
Split debug symbols for pkgsrc builds
GSoC 2016 Project Proposal

Leonardo Taccari

$Id: gsoc-debugpkg,v 1.10 2016/03/25 14:36:22 leot Exp $

Rationale

The ability to debug software is important not just when developing
but also when using it, e.g. post-mortem analysis. NetBSD provides
MKDEBUG and MKDEBUGLIB variables that can be set in mk.conf in order
to split debugging symbols for user-land applications and libraries. Re-
sulting split debugging symbols are then available via the debug.tgz and
xdebug.tgz installation sets. NetBSD also provides Rump and to some
extent also ddb(4), ktrace(1) and DTrace that ease analysis, tracing and
debugging. All these features make NetBSD a great operating system in
this regard. However, in pkgsrc it is possible only to generate packages
with debugging symbols by providing proper CFLAGS for debugging and
setting the INSTALL_UNSTRIPPED flag. This make debugging, especially
for binary packages users, not very feasible.

About the project
A more convenient way - like what RPM and Debian package manager do - is to
provide a <package>-{debuginfo,dbg} for <package> (where applicable) that
includes all stripped debugging symbols. Thus, the project consists to add a
mechanism in the pkgsrc infrastructure in order to make the generation of the
<package>-{debuginfo,dbg} possible and transparent.

Providing <package>-{debuginfo,dbg} separately is also worth because
debugging symbols have a cost in term of disk space needs. As an example,
after quickly analyzing the space for NetBSD/amd64 -current installation sets
it can be observed that {debug,xdebug}.tgz sets are (in MB):

$ ls -sk *debug.tgz | \
awk ’{ s += $1 } END { print (s / 1024) }’

492.578

...while all the other installation sets (not considering kern-XEN3∗.tgz ker-
nels and {debug,xdebug}.tgz installation sets) are (in MB):

$ ls -sk [bcegmt]* x[bcefs]* kern-GENERIC.tgz | \
awk ’{ s += $1 } END { print (s / 1024) }’

419.744

1

When extracted {debug,xdebug}.tgz need approximately 1.5GB.
Ideally all the packages that have USE_LANGUAGES c and/or c99 and/or

c++ (and maybe also other programming languages) can be compiled with de-
bugging symbols and it will be needed to automatically generate the PLIST
for the <package>-{debuginfo,dbg} given the PLIST of the <package>. The
<package>-{debuginfo,dbg} will be generated if a mk.conf variable is defined
(e.g. PKGSRC_MKDEBUG) and also automatically installed. In order to handle
them the <package>-{debuginfo,dbg} will DEPENDS on <package> (of course
this can be argued because - strictly speaking - the <package>-{debuginfo,dbg}
will not depends on any other packages but in practice they are useful only if
the <package> is installed).

All the above would - hopefully - not need any change in the packages’
Makefiles. For packages that for some reasons the debugging symbols can not
be generated it will be needed to add a (per-package) Makefile variable in order
to avoid the generation and splitting of the debug symbols (e.g. the various
emulators/suse∗ packages). Also any package that presents some other prob-
lems or when generating debugging symbols isn’t logical can use that variable
to inhibit the generation of debug symbols.

Related works
As stated above NetBSD already supports splitting the debugging symbols.
There are also some existing package management systems like RPM or the
Debian package manager that support that. Both NetBSD MKDEBUG∗, RPM
and Debian package manager (and maybe also others) can probably be taken
as a good source for inspiration and design.

Neither FreeBSD ports nor OpenBSD ports support splitting debug symbols
in separate packages.

Deliverables
• design and implementation of the infrastructure in pkgsrc that handles the

compilation, split of the debug symbols and generation of the <package>-{debuginfo,dbg}
packages. Always pay attention to keep the pkgsrc portability in mind
making the infrastructure compiler/debugger-agnostic as much as possi-
ble in order to be easily extensible (although due to limited GSoC time-
frame it will be practically addressed only NetBSD-current with base gcc
compiler).

• documentation of the interface in “The pkgsrc guide” targeting pkgsrc
users, MAINTAINERs and developers. Also provide useful documentation
for the on-line pkgsrc documentation via the “help” target.

• run a bulk build with the strip debug functionality turned on for at least
a significant subset of packages on NetBSD in order to verify that the im-
plemented infrastructure correctly works. This part will probably reveals
problematic packages (e.g. package that ignore CFLAGS). Fixing these
packages will also indirectly improve the hygiene of the pkgsrc ecosystem.

2

Project schedule
April 22, 2016 - May 22, 2016 (Community Bonding)

• get in contact with the mentor(s)

• get an overview regarding debugging symbols, debugging data formats and
tools involved in handling them

• read and study pertinent documentation and code regarding how split
debugging symbols are generated via MKDEBUG∗ in src/share/mk

• investigate and research existing solutions for other package management
systems

• start to familiarize with the pkgsrc internals investigating possible sub-
systems involved for the design and implementation of the debug strip
functionality infrastructure

• discuss with the mentor(s) regarding any progress done and start brain-
storming with her/him/them.

May 23, 2016 - June 20, 2016 (Students Work on their Project)

• start to design and implement an initial version of the infrastructure
that automatically strip debug symbols from a <package> and generate a
<package>-{debuginfo,dbg}

• verify that the implemented infrastructure works with few packages (with-
out needing a bulk build)

June 20-27, 2016 (Midterm Evaluations)

June 27, 2016 - August 15, 2016 (Students Continue Coding)

• extend the implemented infrastructure as needed starting to test more
packages

• document the interface for pkgsrc users, MAINTAINERs and developers
in “The pkgsrc guide” and provide on-line documentation via the “help”
target for all visible variables and targets

• start running bulk builds with the strip debug symbols functionality turn
on for a significant subset of pkgsrc packages trying to address possible
problems (e.g. packages that ignores C∗FLAGS). Unfortunately the GSoC
time-frame will probably not permit to fix a lot of them but at least a
modus operandi regarding how fixing most common problems should be
demonstrated.

• (only if time permits) empirically compare the difference in time and (disk)
space needed by the bulk builds with and without the strip debug func-
tionality

• (only if time permits) document a practical example demonstrating the
installation of <package> and <package>-{debuginfo,dbg} and a sample
debug session to illustrate the usage from a user perspective

3

August 15-23, 2016 (Students Submit Code and Evaluations)

• polish code and documentation if needed

I consider this potential GSoC project a great opportunity to work full-time
on NetBSD and pkgsrc and, in particular, to become more familiar with internals
and various subsystems, not just of pkgsrc. Last but not least, it’s also a chance
to cooperate with the NetBSD and pkgsrc community in a not-so-short-term
project.

About me
I am studying for a Master Degree in Computing and Automation Engineering
at Università Politecnica delle Marche in Ancona, Italy. I am also a recent
NetBSD developer and have experience in particular as a package maintainer.
I’ve also sporadically contributed in htdocs and src areas too.

Where to find this proposal and how to contact
me
This proposal was first discussed on tech-pkg@ mailing list:

http://mail-index.netbsd.org/tech-pkg/2016/03/14/msg016568.html
It was polished and modified and the current version is available via the

following URL:
https://netbsd.org/˜leot/misc/gsoc2016/gsoc-debugpkg
In order to ease the review RCS is used and the corresponding RCS file is

available via the following URL:
https://netbsd.org/˜leot/misc/gsoc2016/gsoc-debugpkg,v
For questions, comments and suggestions please contact me via “leot at

NetBSD dot org”.

4

