on progress for
mutex enter, which is not interruptible.)

Mutex and reference counts — layout

(a) Add reference count to each object.

(b) Add condition variable for notifying f->refcnt == 0.

struct foo {

int key;

...;

unsigned refcnt; // (a)

struct foo *next;

};

struct {

kmutex_t lock;

kcondvar_t cv; // (b)

struct foo *first;

} footab;

Mutex and reference counts — layout

unowned waiters rst

NULL

footab

key: 1 … nextrefcnt: 3

key: 2 … nextrefcnt: 0

NULL

struct foo

Mutex and reference counts — create/publish

struct foo *f = alloc_foo(key);

f->refcnt = 0;

mutex_enter(&footab.lock);

f->next = footab.first;

footab.first = f;

mutex_exit(&footab.lock);

Mutex and reference counts — lookup/acquire

struct foo *f;

mutex_enter(&footab.lock);

for (f = footab.first; f != NULL; f = f->next) {

if (f->key == key) {

f->refcnt++;

break;

}

}

mutex_exit(&footab.lock);

if (f != NULL)

...use f...

Mutex and reference counts — release

mutex_enter(&footab.lock);

if (--f->refcnt == 0)

cv_broadcast(&footab.cv);

mutex_exit(&footab.lock);

Mutex and reference counts — delete/destroy

struct foo **fp, *f;

mutex_enter(&footab.lock);

for (fp = &footab.first; (f = *fp) != NULL; fp = &f->next) {

if (f->key == key) {

*fp = f->next;

while (f->refcnt != 0)

cv_wait(&footab.cv, &footab.lock);

break;

}

}

mutex_exit(&footab.lock);

if (f != NULL)

free_foo(f);

Mutex lock and reference counts — summary

I If this works for you, stop here!

I Easy to prove correct.

I Just go to another talk.

I . . . but it does have problems:

I Only one lookup at any time.

I Contention over lock for every object.

I Hence not scalable to many CPUs.

Hashed locks

I Randomly partition resources into buckets.

I If distribution on resource use is uniform, lower contention for
lookup!

Hashed locks — layout

struct {

struct foobucket {

kmutex_t lock;

kcondvar_t cv;

struct foo *first;

} b;

char pad[roundup(

sizeof(struct foobucket),

CACHELINE_SIZE)];

} footab[NBUCKET];

Hashed locks — acquire

size_t h = hash(key);

mutex_enter(&footab[h].b.lock);

for (f = footab[h].b.first; f != NULL; f = f->next) {

if (f->key == key) {

f->refcnt++;

break;

}

}

mutex_exit(&footab[h].b.lock);

Hashed locks

I Randomly partition resources into buckets.

I If distribution on resource use is uniform, lower contention
for lookup!

I What if many threads want to look up same object?

I Still only one lookup at a time for that object.

I Still contention for releasing resources after use.

Mutex lock and atomic reference counts

I Use atomic operations to manage most uses of a resource.

I No need to acquire global table lock to release a resource if
it’s not the last one.

Mutex lock and atomic reference counts — acquire

struct foo *f;

mutex_enter(&footab.lock);

for (f = footab.first; f != NULL; f = f->next) {

if (f->key == key) {

atomic_inc_uint(&f->refcnt);

break;

}

}

mutex_exit(&footab.lock);

if (f != NULL)

...use f...

Mutex lock and atomic reference counts — release

do {

old = f->refcnt;

if (old == 1) {

mutex_enter(&footab.lock);

if (f->refcnt == 1) {

f->refcnt = 0;

cv_broadcast(&footab.cv);

} else {

atomic_dec_uint(&f->refcnt);

}

mutex_exit(&footab.lock);

break;

}

} while (atomic_cas_uint(&f->refcnt, old, new) != old);

Atomics: still not scalable

I We avoid contention over global table lock to release.

I But if many threads want to use the same foo. . .

I Atomic operations are not a magic bullet!

I Single atomic is slightly faster and uses less memory than a
mutex lock enter/exit.

I But contended atomics are just as bad as contended locks!

Atomics: interprocessor synchronization3

CPU 0

Cache

CPU 1

Cache

Interconnect

CPU 2

Cache

CPU 3

Cache

Interconnect

CPU 6

Cache

CPU 7

Cache

Interconnect

CPU 4

Cache

CPU 5

Cache

Interconnect

Memory MemorySystem Interconnect

3Diagram Copyright c© 2005–2010, Paul E. McKenney. From
Paul E. McKenney, Is Parallel Programming Hard, And, If So, What Can You
Do About It?, 2011. https://www.kernel.org/pub/linux/kernel/people/
paulmck/perfbook/perfbook.2011.01.02a.pdf

https://www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.2011.01.02a.pdf
https://www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.2011.01.02a.pdf

Reader/writer locks for lookup

I Instead of mutex lock for table, use rwlock.

I At any time, either one writer or many readers.

I Allows concurrent lookups, not just concurrent resource use.

I If lookups are slow, great!

I If lookups are fast, reader count is just another reference
count managed with atomics—contention!

Basic problem: to read, we must write!

I All approaches here require readers to coordinate writes.
I Acquire table lock: write who owns it now.
I Acquire read lock: write how many readers.
I Acquire reference count: write how many users.

I Can we avoid writes to read?

I Are there more reads than creations or destructions?

I Can we make reads cheaper, perhaps at the cost of making
creation or destruction more expensive?

No-contention references in NetBSD

I Passive serialization.
I Like read–copy–update, RCU in Linux.
I . . . but US patent expired sooner!

I Passive references.
I Similar to hazard pointers.
I Similar to OpenBSD SRP.

I Local counts—per-CPU reference counts.
I Similar to sleepable RCU, SRCU, but simpler.

Coordinate publish and read

I Linked-list insert and read can coordinate with no atomics.

I . . . as long as they write and read in the correct order.

I One writer, any number of readers!

I Same principle for hash tables (‘hashed lists’), radix trees.

Publish

I Write data first.

I Then write pointer to it.

struct foo *f = alloc_foo(key);

mutex_enter(&footab.lock);

f->next = footab.first;

membar_producer();

footab.first = f;

mutex_exit(&footab.lock);

Publish 1: after writing data

head data next data next NULL

data next

Publish 2: after write barrier

head data next data next NULL

data next

Publish 3: after writing pointer

head data next data next NULL

data next

Read

I Read pointer first.

I Then read data from it.

I . . . Yes, in principle stale data could be cached.

I Fortunately, membar datadep consumer is a no-op on all
CPUs other than DEC Alpha.

for (f = footab.first; f != NULL; f = f->next) {

membar_datadep_consumer();

if (f->key == key) {

use(f);

break;

}

}

Read 1: after reading pointer

head data next data next NULL

garbage garbage

Read 2: after read barrier

head data next data next NULL

data next

Read 3: after reading data

head data next data next NULL

data next

Delete

I Deletion is even easier!

I *fp = f->next;

I . . . but there is a catch.

Delete 1: before delete

head data next data next NULL

data next

Delete 1: after delete

head data next data next NULL

data next

The catch

I All well and good for publish and use!

I All well and good for delete!

I But when can we destroy (free memory, etc.)?

I No signal for when all users are done with a resource.

I How to signal release without contention?

Passive serialization: pserialize(9)

I Lookup/use:

1. Acquire: Block interrupts on CPU.
2. Look up resource.
3. Use it.
4. Release: Restore and process queued interrupts on CPU.
5. (Cannot use resource any more after this point!)

I Delete/destroy:

1. Remove resource from list: *fp = f->next.
2. Send interprocessor interrupt to all CPUs.
3. Wait for it to return on all CPUs.
4. All users that could have seen this resource have exited.

Passive serialization

answer IPI
CPU C read section read section

CPU A read section

defer IPI answer IPI

CPU B

send IPI safe to destroy

unlink

time

Passive serialization — lookup/use

1. Acquire: Block interrupts with pserialize read enter.

2. Lookup: Read pointer.

3. Memory barrier!

4. Use: Read data.

5. Release: Restore and process queued interrupts with
pserialize read exit.

s = pserialize_read_enter();

for (f = footab.first; f != NULL; f = f->next) {

membar_datadep_consumer();

if (f->key == key) {

use(f);

break;

}

}

pserialize_read_exit(s);

Passive serialization — delete/destroy

(a) Delete from list to prevent new users.

(b) Send IPI to wait for existing users to drain.

(c) Free memory.

mutex_enter(&footab.lock);

for (fp = &footab.first; (f = *fp) != NULL; f = f->next) {

if (f->key == key) {

/* (a) Prevent new users. */

*fp = f->next;

/* (b) Wait for old users. */

pserialize_perform(footab.psz);

}

}

mutex_exit(&footab.lock);

if (f != NULL)

/* (c) Destroy. */

free_foo(f);

Passive serialization — lists

I sys/queue.h macros do not have correct memory barriers.

I So we provide PSLIST(9), like LIST in sys/queue.h.

I Linked list with constant-time insert and delete. . .

I . . . and correct memory barrier for insert and read.

Passive serialization — PSLIST(9)

struct foo { ... struct pslist_entry f_entry; ... };

struct { ... struct pslist_head head; ... } footab;

mutex_enter(&footab.lock);

PSLIST_WRITER_INSERT_HEAD(&footab.head, f, f_entry);

mutex_exit(&footab.lock);

s = pserialize_read_enter();

PSLIST_READER_FOREACH(f, &footab.head, struct foo,

f_entry) {

if (f->key == key) {

...use f...;

break;

}

}

pserialize_read_exit(s);

Passive serialization pros

I Zero contention!
I Serially fast readers!

I We use software interrupts, so cheap to block and restore.
I No hardware interrupt controller reconfiguration!

I Constant memory overhead—no memory per resource, per
CPU!

Passive serialization cons

I Interrupts must be blocked during read.

I Thread cannot sleep during read.

I What if we want to pserialize the network stack?

I Code was written in ’80s before parallelism mattered. . .

I . . . and does memory allocation in packet path (e.g., to
prepend a header in a tunnel). . .

I . . . and simultaneously re-engineering the whole network stack
is hard!

I Can we do it incrementally with different tradeoffs?

Passive references: psref(9)

I Record per-CPU list of all resources in use.

I Lookup: use pserialize for table lookup.

I To acquire resource: put it on the list.

I Can now do anything on the CPU—sleep, eat, watch
television. . .

I To release resource: remove it from the list.

I To wait for users: send IPI to check for resource on each
CPU’s list.

I Note: Reader threads must not switch CPUs!

Passive references — create/publish

struct foo { ... struct psref_target target; ... };

struct { ... struct psref_class *psr; ... } footab;

struct foo *f = alloc_foo(key);

psref_target_init(&f->target, footab.psr);

mutex_enter(&footab.lock);

PSLIST_WRITER_INSERT_HEAD(&footab.head, f_entry, f);

mutex_exit(&footab.lock);

Passive references — lookup/acquire
psref acquire inserts entry on CPU-local list: no atomics!

struct psref fref;

int bound, s;

/* Bind to current CPU and lookup. */

bound = curlwp_bind();

s = pserialize_read_enter();

PSLIST_READER_FOREACH(f, &footab.head, struct foo,

f_entry) {

if (f->key == key) {

psref_acquire(&fref, &f->target,

footab.psr);

break;

}

}

pserialize_read_exit(s);

Passive references — release

I psref remove removes entry on CPU-local list, and notifies
destroyer if there is one.

I No atomics unless another thread is waiting to destroy the
resource.

/* Release psref and unbind from CPU. */

psref_release(&fref, &f->target, footab.psr);

curlwp_bindx(bound);

Passive references — delete/destroy

I psref target destroy marks the resource as being
destroyed.

I Thus, future psref release will wake it.

I Then psref target destroy repeatedly checks for
references on all CPUs and sleeps until there are none left.

Passive references — delete/destroy

/* (a) Prevent new users. */

mutex_enter(&footab.lock);

PSLIST_WRITER_FOREACH(f, &footab.head, struct foo,

f_entry) {

if (f->key == key) {

PSLIST_WRITER_REMOVE(f, f_entry);

pserialize_perform(footab.psz);

break;

}

}

mutex_exit(&footab.lock);

if (f != NULL) {

/* (b) Wait for old users. */

psref_target_destroy(&f->target, footab.psr);

/* (c) Destroy. */

free_foo(f);

}

Passive references — notes

I Threads can sleep while holding passive references.

I Binding to CPU is not usually a problem.

I Much of network stack already runs bound to a CPU anyway!

I Bonus: can write precise asserts for diagnostics!

KASSERT(psref_held(&f->target, footab.psr));

I Modest memory cost:
O(#CPU) + O(#resource) + O(#references).

I Network routes: tens of thousands in system.

I Network routes: a handful per CPU at any time.

Local counts: localcount(9)

I Global reference count per resource =⇒ contention.

I What about a per-CPU reference count per resource?

I High memory cost: O(#CPU ×#resource).

I So use only for small numbers of resources, like device drivers.

I Device drivers: dozens in system.

I Device drivers: maybe thousands of uses at any time during
heavy I/O loads.

Local counts — create/publish

struct foo { ... struct localcount lc; ... };

struct foo *f = alloc_foo(key);

localcount_init(&f->lc);

mutex_enter(&footab.lock);

PSLIST_WRITER_INSERT_HEAD(&footab.head, f_entry, f);

mutex_exit(&footab.lock);

Local counts — lookup/acquire

localcount acquire increments a CPU-local counter—no
atomics!

s = pserialize_read_enter();

PSLIST_READER_FOREACH(f, &footab.head, struct foo,

f_entry) {

if (f->key == key) {

localcount_acquire(&f->lc);

break;

}

}

pserialize_read_exit(s);

Local counts — release

I localcount release increments a CPU-local counter.

I If there is a destroyer, updates destroyer’s global reference
count.

I No atomics unless another thread is waiting to destroy the
resource.

localcount_release(&f->lc);

Local counts — delete/destroy

I localcount destroy marks resource as being destroyed.

I Sends IPI to compute global reference count by adding up
each CPU’s local reference count.

I (Fun fact: local reference counts can be negative, if threads
have migrated!)

I Waits for all IPIs to return and reference count to become
zero.

Local counts — delete/destroy

/* (a) Prevent new users. */

mutex_enter(&footab.lock);

PSLIST_WRITER_FOREACH(f, &footab.head, struct foo,

f_entry) {

if (f->key == key) {

PSLIST_WRITER_REMOVE(f, f_entry);

pserialize_perform(footab.psz);

break;

}

}

mutex_exit(&footab.lock);

if (f != NULL) {

/* (b) Wait for old users. */

localcount_destroy(&f->lc);

/* (c) Destroy. */

free_foo(f);

}

Local counts — notes

I Not yet integrated in NetBSD—still on an experimental
branch!

I To be used for MP-safely unloading device driver modules.

I Other applications? Probably yes!

Summary

I Avoid locks! Locks don’t scale.

I Avoid atomics! Atomics don’t scale.

I pserialize: short uninterruptible reads, fast but limited.

I psref: sleepable readers, modest time/memory cost, flexible.

I localcount: migratable readers, fast but memory-intensive.

Questions?

riastradh@NetBSD.org

