
Engineering NetBSD 9.0

AsiaBSDCon 2020
Tokyo, Japan

Kamil Rytarowski
The NetBSD Foundation

kamil@NetBSD.org

Abstract

Multics  first  appeared  in  1965,  UNIX  First  Edition  in
1969, 1BSD in 1977 and NetBSD 0.8 in 1993, followed by
NetBSD 1.0 in 1994. The more modern versions: NetBSD
5.0 was released in 2009, 6.0 in 2012, 7.0 in 2015 and 8.0
in 2018. 8.0 was officially  announced on July 16 th, 2018.
The NetBSD-8 branch  was being  developed  as  NetBSD-
current  between June 4th, 2017 and July  21st, 2019.  Net-
BSD-9 was branched on 30th July  and 708 pull  requests
(884 commits) were processed in the branch until the final
release  on  February  14th 2020.  The  development  period
lasting 1.5 years brought a rich set of features to the distri -
bution. These include: support for new hardware devices,
massive  improvements  for  the  ARM  32-bit  and  AArch64
architecture,  stub  of  RISC-V  support,  new  hardware-as-
sisted virtualization options, improved Wine support,  ker-
nel and userland sanitizers and fuzzers, security hardening
and  CPU  bug  mitigations,  graphics  stack  upgrade,  ZFS
upgrade,  debugging  interfaces  refinement,  packet  filter
policy,  3rd  party  software  upgrades,  many  bug  fixes,
generic enhancements and removals of obsolete code.

1. Timeline
NetBSD 9.0 was announced on February 14 th, 2020 and in-
formally called the “Valentine Release”. This is the seven-
teenth major release of NetBSD.

NetBSD 8.0 was released on Tuesday July 17 th, 2018. That
is, 1 year and 7 months earlier. The span between 7.0 and
8.0 releases was 2 years and 10 months. The release cycle
is becoming quicker.

One of the reasons making this possible was the availabil-
ity of a dedicated developer Martin Husemann working on
the release engineering process part-time.

There  are  initial  plans  to  release  NetBSD 10.0 later  this
year, possibly reducing the length of the cycle below one
year.

2. Raw src repository changes
The  src  repository  is  the  main  catalogue  containing  the
NetBSD distribution. Two other important repositories are

xsrc and pkgsrc. The xsrc repository contains traditionally
X11 (Xorg) files and pkgsrc contains a set of rules to build
3rd party software on top of NetBSD, although it was ex-
tended  to  work  on  other  UNIX-like  Operating  Systems
(Linux, Darwin, other BSDs. Solaris, etc).

The following statistics are restricted to the src repository
only. There are developers that are active only in pkgsrc or
on the wiki. Their contributions are still valuable and this
analysis  does not  aim  to  reduce  credit  for  their  involve-
ment.

18819 commits were made between Sunday June 4th 2017
(branching point of NetBSD-8 “8.99.1” by snj@), and the
final  9.0  release  commit  on  14th  February  2020  (“Wel-
come to NetBSD 9.0 - the "Valentine Release"” by mart-
in@).

Throughout this period, the following changes were intro-
duced:

 102,952 files changed,

 12,728,116 insertions(+),

 12,082,323 deletions(-).

114  developers  made  at  least  a  single  commit  in  this
branch.

Top 10 active committers are:

   2426  christos (12.89% total)

   1749  maxv (9.29% total)

   1531  jmcneill (8.16% total)

   1248  martin (6.61% total)

   1087  msaitoh (5.78% total)

    996  riastradh (5.29% total)

    975  mrg (5.18% total)

    712  kamil (3.78% total)

    626  skrll (3.33% total)

    568  kre (3.02% total)



These people introduced 63.33% of the total commits.

Top 20 active  developers  introduced  80.77% of the  total
commits.

Top 20% of active committers (approximately 22-23 peo-
ple) introduced 83.08%-84.20% of the total commits.

If we ignore 9 committers that made no more than a single
commit,  we have  got  105 active  developers.  This makes
20% of active committers (21 people) introducing 81.94%
changes.

If we ignore 18 committers that made no more than com-
mits, we have got 96 active developers. This makes 20% of
active  committers  (19-20  people)  introducing  79.71%-
80.90% changes.

This presents  that  the NetBSD-9 development  period has
long tail  distribution of the active  committers with infre-
quent activity  and core of very active  people making (in
the  raw  number  of  commits)  significant  change  to  the
codebase.

This analysis illustrates the Pareto principle also known as
the 80/20 rule that roughly 80% of the effects come from
20% of the causes.

It  also shows that  there  is a long tail  of developers  with
overall 20% of activity in the project and this leads to har-
monic  situation.  For every  very  active  developer  we get
around 4 people contributing from time to time.

3. Hardware support
The  hardware  requirements  are  contentiously raising and
computer  vendors  release  new  generations  of  computers
and their peripherals. NetBSD as a general purpose Operat-
ing System follows the market and improves its compati-
bility with the modern products.

3.1. ARM architecture

NetBSD  9.0  is  the  first  release  with  formal  support  for
AArch64 (64-bit ARMv8) machines.

 Support  for  "Arm  ServerReady"  compliant
machines (SBBR+SBSA)

 Symmetric and asymmetrical multiprocessing
support (aka big.LITTLE)

 Support for running 32-bit binaries via COM-
PAT_NETBSD32 on CPUs that support it

 Single  GENERIC64  kernel  supports  ACPI
and devicetree based booting

 Supported SoCs:

◦ Allwinner A64, H5, H6

◦ Amlogic  S905,  S805X,  S905D,  S905W,
S905X

◦ Broadcom BCM2837

◦ NVIDIA Tegra X1 (T210)

◦ QEMU "virt" emulated machines

◦ Rockchip RK3328, RK3399

◦ SBSA/SBBR (server-class)  hardware  us-
ing ACPI. Successfully test on, for exam-
ple: Amazon Graviton and Graviton2 (in-
cluding  bare  metal  instances),  AMD
Opteron  A1100,  Ampere  eMAG  8180,
Cavium  ThunderX,  Marvell  ARMADA
8040, QEMU w/ Tianocore EDK2

 Support for up to 256 CPUs

The ARMv7 and earlier  generation of the ARM line was
improved.

 Symmetric and asymmetrical multiprocessing sup-
port (aka big.LITTLE)

 UEFI bootloader

 Single  GENERIC  kernel  supports  devicetree
based booting

 Supported SoCs:

◦ Allwinner A10, A13, A20, A31, A80, A83T,
GR8, H3, R8

◦ Amlogic S805

◦ Arm Versatile Express V2P-CA15

◦ Broadcom BCM2836, BCM2837

◦ Intel Cyclone V SoC FPGA

◦ NVIDIA Tegra K1 (T124)

◦ Samsung Exynos 5422

◦ TI AM335x, OMAP3

◦ Xilinx Zynq 7000

 Support for up to 8 CPUs

A  large  number  of  ARM  SOCs  were  switched  to
GENERIC and GENERIC64 kernel configurations with as-
sociated  DTS configurations.  These  kernel  configurations
produce single kernel images ready to run on various ARM
boards.

3.2. Direct Rendering Management Kernel Mode Setting

The DRMKMS stack for graphics devices on x86 was up-
dated to match Linux 4.4. This brings support for many re-
cent Intel, nVidia and AMD cards.



New GPU device drivers for ARM include:

 DRM/KMS  modesetting  drivers  for  Allwinner
DE2, Rockchip VOP, TI AM335x LCDC

 Basic  framebuffer  driver  for  Arm  PrimeCell
PL111, TI OMAP3 DSS

 Simple framebuffer support for reusing linear FBs
configured by the bootloader

3.3. RISCV

The  RISCV support  has  reached  a  functional  boot  in  an
emulator, however there is still no userland nor real hard-
ware  support.  This  code  was  not  mature  enough  to  be
merged into NetBSD 9.0 and is awaiting  future  releases,
possibly NetBSD 10.0.

3.4. Other changes

Other noteworthy changes include:

 cpuctl(8),  the  program  to  control  CPUs,  was
ported to the sparc and sparc64 ports.

 The atari port gained Milan device support.

 The  support  for  Mac  G5  was  enhanced  in  the
macppc port.

 VAXstation  4000  gained  support  for  the  TUR-
BOchannel device, which allows connecting USB
devices to VAX computers.

 A number  of  processors  (ARMv7,  ARMv8,  x86
AMD, x86 Intel) gained support for hardware as-
sisted Performance Monitor Counter.

 The  SATA  subsystem  was  reworked  to  support
multiple commands in transit (NCQ).

 New  device  drivers  for  networking  cards  were
added:  Broadcom  Full-MAC  wireless  devices;
Amazon Elastic Network Adapter, Mellanox Con-
nectX-4  Lx  EN,   ConnectX-4  EN,  ConnectX-5
EN, and ConnectX-6 EN ethernet adapters.

4. Virtualization
There is a rich set of virtualization enhancements in Net-
BSD 9.0.

4.1. Xen

The traditional NetBSD/xen port is still actively developed
and receives maintenance.

The primary changes in this area adapted the existing Xen
support code to use more native x86 code paths. Another
chunk of patches corrected build and boot of Xen kernels.

Large parts of the xen port were refactored and optimized.
Xen non-PAE-i386 is  now removed,  leaving  amd64  and
i386+PAE as the only two supported modes.

Many  code  paths  were  adapted  for  newer
__XEN_INTERFACE_VERSION__ versions  larger  or
equal to 0x00030201.

4.2. NetBSD Virtual Machine Monitor

NVMM is a hypervisor platform that  provides  hardware-
accelerated  virtualization  support  for NetBSD. It  consists
of a Machine Independent frontend that connects with Ma-
chine  Dependent  backends.  A  virtualization  API  is  pro-
vided by libnvmm, that  makes it  possible to easily create
and manage virtual machines.

The Qemu package in pkgsrc (emulators/qemu)  has been
modified  to  leverage  this  virtualization  API  and  provide
fast emulation using NVMM. The upstream Qemu devel-
opers reviewed the NetBSD hypervisor patchset and it has
a good chance of being part of the future releases of Qemu.

Two additional  components are shipped as demonstration
programs, toyvirt and smallkern. The former is a toy virtu-
alizer  that  executes  the  64bit  ELF binary  given  as  argu-
ment in a VM, while the latter is an example of such a bi-
nary.

NVMM is supported on modern Intel  and AMD64 64-bit
CPUs.

NVMM has been  reported  to  support  a  number  of  guest
Operating Systems:

 NetBSD 32-bit

 NetBSD 64-bit

 FreeBSD 32-bit

 FreeBSD 64-bit

 Windows XP 32-bit

 Windows 7 32-bit

 Windows 8 32-bit

 Windows 8 64-bit

 Windows 10 32-bit

 Windows 10 64-bit

 Linux 64-bit

The  Linux guest  requires  disabling  the  sanity  checks  for
hwadware timer, from the bootloader level. The same is al-
ready done for other hypervisors such as KVM.

Not all Operating Systems are supported by the combina-
tion of NVMM + Qemu, two notable examples being Win-
dows 95 and Windows 98.



4.3.  Intel Hardware Accelerated Execution Manager

HAXM is a cross-platform hardware-assisted virtualization
engine (hypervisor), widely used as an accelerator for An-
droid Emulator and QEMU.

It has always supported running on Windows and macOS,
and has been ported to Linux and then NetBSD.

There is a native support for NetBSD 9.0 and untested sup-
port for older releases on NetBSD, although it is probably
unstable.

The  Qemu  package  in  pkgsrc  (emulators/qemu)  already
ships with the HAXM/NetBSD support out of the box.

The HAXM package is distributed as an external piece of
software in pkgsrc/emulators/haxm.

The NetBSD developers decided to promote NVMM as the
primary choice and keep HAXM as an optional fallback.

Traditionally HAXM supported only a single guest Operat-
ing System – Android, a variation of the Linux kernel. To-
day the number of other Operating Systems is supported,
among others:

 NetBSD 64-bit

 Windows 7 32-bit

 Linux 64-bit

 DragonFlyBSD 64-bit

 FREEDOS

The guest support for 64-bit Windows 10 is in active de-
velopment  by  the  Intel  developers  and  the  Open  Source
community.

4.4.  Wine 64-bit support

The  missing  kernel  support  of  USER_LDT  was  imple-
mented. This means that the appropriate wine64 package is
now a matter of packaging in pkgsrc and bug fixing.

During the Google Summer of Code 2019, a student pack-
aged and improved wine for modern NetBSD. The deliver-
able has been verified by a successful execution of a num-
ber of Windows applications.

Unfortunately the kernel option is still disabled by default
in the kernel configuration as the development of the Wine
support is still ongoing.

4.5.  NetBSD guest support

Qemu  firmware  configuration  device  (fw_cfg)  can  be
mounted via mount_qemufwcfg(8).  It  provides the Qemu
fw_cfg configuration files as a file system tree. This utility
is associated with the qemufwcfg(4) device driver that al-
lows Qemu to provide data items and files to guest operat-
ing systems.

The virtio  support  for  MMIO and PCI was improved for
modern ARM ports.

Hyper-V support  for  x86 was introduced.  This opens the
possibility of using NetBSD on the Microsoft Azure cloud.

5. Security, Quality Assurance
The process of engineering the NetBSD Operating System
has  been  improved  with  this  release  and  the  developers
gained new tools to catch software bugs more effectively
and efficiently.

The NetBSD Operating System is also more secure thanks
to new features and developer activities.

5.1.  Kernel Address Space Layout Randomization

A full Kernel ASLR has been implemented for the amd64
port along with the GENERIC_KASLR build configuration
file.  This  implementation  is  one  of  the  most  advanced
available to date among all Operating Systems.

The  GENERIC  (default)  kernel  configuration  is  also
shipped with a partial Kernel ASLR enabled by default. An
intermediate bootloader called prekern has been developed
for full KASLR.

5.2.  Kernel Leak Sanitizer

KLEAK has been designed around the LLVM/GCC Sani-
tizer Coverage feature to track passing copies of uninitial-
ized memory to userland.

5.3.  Kernel Address Sanitizer

Address Sanitizer is a feature of GCC/LLVM that catches
accesses  to  unmanaged  memory  (use-after-free,  out-of-
bound access, etc).

The first  functional  BSD-licensed kernel  implementation,
landed the NetBSD source tree. It includes support for two
ports: amd64 and evbarm aarch64.

5.4.  Kernel Undefined Behavior Sanitizer

UBSan is a GCC/LLVM sanitizer that catches unspecified
semantics during runtime of the code.

The NetBSD kernel implementation uses the μUBSan run-
time that has been created by the NetBSD developers. The
μUBSan version is implemented in plain C as a single file.
It avoid depending on the environment as much as possible
and is reasonable. This runtime is reused in ATF regression
tests  for  standalone  userland  programs  and  continuously
verified against the host compiler (GCC or Clang).

kUBSan happens to  be considered  controversial  as  many
issues  caught  by  it  are  considered  uninteresting  and  de
facto well defined behavior by a number of developers. For
example architectures such as x86 are generally not sensi-
tive to misalignment.



5.5.  Other kernel quality assurance activities

Noteworthy goals achieved in this release are:

 Kernel Sanitizer Coverage (KCOV) device to col-
lect tracing data for kernel sanitizers.

 Kernel Heap Hardening.

 Audited  network  stack  –  bringing  more  confi-
dence in the networking components of the kernel.

 Many bug fixes and new features in the ptrace(2)
debugger-oriented API for controlling processes.

5.6. Userland quality assurance activities

The support for userland sanitizers has been improved sig-
nificantly.  Address  Sanitizer,  Memory  Sanitizer,  Thread
Sanitizer and Undefined Behavior Sanitizer have been im-
plemented and enabled in the LLVM-enabled distribution.
Address  Sanitizer,  Leak  Sanitizer,  Thread  Sanitizer  and
Undefined Behavior Sanitizer have also been enhanced for
the GCC-enabled distribution.

Two new build options have been introduced to make use
of the sanitizers:

 MKLIBCSANITIZER  –  that  enables  using  the
sanitizer  selected via USE_LIBCSANITIZER in-
side  libc  to  compile  userland  programs  and  li-
braries. It defaults to “undefined”. Currently UB-
San is the  only supported  sanitizer  in  this  mode
and it uses the  μUBSan runtime.

 MKSANITIZER – that uses the sanitizer selected
via  USE_SANITIZER  to  compile  userland  pro-
grams.  It  defaults  to  “address”  (ASan).  The  fol-
lowing  sanitizers  are  supported:  address,  thread,
memory,  undefined,  leak,  dataflow,  cfi,  safe-
stack, scudo.

The exact list of supported features, their completeness and
their  valid  combinations depend  on the  compiler  version
and target CPU architecture.

6. Removal of numerous old components
There  were  various hardware  peripherals  and kernel  sub-
systems no  longer  in  use.  The  support  for  them  was re-
moved in this release. Among others:

 NETISDN  and  related  drivers  (daic,  iavc,  ifpci,
ifritz, iwic, isic)

 NETNATM and the related midway driver

 several compatibility layers (NDIS, SVR3, SVR4)

 the n8 driver

 vm86

 ipkdb

The result is that the kernel code is now smaller and easier
to develop.

7. Other and general improvements
The NetBSD core team decided that  the future of packet
filtering  on  NetBSD  is  npf(4)  –  a  homegrown  NetBSD
Packet  Filter.  This  obsoletes  ipf(4)  and pf(4)  that  are  no
longer actively maintained.

The USB device drivers have been refactored and a com-
mon layer between the drivers has been defined as the usb-
net framework.

ZFS is updated and considered now as ready for daily use.

Third party software upgrades involve: GCC 7.4, GDB 8.3,
LLVM  7.0.0,  OpenSSL  1.1.1d,  OpenSSH  8.0,  sqlite3
3.26.0.

8. Conclusions
A large  team  gathered  around  the  Open  Source  project,
with more than 100 people actively involved in the main-
tainer role engineered a solid product with wide press cov-
erage and good reception from the users.

9. Dedication
This  release  was  dedicated  to  the  memory  of  Matthias
Drochner, who passed away in August 2018, and Eric Sch-
noebelen, who passed away in March 2019.

References
[1] The NetBSD Project.

http://netbsd.org/releases/formal-9/NetBSD-9.0.html (accessed 

2020-02-14)

[2] The NetBSD Project. GitHub mirror.

https://github.com/NetBSD/src (accessed 2020-02-14)

[3] Maxime Villard. NetBSD Virtual Machine Monitor.

https://m00nbsd.net/4e0798b7f2620c965d0dd9d6a7a2f296.htm

l  (accessed 2020-02-14)

[4] Intel® Hardware Accelerated Execution Manager (Intel® 

HAXM).

https://github.com/intel/haxm  (accessed 2020-02-14)

[5] Kamil Rytarowski. MKSANITIZER - bug detector software in-

tegration with the NetBSD userland

https://blog.netbsd.org/tnf/entry/mksanitizer_bug_detector_soft-

ware_integration (accessed 2020-02-14)

[6] Kamil Rytarowski. Introduction to µUBSan - a clean-room 

reimplementation of the Undefined Behavior Sanitizer runtime

https://blog.netbsd.org/tnf/entry/introduction_to_%C2%B5ub-

san_a_clean (accessed 2020-02-14)

[7] Maxime Villard. The strongest KASLR, ever?

https://blog.netbsd.org/tnf/entry/the_strongest_kaslr_ever  (ac-

cessed 2020-02-14)


