/* * Copyright (c) 1982, 1986, 1989 Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ufs_alloc.c 7.26 (Berkeley) 5/2/91 */ #include "param.h" #include "systm.h" #include "buf.h" #include "proc.h" #include "vnode.h" #include "kernel.h" #include "syslog.h" #include "quota.h" #include "inode.h" #include "fs.h" extern u_long hashalloc(); extern ino_t ialloccg(); extern daddr_t alloccg(); extern daddr_t alloccgblk(); extern daddr_t fragextend(); extern daddr_t blkpref(); extern daddr_t mapsearch(); extern int inside[], around[]; extern unsigned char *fragtbl[]; /* * Allocate a block in the file system. * * The size of the requested block is given, which must be some * multiple of fs_fsize and <= fs_bsize. * A preference may be optionally specified. If a preference is given * the following hierarchy is used to allocate a block: * 1) allocate the requested block. * 2) allocate a rotationally optimal block in the same cylinder. * 3) allocate a block in the same cylinder group. * 4) quadradically rehash into other cylinder groups, until an * available block is located. * If no block preference is given the following heirarchy is used * to allocate a block: * 1) allocate a block in the cylinder group that contains the * inode for the file. * 2) quadradically rehash into other cylinder groups, until an * available block is located. */ alloc(ip, lbn, bpref, size, bnp) register struct inode *ip; daddr_t lbn, bpref; int size; daddr_t *bnp; { daddr_t bno; register struct fs *fs; register struct buf *bp; int cg, error; struct ucred *cred = curproc->p_ucred; /* XXX */ *bnp = 0; fs = ip->i_fs; if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) { printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n", ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt); panic("alloc: bad size"); } if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) goto nospace; if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0) goto nospace; #ifdef QUOTA if (error = chkdq(ip, (long)btodb(size), cred, 0)) return (error); #endif if (bpref >= fs->fs_size) bpref = 0; if (bpref == 0) cg = itog(fs, ip->i_number); else cg = dtog(fs, bpref); bno = (daddr_t)hashalloc(ip, cg, (long)bpref, size, (u_long (*)())alloccg); if (bno > 0) { ip->i_blocks += btodb(size); ip->i_flag |= IUPD|ICHG; *bnp = bno; return (0); } #ifdef QUOTA /* * Restore user's disk quota because allocation failed. */ (void) chkdq(ip, (long)-btodb(size), cred, FORCE); #endif nospace: fserr(fs, cred->cr_uid, "file system full"); uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt); return (ENOSPC); } /* * Reallocate a fragment to a bigger size * * The number and size of the old block is given, and a preference * and new size is also specified. The allocator attempts to extend * the original block. Failing that, the regular block allocator is * invoked to get an appropriate block. */ realloccg(ip, lbprev, bpref, osize, nsize, bpp) register struct inode *ip; off_t lbprev; daddr_t bpref; int osize, nsize; struct buf **bpp; { register struct fs *fs; struct buf *bp, *obp; int cg, request, error; daddr_t bprev, bno; struct ucred *cred = curproc->p_ucred; /* XXX */ *bpp = 0; fs = ip->i_fs; if ((unsigned)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || (unsigned)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { printf("dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n", ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt); panic("realloccg: bad size"); } if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0) goto nospace; if ((bprev = ip->i_db[lbprev]) == 0) { printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n", ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt); panic("realloccg: bad bprev"); } /* * Allocate the extra space in the buffer. */ if (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) { brelse(bp); return (error); } #ifdef QUOTA if (error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) { brelse(bp); return (error); } #endif /* * Check for extension in the existing location. */ cg = dtog(fs, bprev); if (bno = fragextend(ip, cg, (long)bprev, osize, nsize)) { if (bp->b_blkno != fsbtodb(fs, bno)) panic("bad blockno"); ip->i_blocks += btodb(nsize - osize); ip->i_flag |= IUPD|ICHG; allocbuf(bp, nsize); bp->b_flags |= B_DONE; bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize); *bpp = bp; return (0); } /* * Allocate a new disk location. */ if (bpref >= fs->fs_size) bpref = 0; switch ((int)fs->fs_optim) { case FS_OPTSPACE: /* * Allocate an exact sized fragment. Although this makes * best use of space, we will waste time relocating it if * the file continues to grow. If the fragmentation is * less than half of the minimum free reserve, we choose * to begin optimizing for time. */ request = nsize; if (fs->fs_minfree < 5 || fs->fs_cstotal.cs_nffree > fs->fs_dsize * fs->fs_minfree / (2 * 100)) break; log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", fs->fs_fsmnt); fs->fs_optim = FS_OPTTIME; break; case FS_OPTTIME: /* * At this point we have discovered a file that is trying * to grow a small fragment to a larger fragment. To save * time, we allocate a full sized block, then free the * unused portion. If the file continues to grow, the * `fragextend' call above will be able to grow it in place * without further copying. If aberrant programs cause * disk fragmentation to grow within 2% of the free reserve, * we choose to begin optimizing for space. */ request = fs->fs_bsize; if (fs->fs_cstotal.cs_nffree < fs->fs_dsize * (fs->fs_minfree - 2) / 100) break; log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", fs->fs_fsmnt); fs->fs_optim = FS_OPTSPACE; break; default: printf("dev = 0x%x, optim = %d, fs = %s\n", ip->i_dev, fs->fs_optim, fs->fs_fsmnt); panic("realloccg: bad optim"); /* NOTREACHED */ } bno = (daddr_t)hashalloc(ip, cg, (long)bpref, request, (u_long (*)())alloccg); if (bno > 0) { bp->b_blkno = fsbtodb(fs, bno); (void) vnode_pager_uncache(ITOV(ip)); blkfree(ip, bprev, (off_t)osize); if (nsize < request) blkfree(ip, bno + numfrags(fs, nsize), (off_t)(request - nsize)); ip->i_blocks += btodb(nsize - osize); ip->i_flag |= IUPD|ICHG; allocbuf(bp, nsize); bp->b_flags |= B_DONE; bzero(bp->b_un.b_addr + osize, (unsigned)nsize - osize); *bpp = bp; return (0); } #ifdef QUOTA /* * Restore user's disk quota because allocation failed. */ (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE); #endif brelse(bp); nospace: /* * no space available */ fserr(fs, cred->cr_uid, "file system full"); uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt); return (ENOSPC); } /* * Allocate an inode in the file system. * * A preference may be optionally specified. If a preference is given * the following hierarchy is used to allocate an inode: * 1) allocate the requested inode. * 2) allocate an inode in the same cylinder group. * 3) quadradically rehash into other cylinder groups, until an * available inode is located. * If no inode preference is given the following heirarchy is used * to allocate an inode: * 1) allocate an inode in cylinder group 0. * 2) quadradically rehash into other cylinder groups, until an * available inode is located. */ ialloc(pip, ipref, mode, cred, ipp) register struct inode *pip; ino_t ipref; int mode; struct ucred *cred; struct inode **ipp; { ino_t ino; register struct fs *fs; register struct inode *ip; int cg, error; *ipp = 0; fs = pip->i_fs; if (fs->fs_cstotal.cs_nifree == 0) goto noinodes; if (ipref >= fs->fs_ncg * fs->fs_ipg) ipref = 0; cg = itog(fs, ipref); ino = (ino_t)hashalloc(pip, cg, (long)ipref, mode, ialloccg); if (ino == 0) goto noinodes; error = iget(pip, ino, ipp); if (error) { ifree(pip, ino, mode); return (error); } ip = *ipp; if (ip->i_mode) { printf("mode = 0%o, inum = %d, fs = %s\n", ip->i_mode, ip->i_number, fs->fs_fsmnt); panic("ialloc: dup alloc"); } if (ip->i_blocks) { /* XXX */ printf("free inode %s/%d had %d blocks\n", fs->fs_fsmnt, ino, ip->i_blocks); ip->i_blocks = 0; } ip->i_flags = 0; /* * Set up a new generation number for this inode. */ if (++nextgennumber < (u_long)time.tv_sec) nextgennumber = time.tv_sec; ip->i_gen = nextgennumber; return (0); noinodes: fserr(fs, cred->cr_uid, "out of inodes"); uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt); return (ENOSPC); } /* * Find a cylinder to place a directory. * * The policy implemented by this algorithm is to select from * among those cylinder groups with above the average number of * free inodes, the one with the smallest number of directories. */ ino_t dirpref(fs) register struct fs *fs; { int cg, minndir, mincg, avgifree; avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; minndir = fs->fs_ipg; mincg = 0; for (cg = 0; cg < fs->fs_ncg; cg++) if (fs->fs_cs(fs, cg).cs_ndir < minndir && fs->fs_cs(fs, cg).cs_nifree >= avgifree) { mincg = cg; minndir = fs->fs_cs(fs, cg).cs_ndir; } return ((ino_t)(fs->fs_ipg * mincg)); } /* * Select the desired position for the next block in a file. The file is * logically divided into sections. The first section is composed of the * direct blocks. Each additional section contains fs_maxbpg blocks. * * If no blocks have been allocated in the first section, the policy is to * request a block in the same cylinder group as the inode that describes * the file. If no blocks have been allocated in any other section, the * policy is to place the section in a cylinder group with a greater than * average number of free blocks. An appropriate cylinder group is found * by using a rotor that sweeps the cylinder groups. When a new group of * blocks is needed, the sweep begins in the cylinder group following the * cylinder group from which the previous allocation was made. The sweep * continues until a cylinder group with greater than the average number * of free blocks is found. If the allocation is for the first block in an * indirect block, the information on the previous allocation is unavailable; * here a best guess is made based upon the logical block number being * allocated. * * If a section is already partially allocated, the policy is to * contiguously allocate fs_maxcontig blocks. The end of one of these * contiguous blocks and the beginning of the next is physically separated * so that the disk head will be in transit between them for at least * fs_rotdelay milliseconds. This is to allow time for the processor to * schedule another I/O transfer. */ daddr_t blkpref(ip, lbn, indx, bap) struct inode *ip; daddr_t lbn; int indx; daddr_t *bap; { register struct fs *fs; register int cg; int avgbfree, startcg; daddr_t nextblk; fs = ip->i_fs; if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { if (lbn < NDADDR) { cg = itog(fs, ip->i_number); return (fs->fs_fpg * cg + fs->fs_frag); } /* * Find a cylinder with greater than average number of * unused data blocks. */ if (indx == 0 || bap[indx - 1] == 0) startcg = itog(fs, ip->i_number) + lbn / fs->fs_maxbpg; else startcg = dtog(fs, bap[indx - 1]) + 1; startcg %= fs->fs_ncg; avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; for (cg = startcg; cg < fs->fs_ncg; cg++) if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { fs->fs_cgrotor = cg; return (fs->fs_fpg * cg + fs->fs_frag); } for (cg = 0; cg <= startcg; cg++) if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { fs->fs_cgrotor = cg; return (fs->fs_fpg * cg + fs->fs_frag); } return (NULL); } /* * One or more previous blocks have been laid out. If less * than fs_maxcontig previous blocks are contiguous, the * next block is requested contiguously, otherwise it is * requested rotationally delayed by fs_rotdelay milliseconds. */ nextblk = bap[indx - 1] + fs->fs_frag; if (indx > fs->fs_maxcontig && bap[indx - fs->fs_maxcontig] + blkstofrags(fs, fs->fs_maxcontig) != nextblk) return (nextblk); if (fs->fs_rotdelay != 0) /* * Here we convert ms of delay to frags as: * (frags) = (ms) * (rev/sec) * (sect/rev) / * ((sect/frag) * (ms/sec)) * then round up to the next block. */ nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect / (NSPF(fs) * 1000), fs->fs_frag); return (nextblk); } /* * Implement the cylinder overflow algorithm. * * The policy implemented by this algorithm is: * 1) allocate the block in its requested cylinder group. * 2) quadradically rehash on the cylinder group number. * 3) brute force search for a free block. */ /*VARARGS5*/ u_long hashalloc(ip, cg, pref, size, allocator) struct inode *ip; int cg; long pref; int size; /* size for data blocks, mode for inodes */ u_long (*allocator)(); { register struct fs *fs; long result; int i, icg = cg; fs = ip->i_fs; /* * 1: preferred cylinder group */ result = (*allocator)(ip, cg, pref, size); if (result) return (result); /* * 2: quadratic rehash */ for (i = 1; i < fs->fs_ncg; i *= 2) { cg += i; if (cg >= fs->fs_ncg) cg -= fs->fs_ncg; result = (*allocator)(ip, cg, 0, size); if (result) return (result); } /* * 3: brute force search * Note that we start at i == 2, since 0 was checked initially, * and 1 is always checked in the quadratic rehash. */ cg = (icg + 2) % fs->fs_ncg; for (i = 2; i < fs->fs_ncg; i++) { result = (*allocator)(ip, cg, 0, size); if (result) return (result); cg++; if (cg == fs->fs_ncg) cg = 0; } return (NULL); } /* * Determine whether a fragment can be extended. * * Check to see if the necessary fragments are available, and * if they are, allocate them. */ daddr_t fragextend(ip, cg, bprev, osize, nsize) struct inode *ip; int cg; long bprev; int osize, nsize; { register struct fs *fs; register struct cg *cgp; struct buf *bp; long bno; int frags, bbase; int i, error; fs = ip->i_fs; if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) return (NULL); frags = numfrags(fs, nsize); bbase = fragnum(fs, bprev); if (bbase > fragnum(fs, (bprev + frags - 1))) { /* cannot extend across a block boundary */ return (NULL); } error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, NOCRED, &bp); if (error) { brelse(bp); return (NULL); } cgp = bp->b_un.b_cg; if (!cg_chkmagic(cgp)) { brelse(bp); return (NULL); } cgp->cg_time = time.tv_sec; bno = dtogd(fs, bprev); for (i = numfrags(fs, osize); i < frags; i++) if (isclr(cg_blksfree(cgp), bno + i)) { brelse(bp); return (NULL); } /* * the current fragment can be extended * deduct the count on fragment being extended into * increase the count on the remaining fragment (if any) * allocate the extended piece */ for (i = frags; i < fs->fs_frag - bbase; i++) if (isclr(cg_blksfree(cgp), bno + i)) break; cgp->cg_frsum[i - numfrags(fs, osize)]--; if (i != frags) cgp->cg_frsum[i - frags]++; for (i = numfrags(fs, osize); i < frags; i++) { clrbit(cg_blksfree(cgp), bno + i); cgp->cg_cs.cs_nffree--; fs->fs_cstotal.cs_nffree--; fs->fs_cs(fs, cg).cs_nffree--; } fs->fs_fmod++; bdwrite(bp); return (bprev); } /* * Determine whether a block can be allocated. * * Check to see if a block of the apprpriate size is available, * and if it is, allocate it. */ daddr_t alloccg(ip, cg, bpref, size) struct inode *ip; int cg; daddr_t bpref; int size; { register struct fs *fs; register struct cg *cgp; struct buf *bp; register int i; int error, bno, frags, allocsiz; fs = ip->i_fs; if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) return (NULL); error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, NOCRED, &bp); if (error) { brelse(bp); return (NULL); } cgp = bp->b_un.b_cg; if (!cg_chkmagic(cgp) || (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) { brelse(bp); return (NULL); } cgp->cg_time = time.tv_sec; if (size == fs->fs_bsize) { bno = alloccgblk(fs, cgp, bpref); bdwrite(bp); return (bno); } /* * check to see if any fragments are already available * allocsiz is the size which will be allocated, hacking * it down to a smaller size if necessary */ frags = numfrags(fs, size); for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) if (cgp->cg_frsum[allocsiz] != 0) break; if (allocsiz == fs->fs_frag) { /* * no fragments were available, so a block will be * allocated, and hacked up */ if (cgp->cg_cs.cs_nbfree == 0) { brelse(bp); return (NULL); } bno = alloccgblk(fs, cgp, bpref); bpref = dtogd(fs, bno); for (i = frags; i < fs->fs_frag; i++) setbit(cg_blksfree(cgp), bpref + i); i = fs->fs_frag - frags; cgp->cg_cs.cs_nffree += i; fs->fs_cstotal.cs_nffree += i; fs->fs_cs(fs, cg).cs_nffree += i; fs->fs_fmod++; cgp->cg_frsum[i]++; bdwrite(bp); return (bno); } bno = mapsearch(fs, cgp, bpref, allocsiz); if (bno < 0) { brelse(bp); return (NULL); } for (i = 0; i < frags; i++) clrbit(cg_blksfree(cgp), bno + i); cgp->cg_cs.cs_nffree -= frags; fs->fs_cstotal.cs_nffree -= frags; fs->fs_cs(fs, cg).cs_nffree -= frags; fs->fs_fmod++; cgp->cg_frsum[allocsiz]--; if (frags != allocsiz) cgp->cg_frsum[allocsiz - frags]++; bdwrite(bp); return (cg * fs->fs_fpg + bno); } /* * Allocate a block in a cylinder group. * * This algorithm implements the following policy: * 1) allocate the requested block. * 2) allocate a rotationally optimal block in the same cylinder. * 3) allocate the next available block on the block rotor for the * specified cylinder group. * Note that this routine only allocates fs_bsize blocks; these * blocks may be fragmented by the routine that allocates them. */ daddr_t alloccgblk(fs, cgp, bpref) register struct fs *fs; register struct cg *cgp; daddr_t bpref; { daddr_t bno; int cylno, pos, delta; short *cylbp; register int i; if (bpref == 0) { bpref = cgp->cg_rotor; goto norot; } bpref = blknum(fs, bpref); bpref = dtogd(fs, bpref); /* * if the requested block is available, use it */ if (isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) { bno = bpref; goto gotit; } /* * check for a block available on the same cylinder */ cylno = cbtocylno(fs, bpref); if (cg_blktot(cgp)[cylno] == 0) goto norot; if (fs->fs_cpc == 0) { /* * block layout info is not available, so just have * to take any block in this cylinder. */ bpref = howmany(fs->fs_spc * cylno, NSPF(fs)); goto norot; } /* * check the summary information to see if a block is * available in the requested cylinder starting at the * requested rotational position and proceeding around. */ cylbp = cg_blks(fs, cgp, cylno); pos = cbtorpos(fs, bpref); for (i = pos; i < fs->fs_nrpos; i++) if (cylbp[i] > 0) break; if (i == fs->fs_nrpos) for (i = 0; i < pos; i++) if (cylbp[i] > 0) break; if (cylbp[i] > 0) { /* * found a rotational position, now find the actual * block. A panic if none is actually there. */ pos = cylno % fs->fs_cpc; bno = (cylno - pos) * fs->fs_spc / NSPB(fs); if (fs_postbl(fs, pos)[i] == -1) { printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt); panic("alloccgblk: cyl groups corrupted"); } for (i = fs_postbl(fs, pos)[i];; ) { if (isblock(fs, cg_blksfree(cgp), bno + i)) { bno = blkstofrags(fs, (bno + i)); goto gotit; } delta = fs_rotbl(fs)[i]; if (delta <= 0 || delta + i > fragstoblks(fs, fs->fs_fpg)) break; i += delta; } printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt); panic("alloccgblk: can't find blk in cyl"); } norot: /* * no blocks in the requested cylinder, so take next * available one in this cylinder group. */ bno = mapsearch(fs, cgp, bpref, (int)fs->fs_frag); if (bno < 0) return (NULL); cgp->cg_rotor = bno; gotit: clrblock(fs, cg_blksfree(cgp), (long)fragstoblks(fs, bno)); cgp->cg_cs.cs_nbfree--; fs->fs_cstotal.cs_nbfree--; fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; cylno = cbtocylno(fs, bno); cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--; cg_blktot(cgp)[cylno]--; fs->fs_fmod++; return (cgp->cg_cgx * fs->fs_fpg + bno); } /* * Determine whether an inode can be allocated. * * Check to see if an inode is available, and if it is, * allocate it using the following policy: * 1) allocate the requested inode. * 2) allocate the next available inode after the requested * inode in the specified cylinder group. */ ino_t ialloccg(ip, cg, ipref, mode) struct inode *ip; int cg; daddr_t ipref; int mode; { register struct fs *fs; register struct cg *cgp; struct buf *bp; int error, start, len, loc, map, i; fs = ip->i_fs; if (fs->fs_cs(fs, cg).cs_nifree == 0) return (NULL); error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, NOCRED, &bp); if (error) { brelse(bp); return (NULL); } cgp = bp->b_un.b_cg; if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) { brelse(bp); return (NULL); } cgp->cg_time = time.tv_sec; if (ipref) { ipref %= fs->fs_ipg; if (isclr(cg_inosused(cgp), ipref)) goto gotit; } start = cgp->cg_irotor / NBBY; len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); loc = skpc(0xff, len, &cg_inosused(cgp)[start]); if (loc == 0) { len = start + 1; start = 0; loc = skpc(0xff, len, &cg_inosused(cgp)[0]); if (loc == 0) { printf("cg = %s, irotor = %d, fs = %s\n", cg, cgp->cg_irotor, fs->fs_fsmnt); panic("ialloccg: map corrupted"); /* NOTREACHED */ } } i = start + len - loc; map = cg_inosused(cgp)[i]; ipref = i * NBBY; for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) { if ((map & i) == 0) { cgp->cg_irotor = ipref; goto gotit; } } printf("fs = %s\n", fs->fs_fsmnt); panic("ialloccg: block not in map"); /* NOTREACHED */ gotit: setbit(cg_inosused(cgp), ipref); cgp->cg_cs.cs_nifree--; fs->fs_cstotal.cs_nifree--; fs->fs_cs(fs, cg).cs_nifree--; fs->fs_fmod++; if ((mode & IFMT) == IFDIR) { cgp->cg_cs.cs_ndir++; fs->fs_cstotal.cs_ndir++; fs->fs_cs(fs, cg).cs_ndir++; } bdwrite(bp); return (cg * fs->fs_ipg + ipref); } /* * Free a block or fragment. * * The specified block or fragment is placed back in the * free map. If a fragment is deallocated, a possible * block reassembly is checked. */ blkfree(ip, bno, size) register struct inode *ip; daddr_t bno; off_t size; { register struct fs *fs; register struct cg *cgp; struct buf *bp; int error, cg, blk, frags, bbase; register int i; struct ucred *cred = curproc->p_ucred; /* XXX */ fs = ip->i_fs; if ((unsigned)size > fs->fs_bsize || fragoff(fs, size) != 0) { printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n", ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt); panic("blkfree: bad size"); } cg = dtog(fs, bno); if ((unsigned)bno >= fs->fs_size) { printf("bad block %d, ino %d\n", bno, ip->i_number); fserr(fs, cred->cr_uid, "bad block"); return; } error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, NOCRED, &bp); if (error) { brelse(bp); return; } cgp = bp->b_un.b_cg; if (!cg_chkmagic(cgp)) { brelse(bp); return; } cgp->cg_time = time.tv_sec; bno = dtogd(fs, bno); if (size == fs->fs_bsize) { if (isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno))) { printf("dev = 0x%x, block = %d, fs = %s\n", ip->i_dev, bno, fs->fs_fsmnt); panic("blkfree: freeing free block"); } setblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno)); cgp->cg_cs.cs_nbfree++; fs->fs_cstotal.cs_nbfree++; fs->fs_cs(fs, cg).cs_nbfree++; i = cbtocylno(fs, bno); cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++; cg_blktot(cgp)[i]++; } else { bbase = bno - fragnum(fs, bno); /* * decrement the counts associated with the old frags */ blk = blkmap(fs, cg_blksfree(cgp), bbase); fragacct(fs, blk, cgp->cg_frsum, -1); /* * deallocate the fragment */ frags = numfrags(fs, size); for (i = 0; i < frags; i++) { if (isset(cg_blksfree(cgp), bno + i)) { printf("dev = 0x%x, block = %d, fs = %s\n", ip->i_dev, bno + i, fs->fs_fsmnt); panic("blkfree: freeing free frag"); } setbit(cg_blksfree(cgp), bno + i); } cgp->cg_cs.cs_nffree += i; fs->fs_cstotal.cs_nffree += i; fs->fs_cs(fs, cg).cs_nffree += i; /* * add back in counts associated with the new frags */ blk = blkmap(fs, cg_blksfree(cgp), bbase); fragacct(fs, blk, cgp->cg_frsum, 1); /* * if a complete block has been reassembled, account for it */ if (isblock(fs, cg_blksfree(cgp), (daddr_t)fragstoblks(fs, bbase))) { cgp->cg_cs.cs_nffree -= fs->fs_frag; fs->fs_cstotal.cs_nffree -= fs->fs_frag; fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; cgp->cg_cs.cs_nbfree++; fs->fs_cstotal.cs_nbfree++; fs->fs_cs(fs, cg).cs_nbfree++; i = cbtocylno(fs, bbase); cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++; cg_blktot(cgp)[i]++; } } fs->fs_fmod++; bdwrite(bp); } /* * Free an inode. * * The specified inode is placed back in the free map. */ ifree(ip, ino, mode) struct inode *ip; ino_t ino; int mode; { register struct fs *fs; register struct cg *cgp; struct buf *bp; int error, cg; fs = ip->i_fs; if ((unsigned)ino >= fs->fs_ipg*fs->fs_ncg) { printf("dev = 0x%x, ino = %d, fs = %s\n", ip->i_dev, ino, fs->fs_fsmnt); panic("ifree: range"); } cg = itog(fs, ino); error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, NOCRED, &bp); if (error) { brelse(bp); return; } cgp = bp->b_un.b_cg; if (!cg_chkmagic(cgp)) { brelse(bp); return; } cgp->cg_time = time.tv_sec; ino %= fs->fs_ipg; if (isclr(cg_inosused(cgp), ino)) { printf("dev = 0x%x, ino = %d, fs = %s\n", ip->i_dev, ino, fs->fs_fsmnt); if (fs->fs_ronly == 0) panic("ifree: freeing free inode"); } clrbit(cg_inosused(cgp), ino); if (ino < cgp->cg_irotor) cgp->cg_irotor = ino; cgp->cg_cs.cs_nifree++; fs->fs_cstotal.cs_nifree++; fs->fs_cs(fs, cg).cs_nifree++; if ((mode & IFMT) == IFDIR) { cgp->cg_cs.cs_ndir--; fs->fs_cstotal.cs_ndir--; fs->fs_cs(fs, cg).cs_ndir--; } fs->fs_fmod++; bdwrite(bp); } /* * Find a block of the specified size in the specified cylinder group. * * It is a panic if a request is made to find a block if none are * available. */ daddr_t mapsearch(fs, cgp, bpref, allocsiz) register struct fs *fs; register struct cg *cgp; daddr_t bpref; int allocsiz; { daddr_t bno; int start, len, loc, i; int blk, field, subfield, pos; /* * find the fragment by searching through the free block * map for an appropriate bit pattern */ if (bpref) start = dtogd(fs, bpref) / NBBY; else start = cgp->cg_frotor / NBBY; len = howmany(fs->fs_fpg, NBBY) - start; loc = scanc((unsigned)len, (u_char *)&cg_blksfree(cgp)[start], (u_char *)fragtbl[fs->fs_frag], (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); if (loc == 0) { len = start + 1; start = 0; loc = scanc((unsigned)len, (u_char *)&cg_blksfree(cgp)[0], (u_char *)fragtbl[fs->fs_frag], (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); if (loc == 0) { printf("start = %d, len = %d, fs = %s\n", start, len, fs->fs_fsmnt); panic("alloccg: map corrupted"); /* NOTREACHED */ } } bno = (start + len - loc) * NBBY; cgp->cg_frotor = bno; /* * found the byte in the map * sift through the bits to find the selected frag */ for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { blk = blkmap(fs, cg_blksfree(cgp), bno); blk <<= 1; field = around[allocsiz]; subfield = inside[allocsiz]; for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { if ((blk & field) == subfield) return (bno + pos); field <<= 1; subfield <<= 1; } } printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt); panic("alloccg: block not in map"); return (-1); } /* * Fserr prints the name of a file system with an error diagnostic. * * The form of the error message is: * fs: error message */ fserr(fs, uid, cp) struct fs *fs; uid_t uid; char *cp; { log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp); }