// This may look like C code, but it is really -*- C++ -*- /* Copyright (C) 1988 Free Software Foundation written by Doug Lea (dl@rocky.oswego.edu) This file is part of GNU CC. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY. No author or distributor accepts responsibility to anyone for the consequences of using it or for whether it serves any particular purpose or works at all, unless he says so in writing. Refer to the GNU CC General Public License for full details. Everyone is granted permission to copy, modify and redistribute GNU CC, but only under the conditions described in the GNU CC General Public License. A copy of this license is supposed to have been given to you along with GNU CC so you can know your rights and responsibilities. It should be in a file named COPYING. Among other things, the copyright notice and this notice must be preserved on all copies. */ #ifndef _Rational_h #ifdef __GNUG__ #pragma once #pragma interface #endif #define _Rational_h 1 #include #include class Rational { protected: Integer num; Integer den; void normalize(); public: Rational(); Rational(double); Rational(long n, long d = 1); Rational(const Integer& n); Rational(const Integer& n, const Integer& d); Rational(const Rational&); ~Rational(); void operator = (const Rational& y); friend int operator == (const Rational& x, const Rational& y); friend int operator != (const Rational& x, const Rational& y); friend int operator < (const Rational& x, const Rational& y); friend int operator <= (const Rational& x, const Rational& y); friend int operator > (const Rational& x, const Rational& y); friend int operator >= (const Rational& x, const Rational& y); friend Rational operator + (const Rational& x, const Rational& y); friend Rational operator - (const Rational& x, const Rational& y); friend Rational operator * (const Rational& x, const Rational& y); friend Rational operator / (const Rational& x, const Rational& y); void operator += (const Rational& y); void operator -= (const Rational& y); void operator *= (const Rational& y); void operator /= (const Rational& y); #ifdef __GNUG__ friend Rational operator ? (const Rational& x, const Rational& y); // max #endif friend Rational operator - (const Rational& x); // builtin Rational functions void negate(); // x = -x void invert(); // x = 1/x friend int sign(const Rational& x); // -1, 0, or +1 friend Rational abs(const Rational& x); // absolute value friend Rational sqr(const Rational& x); // square friend Rational pow(const Rational& x, long y); friend Rational pow(const Rational& x, Integer& y); const Integer& numerator() const; const Integer& denominator() const; // coercion & conversion operator double() const; friend Integer floor(const Rational& x); friend Integer ceil(const Rational& x); friend Integer trunc(const Rational& x); friend Integer round(const Rational& x); friend istream& operator >> (istream& s, Rational& y); friend ostream& operator << (ostream& s, const Rational& y); // procedural versions of operators friend int compare(const Rational& x, const Rational& y); friend void add(const Rational& x, const Rational& y, Rational& dest); friend void sub(const Rational& x, const Rational& y, Rational& dest); friend void mul(const Rational& x, const Rational& y, Rational& dest); friend void div(const Rational& x, const Rational& y, Rational& dest); // error detection volatile void error(const char* msg) const; int OK() const; }; typedef Rational RatTmp; // backwards compatibility #if defined(__OPTIMIZE__) || defined(USE_LIBGXX_INLINES) inline Rational::Rational() {} inline Rational::~Rational() {} inline Rational::Rational(const Rational& y) :num(y.num), den(y.den) {} inline Rational::Rational(const Integer& n) :num(n), den(1) {} inline Rational::Rational(const Integer& n, const Integer& d) :num(n),den(d) { normalize(); } inline Rational::Rational(long n, long d) :num(n), den(d) { normalize(); } inline void Rational::operator = (const Rational& y) { num = y.num; den = y.den; } inline int operator == (const Rational& x, const Rational& y) { return compare(x.num, y.num) == 0 && compare(x.den, y.den) == 0; } inline int operator != (const Rational& x, const Rational& y) { return compare(x.num, y.num) != 0 || compare(x.den, y.den) != 0; } inline int operator < (const Rational& x, const Rational& y) { return compare(x, y) < 0; } inline int operator <= (const Rational& x, const Rational& y) { return compare(x, y) <= 0; } inline int operator > (const Rational& x, const Rational& y) { return compare(x, y) > 0; } inline int operator >= (const Rational& x, const Rational& y) { return compare(x, y) >= 0; } inline int sign(const Rational& x) { return sign(x.num); } inline void Rational::negate() { num.negate(); } inline void Rational::operator += (const Rational& y) { add(*this, y, *this); } inline void Rational::operator -= (const Rational& y) { sub(*this, y, *this); } inline void Rational::operator *= (const Rational& y) { mul(*this, y, *this); } inline void Rational::operator /= (const Rational& y) { div(*this, y, *this); } inline const Integer& Rational::numerator() const { return num; } inline const Integer& Rational::denominator() const { return den; } inline Rational::operator double() const { return ratio(num, den); } #ifdef __GNUG__ inline Rational operator ? (const Rational& x, const Rational& y) { if (compare(x, y) >= 0) return x; else return y; } #endif #if defined(__GNUG__) && !defined(NO_NRV) inline Rational operator + (const Rational& x, const Rational& y) return r { add(x, y, r); } inline Rational operator - (const Rational& x, const Rational& y) return r { sub(x, y, r); } inline Rational operator * (const Rational& x, const Rational& y) return r { mul(x, y, r); } inline Rational operator / (const Rational& x, const Rational& y) return r { div(x, y, r); } #else /* NO_NRV */ inline Rational operator + (const Rational& x, const Rational& y) { Rational r; add(x, y, r); return r; } inline Rational operator - (const Rational& x, const Rational& y) { Rational r; sub(x, y, r); return r; } inline Rational operator * (const Rational& x, const Rational& y) { Rational r; mul(x, y, r); return r; } inline Rational operator / (const Rational& x, const Rational& y) { Rational r; div(x, y, r); return r; } #endif #endif #endif