view anagram/agcore/sums.cpp @ 5:7661c1604e49

Add additional operator delete calls gcc 10 asked for.
author David A. Holland
date Mon, 30 May 2022 23:32:56 -0400
parents 13d2b8934445
children ec2b657edf13
line wrap: on
line source

/*
 * AnaGram, A System for Syntax Directed Programming
 * Copyright 1993-2002 Parsifal Software. All Rights Reserved.
 * Copyright 2006 David A. Holland. All Rights Reserved.
 * See the file COPYING for license and usage terms.
 *
 * sums.syn - read checksum and build information
 */

#include "port.h"

#include "agstack.h"
#include "agstring.h"
#include "build.h"
#include "checksum.h"
#include "sums-defs.h"

//#define INCLUDE_LOGGING
#include "log.h"

/*
 * AnaGram, A System for Syntax Directed Programming
 * File generated by: Version 2.40-current, built Oct 30 2007
 *
 * AnaGram Parsing Engine
 * Copyright 1993-2002 Parsifal Software. All Rights Reserved.
 *
 * This software is provided 'as-is', without any express or implied
 * warranty.  In no event will the authors be held liable for any damages
 * arising from the use of this software.
 *
 * Permission is granted to anyone to use this software for any purpose,
 * including commercial applications, and to alter it and redistribute it
 * freely, subject to the following restrictions:
 *
 * 1. The origin of this software must not be misrepresented; you must not
 *    claim that you wrote the original software. If you use this software
 *    in a product, an acknowledgment in the product documentation would be
 *    appreciated but is not required.
 * 2. Altered source versions must be plainly marked as such, and must not be
 *    misrepresented as being the original software.
 * 3. This notice may not be removed or altered from any source distribution.
 */

#ifndef SUMS_H_1198348435
#include "sums.h"
#endif

#ifndef SUMS_H_1198348435
#error Mismatched header file
#endif

#include <ctype.h>
#include <stdio.h>

#define RULE_CONTEXT (&((PCB).cs[(PCB).ssx]))
#define ERROR_CONTEXT ((PCB).cs[(PCB).error_frame_ssx])
#define CONTEXT ((PCB).cs[(PCB).ssx])



parseSumData_pcb_type parseSumData_pcb;
#define PCB parseSumData_pcb

/*  Line 74, sumparse.syn */
#define SYNTAX_ERROR {\
   char buf[500];\
   sprintf(buf,"%s, line %d, column %d\n", \
  (PCB).error_message, (PCB).line, (PCB).column);\
  LOGV(buf);\
}

  /* note - cannot compute skiplen at runtime */
  static char sumInfo[512] = "Checksum data:\n";
  static const size_t skiplen = 15; /* length of "Checksum data:\n" */

  static AgStack<sumentry> sums;

  static char stringbuf[128];
  static size_t stringbufpos;

  AgString build_date, build_os;

  static void addstring(int ch) {
    if (stringbufpos < sizeof(stringbuf)-1) {
      stringbuf[stringbufpos++] = ch;
      stringbuf[stringbufpos] = 0;
    }
  }

  static void startstring(int ch) {
    stringbufpos = 0;
    addstring(ch);
  }

  static void addsum(summable what, unsigned long len, unsigned long sum,
		     unsigned long offset) {
    sumentry se;
    se.what = what;
    se.offset = offset;
    se.correct.length = len;
    se.correct.sum = sum;
    se.observed.length = 0;
    se.observed.sum = 0;
    sums.push(se);
  }

  const char *checksums_ok(void) {
    LOGSECTION("checksums_ok");

    char *p = sumInfo;
    size_t i;

    init_parseSumData();

    for (i=0; i<sizeof(sumInfo); i++) {
      unsigned char c = (unsigned char)p[i];
      if (i >= skiplen) {
        c ^= PADBYTE;
      }
      //LOGV(c)
      PCB.input_code = c;
      if (PCB.exit_flag == AG_RUNNING_CODE) parseSumData();
      if (c == 0) break;
    }

    if (PCB.exit_flag != AG_SUCCESS_CODE) {
      LOGV(PCB.exit_flag);
      return "Parse error in checksum data";
    }

    if (sums.size() == 0) {
      LOGS("no sums");
      return "Checksum data empty";
    }

    for (i=0; i<sums.size(); i++) {
      observeSum(&sums[i]);
    }

    for (i=0; i<sums.size(); i++) {
      LOGV(sums[i].what) LCV(sums[i].offset);
      LOGV(sums[i].correct.length) LCV(sums[i].correct.sum);
      LOGV(sums[i].observed.length) LCV(sums[i].observed.sum);

      if (sums[i].observed != sums[i].correct) {
	switch (sums[i].what) {
	  case SUM_AG1: return "Bad checksum for ag1 shared library";
	  case SUM_AG: return "Bad checksum for ag executable";
	  case SUM_AGCL: return "Bad checksum for agcl executable";
	}
	// this shouldn't happen
        return "Bad checksum for unknown object (?)";
      }
    }

    // ok
    return NULL;
  }

#ifndef CONVERT_CASE
#define CONVERT_CASE(c) (c)
#endif
#ifndef TAB_SPACING
#define TAB_SPACING 8
#endif

#define ag_rp_1() (build_date = stringbuf)

#define ag_rp_2() (build_os = stringbuf)

#define ag_rp_3(w, l, s, o) (addsum(w,l,s,o))

#define ag_rp_4() (SUM_AG1)

#define ag_rp_5() (SUM_AG)

#define ag_rp_6() (SUM_AGCL)

#define ag_rp_7(i) (i)

#define ag_rp_8(i) (i)

#define ag_rp_9() (0)

#define ag_rp_10(i) (i)

#define ag_rp_11(d) (d - '0')

#define ag_rp_12(i, d) (10*i + d - '0')

#define ag_rp_13(c) (startstring(c))

#define ag_rp_14(c) (addstring(c))


#define READ_COUNTS 
#define WRITE_COUNTS 
#undef V
#define V(i,t) (*t (&(PCB).vs[(PCB).ssx + i]))
#undef VS
#define VS(i) (PCB).vs[(PCB).ssx + i]

#ifndef GET_CONTEXT
#define GET_CONTEXT CONTEXT = (PCB).input_context
#endif

typedef enum {
  ag_action_1,
  ag_action_2,
  ag_action_3,
  ag_action_4,
  ag_action_5,
  ag_action_6,
  ag_action_7,
  ag_action_8,
  ag_action_9,
  ag_action_10,
  ag_action_11,
  ag_action_12
} ag_parser_action;


#ifndef NULL_VALUE_INITIALIZER
#define NULL_VALUE_INITIALIZER = { 0 }
#endif

static parseSumData_vs_type const ag_null_value NULL_VALUE_INITIALIZER;

static const unsigned char ag_rpx[] = {
    0,  0,  1,  2,  0,  0,  0,  0,  0,  3,  4,  5,  6,  7,  8,  9, 10, 11,
   12, 13, 14
};

static const unsigned char ag_key_itt[] = {
 0
};

static const unsigned short ag_key_pt[] = {
0
};

static const unsigned char ag_key_ch[] = {
    0, 67,255, 49, 99,255,103,255, 66, 97,255, 66,255, 66,255
};

static const unsigned char ag_key_act[] = {
  0,3,4,0,3,4,1,4,3,2,4,3,4,3,4
};

static const unsigned char ag_key_parm[] = {
    0, 10,  0, 20, 22,  0, 21,  0,  6,  0,  0,  6,  0,  9,  0
};

static const unsigned char ag_key_jmp[] = {
    0,  0,  0,  0, 26,  0,  3,  0, 15,  6,  0, 28,  0, 39,  0
};

static const unsigned char ag_key_index[] = {
    1,  8, 11,  0,  8,  0, 13,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0
};

static const unsigned char ag_key_ends[] = {
104,101,99,107,115,117,109,32,100,97,116,97,58,10,0, 
117,105,108,100,32,100,97,116,101,58,0, 108,0, 
117,105,108,100,32,100,97,116,101,58,0, 117,105,108,100,32,79,83,58,0, 
};
#define AG_TCV(x) (((int)(x) >= 0 && (int)(x) <= 255) ? ag_tcv[(x)] : 0)

static const unsigned char ag_tcv[] = {
    5,  0,  0,  0,  0,  0,  0,  0,  0,  0,  8,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, 27, 27, 27, 27,
   27, 27, 27, 27, 27, 27, 27, 27, 17, 27, 27, 27, 25, 25, 25, 25, 25, 25,
   25, 25, 25, 25, 27, 27, 27, 15, 27, 27, 24, 27, 27, 27, 27, 27, 27, 27,
   27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
   27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
   27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
   27,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0
};

#ifndef SYNTAX_ERROR
#define SYNTAX_ERROR fprintf(stderr,"%s, line %d, column %d\n", \
  (PCB).error_message, (PCB).line, (PCB).column)
#endif

#ifndef FIRST_LINE
#define FIRST_LINE 1
#endif

#ifndef FIRST_COLUMN
#define FIRST_COLUMN 1
#endif

#ifndef PARSER_STACK_OVERFLOW
#define PARSER_STACK_OVERFLOW {fprintf(stderr, \
   "\nParser stack overflow, line %d, column %d\n",\
   (PCB).line, (PCB).column);}
#endif

#ifndef REDUCTION_TOKEN_ERROR
#define REDUCTION_TOKEN_ERROR {fprintf(stderr, \
    "\nReduction token error, line %d, column %d\n", \
    (PCB).line, (PCB).column);}
#endif


typedef enum
  {ag_accept_key, ag_set_key, ag_jmp_key, ag_end_key, ag_no_match_key,
   ag_cf_accept_key, ag_cf_set_key, ag_cf_end_key} key_words;


#ifndef AG_NEWLINE
#define AG_NEWLINE 10
#endif

#ifndef AG_RETURN
#define AG_RETURN 13
#endif

#ifndef AG_FORMFEED
#define AG_FORMFEED 12
#endif

#ifndef AG_TABCHAR
#define AG_TABCHAR 9
#endif

static void ag_track(void) {
  int ag_k = 0;
  while (ag_k < (PCB).rx) {
    int ag_ch = (PCB).lab[ag_k++];
    switch (ag_ch) {
    case AG_NEWLINE:
      (PCB).column = 1, (PCB).line++;
    case AG_RETURN:
    case AG_FORMFEED:
      break;
    case AG_TABCHAR:
      (PCB).column += (TAB_SPACING) - ((PCB).column - 1) % (TAB_SPACING);
      break;
    default:
      (PCB).column++;
    }
  }
  ag_k = 0;
  while ((PCB).rx < (PCB).fx) (PCB).lab[ag_k++] = (PCB).lab[(PCB).rx++];
  (PCB).fx = ag_k;
  (PCB).rx = 0;
}


static void ag_prot(void) {
  int ag_k;
  ag_k = 128 - ++(PCB).btsx;
  if (ag_k <= (PCB).ssx) {
    (PCB).exit_flag = AG_STACK_ERROR_CODE;
    PARSER_STACK_OVERFLOW;
    return;
  }
  (PCB).bts[(PCB).btsx] = (PCB).sn;
  (PCB).bts[ag_k] = (PCB).ssx;
  (PCB).vs[ag_k] = (PCB).vs[(PCB).ssx];
  (PCB).ss[ag_k] = (PCB).ss[(PCB).ssx];
}

static void ag_undo(void) {
  if ((PCB).drt == -1) return;
  while ((PCB).btsx) {
    int ag_k = 128 - (PCB).btsx;
    (PCB).sn = (PCB).bts[(PCB).btsx--];
    (PCB).ssx = (PCB).bts[ag_k];
    (PCB).vs[(PCB).ssx] = (PCB).vs[ag_k];
    (PCB).ss[(PCB).ssx] = (PCB).ss[ag_k];
  }
  (PCB).token_number = (parseSumData_token_type) (PCB).drt;
  (PCB).ssx = (PCB).dssx;
  (PCB).sn = (PCB).dsn;
  (PCB).drt = -1;
}


static const unsigned char ag_tstt[] = {
10,0,1,2,
22,21,20,6,0,11,12,13,14,
6,0,3,
15,0,
22,21,20,0,11,14,
27,25,24,17,15,0,7,
9,0,4,
25,0,16,23,
27,25,24,17,15,8,0,
27,25,24,17,15,0,7,
5,0,
25,0,
17,0,
27,25,24,17,15,8,0,
25,0,18,23,
25,0,
24,8,0,19,
25,0,23,
8,0,
25,0,
  0
};


static unsigned const char ag_astt[83] = {
  1,7,0,1,2,2,2,5,7,1,1,3,1,1,7,1,1,7,2,2,2,5,3,1,2,2,2,2,2,7,1,1,7,1,2,7,1,
  1,10,10,10,10,10,2,7,2,2,2,2,2,7,1,3,7,10,4,1,7,10,10,10,10,10,2,7,2,7,1,1,
  10,4,1,4,7,1,2,7,1,2,7,10,4,11
};


static const unsigned char ag_pstt[] = {
1,0,0,2,
12,11,10,6,1,4,4,8,3,
5,2,6,
7,3,
12,11,10,7,5,3,
19,19,19,19,19,5,8,
9,6,10,
17,7,12,11,
20,20,20,20,20,2,8,
19,19,19,19,19,9,13,
1,10,
18,13,
14,12,
20,20,20,20,20,3,13,
17,14,16,15,
18,14,
17,15,16,18,
17,17,19,
9,18,
18,16,
  0
};


static const unsigned char ag_sbt[] = {
     0,   4,  13,  16,  18,  24,  31,  34,  38,  45,  52,  54,  56,  58,
    65,  69,  71,  75,  78,  80,  82
};


static const unsigned char ag_sbe[] = {
     1,   8,  14,  17,  21,  29,  32,  35,  44,  50,  53,  55,  57,  64,
    66,  70,  73,  76,  79,  81,  82
};


static const unsigned char ag_fl[] = {
  1,4,3,3,1,2,0,1,2,7,1,1,1,1,1,0,2,1,2,1,2
};

static const unsigned char ag_ptt[] = {
    0,  1,  3,  4, 12, 12, 13, 13,  2, 11, 14, 14, 14, 16, 18, 19, 19, 23,
   23,  7,  7
};


static void ag_ra(void)
{
  switch(ag_rpx[(PCB).ag_ap]) {
    case 1: ag_rp_1(); break;
    case 2: ag_rp_2(); break;
    case 3: ag_rp_3(V(0,(summable *)), V(2,(unsigned long *)), V(4,(unsigned long *)), V(5,(unsigned long *))); break;
    case 4: V(0,(summable *)) = ag_rp_4(); break;
    case 5: V(0,(summable *)) = ag_rp_5(); break;
    case 6: V(0,(summable *)) = ag_rp_6(); break;
    case 7: V(0,(unsigned long *)) = ag_rp_7(V(0,(unsigned long *))); break;
    case 8: V(0,(unsigned long *)) = ag_rp_8(V(0,(unsigned long *))); break;
    case 9: V(0,(unsigned long *)) = ag_rp_9(); break;
    case 10: V(0,(unsigned long *)) = ag_rp_10(V(1,(unsigned long *))); break;
    case 11: V(0,(unsigned long *)) = ag_rp_11(V(0,(int *))); break;
    case 12: V(0,(unsigned long *)) = ag_rp_12(V(0,(unsigned long *)), V(1,(int *))); break;
    case 13: ag_rp_13(V(0,(int *))); break;
    case 14: ag_rp_14(V(1,(int *))); break;
  }
}

#define TOKEN_NAMES parseSumData_token_names
const char *const parseSumData_token_names[28] = {
  "inserted data",
  "inserted data",
  "checksum data",
  "build date",
  "build os",
  "eof",
  "\"Build date:\"",
  "text",
  "'\\n'",
  "\"Build OS:\"",
  "\"Checksum data:\\n\"",
  "sum entry",
  "",
  "",
  "summable",
  "'='",
  "length",
  "','",
  "sum",
  "offset",
  "\"ag1\"",
  "\"ag\"",
  "\"agcl\"",
  "integer",
  "'@'",
  "digit",
  "ascii",
  "",

};

#ifndef MISSING_FORMAT
#define MISSING_FORMAT "Missing %s"
#endif
#ifndef UNEXPECTED_FORMAT
#define UNEXPECTED_FORMAT "Unexpected %s"
#endif
#ifndef UNNAMED_TOKEN
#define UNNAMED_TOKEN "input"
#endif


static void ag_diagnose(void) {
  int ag_snd = (PCB).sn;
  int ag_k = ag_sbt[ag_snd];

  if (*TOKEN_NAMES[ag_tstt[ag_k]] && ag_astt[ag_k + 1] == ag_action_8) {
    sprintf((PCB).ag_msg, MISSING_FORMAT, TOKEN_NAMES[ag_tstt[ag_k]]);
  }
  else if (ag_astt[ag_sbe[(PCB).sn]] == ag_action_8
          && (ag_k = (int) ag_sbe[(PCB).sn] + 1) == (int) ag_sbt[(PCB).sn+1] - 1
          && *TOKEN_NAMES[ag_tstt[ag_k]]) {
    sprintf((PCB).ag_msg, MISSING_FORMAT, TOKEN_NAMES[ag_tstt[ag_k]]);
  }
  else if ((PCB).token_number && *TOKEN_NAMES[(PCB).token_number]) {
    sprintf((PCB).ag_msg, UNEXPECTED_FORMAT, TOKEN_NAMES[(PCB).token_number]);
  }
  else if (isprint((*(PCB).lab)) && (*(PCB).lab) != '\\') {
    char buf[20];
    sprintf(buf, "\'%c\'", (char) (*(PCB).lab));
    sprintf((PCB).ag_msg, UNEXPECTED_FORMAT, buf);
  }
  else sprintf((PCB).ag_msg, UNEXPECTED_FORMAT, UNNAMED_TOKEN);
  (PCB).error_message = (PCB).ag_msg;


}
static int ag_action_1_r_proc(void);
static int ag_action_2_r_proc(void);
static int ag_action_3_r_proc(void);
static int ag_action_4_r_proc(void);
static int ag_action_1_s_proc(void);
static int ag_action_3_s_proc(void);
static int ag_action_1_proc(void);
static int ag_action_2_proc(void);
static int ag_action_3_proc(void);
static int ag_action_4_proc(void);
static int ag_action_5_proc(void);
static int ag_action_6_proc(void);
static int ag_action_7_proc(void);
static int ag_action_8_proc(void);
static int ag_action_9_proc(void);
static int ag_action_10_proc(void);
static int ag_action_11_proc(void);
static int ag_action_8_proc(void);


static int (*const  ag_r_procs_scan[])(void) = {
  ag_action_1_r_proc,
  ag_action_2_r_proc,
  ag_action_3_r_proc,
  ag_action_4_r_proc
};

static int (*const  ag_s_procs_scan[])(void) = {
  ag_action_1_s_proc,
  ag_action_2_r_proc,
  ag_action_3_s_proc,
  ag_action_4_r_proc
};

static int (*const  ag_gt_procs_scan[])(void) = {
  ag_action_1_proc,
  ag_action_2_proc,
  ag_action_3_proc,
  ag_action_4_proc,
  ag_action_5_proc,
  ag_action_6_proc,
  ag_action_7_proc,
  ag_action_8_proc,
  ag_action_9_proc,
  ag_action_10_proc,
  ag_action_11_proc,
  ag_action_8_proc
};


static int ag_action_10_proc(void) {
  (PCB).btsx = 0, (PCB).drt = -1;
  ag_track();
  return 0;
}

static int ag_action_11_proc(void) {
  (PCB).btsx = 0, (PCB).drt = -1;
  (*(int *) &(PCB).vs[(PCB).ssx]) = *(PCB).lab;
  (PCB).ssx--;
  ag_ra();
  (PCB).ssx++;
  ag_track();
  return 0;
}

static int ag_action_3_r_proc(void) {
  int ag_sd = ag_fl[(PCB).ag_ap] - 1;
  if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd];
  (PCB).btsx = 0, (PCB).drt = -1;
  (PCB).reduction_token = (parseSumData_token_type) ag_ptt[(PCB).ag_ap];
  ag_ra();
  return (PCB).exit_flag == AG_RUNNING_CODE;
}

static int ag_action_3_s_proc(void) {
  int ag_sd = ag_fl[(PCB).ag_ap] - 1;
  if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd];
  (PCB).btsx = 0, (PCB).drt = -1;
  (PCB).reduction_token = (parseSumData_token_type) ag_ptt[(PCB).ag_ap];
  ag_ra();
  return (PCB).exit_flag == AG_RUNNING_CODE;
}

static int ag_action_4_r_proc(void) {
  int ag_sd = ag_fl[(PCB).ag_ap] - 1;
  if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd];
  (PCB).reduction_token = (parseSumData_token_type) ag_ptt[(PCB).ag_ap];
  return 1;
}

static int ag_action_2_proc(void) {
  (PCB).btsx = 0, (PCB).drt = -1;
  if ((PCB).ssx >= 128) {
    (PCB).exit_flag = AG_STACK_ERROR_CODE;
    PARSER_STACK_OVERFLOW;
  }
  (*(int *) &(PCB).vs[(PCB).ssx]) = *(PCB).lab;
  (PCB).ss[(PCB).ssx] = (PCB).sn;
  (PCB).ssx++;
  (PCB).sn = (PCB).ag_ap;
  ag_track();
  return 0;
}

static int ag_action_9_proc(void) {
  if ((PCB).drt == -1) {
    (PCB).drt=(PCB).token_number;
    (PCB).dssx=(PCB).ssx;
    (PCB).dsn=(PCB).sn;
  }
  ag_prot();
  (PCB).ss[(PCB).ssx] = (PCB).sn;
  (PCB).ssx++;
  (PCB).sn = (PCB).ag_ap;
  (PCB).rx = 0;
  return (PCB).exit_flag == AG_RUNNING_CODE;
}

static int ag_action_2_r_proc(void) {
  (PCB).ssx++;
  (PCB).sn = (PCB).ag_ap;
  return 0;
}

static int ag_action_7_proc(void) {
  --(PCB).ssx;
  (PCB).exit_flag = AG_SUCCESS_CODE;
  (PCB).rx = 0;
  return 0;
}

static int ag_action_1_proc(void) {
  (PCB).exit_flag = AG_SUCCESS_CODE;
  ag_track();
  return 0;
}

static int ag_action_1_r_proc(void) {
  (PCB).exit_flag = AG_SUCCESS_CODE;
  return 0;
}

static int ag_action_1_s_proc(void) {
  (PCB).exit_flag = AG_SUCCESS_CODE;
  return 0;
}

static int ag_action_4_proc(void) {
  int ag_sd = ag_fl[(PCB).ag_ap] - 1;
  (PCB).reduction_token = (parseSumData_token_type) ag_ptt[(PCB).ag_ap];
  (PCB).btsx = 0, (PCB).drt = -1;
  (*(int *) &(PCB).vs[(PCB).ssx]) = *(PCB).lab;
  if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd];
  else (PCB).ss[(PCB).ssx] = (PCB).sn;
  ag_track();
  while ((PCB).exit_flag == AG_RUNNING_CODE) {
    unsigned ag_t1 = ag_sbe[(PCB).sn] + 1;
    unsigned ag_t2 = ag_sbt[(PCB).sn+1] - 1;
    do {
      unsigned ag_tx = (ag_t1 + ag_t2)/2;
      if (ag_tstt[ag_tx] < (unsigned char)(PCB).reduction_token) ag_t1 = ag_tx + 1;
      else ag_t2 = ag_tx;
    } while (ag_t1 < ag_t2);
    (PCB).ag_ap = ag_pstt[ag_t1];
    if ((ag_s_procs_scan[ag_astt[ag_t1]])() == 0) break;
  }
  return 0;
}

static int ag_action_3_proc(void) {
  int ag_sd = ag_fl[(PCB).ag_ap] - 1;
  (PCB).btsx = 0, (PCB).drt = -1;
  (*(int *) &(PCB).vs[(PCB).ssx]) = *(PCB).lab;
  if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd];
  else (PCB).ss[(PCB).ssx] = (PCB).sn;
  ag_track();
  (PCB).reduction_token = (parseSumData_token_type) ag_ptt[(PCB).ag_ap];
  ag_ra();
  while ((PCB).exit_flag == AG_RUNNING_CODE) {
    unsigned ag_t1 = ag_sbe[(PCB).sn] + 1;
    unsigned ag_t2 = ag_sbt[(PCB).sn+1] - 1;
    do {
      unsigned ag_tx = (ag_t1 + ag_t2)/2;
      if (ag_tstt[ag_tx] < (unsigned char)(PCB).reduction_token) ag_t1 = ag_tx + 1;
      else ag_t2 = ag_tx;
    } while (ag_t1 < ag_t2);
    (PCB).ag_ap = ag_pstt[ag_t1];
    if ((ag_s_procs_scan[ag_astt[ag_t1]])() == 0) break;
  }
  return 0;
}

static int ag_action_8_proc(void) {
  ag_undo();
  (PCB).rx = 0;
  (PCB).exit_flag = AG_SYNTAX_ERROR_CODE;
  ag_diagnose();
  SYNTAX_ERROR;
  {(PCB).rx = 1; ag_track();}
  return (PCB).exit_flag == AG_RUNNING_CODE;
}

static int ag_action_5_proc(void) {
  int ag_sd = ag_fl[(PCB).ag_ap];
  (PCB).btsx = 0, (PCB).drt = -1;
  if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd];
  else {
    (PCB).ss[(PCB).ssx] = (PCB).sn;
  }
  (PCB).rx = 0;
  (PCB).reduction_token = (parseSumData_token_type) ag_ptt[(PCB).ag_ap];
  ag_ra();
  while ((PCB).exit_flag == AG_RUNNING_CODE) {
    unsigned ag_t1 = ag_sbe[(PCB).sn] + 1;
    unsigned ag_t2 = ag_sbt[(PCB).sn+1] - 1;
    do {
      unsigned ag_tx = (ag_t1 + ag_t2)/2;
      if (ag_tstt[ag_tx] < (unsigned char)(PCB).reduction_token) ag_t1 = ag_tx + 1;
      else ag_t2 = ag_tx;
    } while (ag_t1 < ag_t2);
    (PCB).ag_ap = ag_pstt[ag_t1];
    if ((ag_r_procs_scan[ag_astt[ag_t1]])() == 0) break;
  }
  return (PCB).exit_flag == AG_RUNNING_CODE;
}

static int ag_action_6_proc(void) {
  int ag_sd = ag_fl[(PCB).ag_ap];
  (PCB).reduction_token = (parseSumData_token_type) ag_ptt[(PCB).ag_ap];
  if ((PCB).drt == -1) {
    (PCB).drt=(PCB).token_number;
    (PCB).dssx=(PCB).ssx;
    (PCB).dsn=(PCB).sn;
  }
  if (ag_sd) {
    (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd];
  }
  else {
    ag_prot();
    (PCB).vs[(PCB).ssx] = ag_null_value;
    (PCB).ss[(PCB).ssx] = (PCB).sn;
  }
  (PCB).rx = 0;
  while ((PCB).exit_flag == AG_RUNNING_CODE) {
    unsigned ag_t1 = ag_sbe[(PCB).sn] + 1;
    unsigned ag_t2 = ag_sbt[(PCB).sn+1] - 1;
    do {
      unsigned ag_tx = (ag_t1 + ag_t2)/2;
      if (ag_tstt[ag_tx] < (unsigned char)(PCB).reduction_token) ag_t1 = ag_tx + 1;
      else ag_t2 = ag_tx;
    } while (ag_t1 < ag_t2);
    (PCB).ag_ap = ag_pstt[ag_t1];
    if ((ag_r_procs_scan[ag_astt[ag_t1]])() == 0) break;
  }
  return (PCB).exit_flag == AG_RUNNING_CODE;
}


void init_parseSumData(void) {
  unsigned ag_t1;
  ag_t1 = 0;
  (PCB).rx = (PCB).fx = 0;
  (PCB).ss[0] = (PCB).sn = (PCB).ssx = 0;
  (PCB).exit_flag = AG_RUNNING_CODE;
  (PCB).key_sp = NULL;
  (PCB).key_state = 0;
  (PCB).line = FIRST_LINE;
  (PCB).column = FIRST_COLUMN;
  (PCB).btsx = 0, (PCB).drt = -1;
  while (ag_tstt[ag_t1] == 0) {
    (PCB).ag_ap = ag_pstt[ag_t1];
    (ag_gt_procs_scan[ag_astt[ag_t1]])();
    ag_t1 = ag_sbt[(PCB).sn];
  }
}

void parseSumData(void) {
  (PCB).lab[(PCB).fx++] = (PCB).input_code;
  while ((PCB).exit_flag == AG_RUNNING_CODE) {
    while (1) {
      const  unsigned char *ag_p;
      int ag_ch;
      if ((PCB).rx >= (PCB).fx) return;
      ag_ch = CONVERT_CASE((PCB).lab[(PCB).rx++]);
      if ((PCB).key_sp) {
        if (ag_ch != *(PCB).key_sp++) {
          (PCB).rx = (PCB).save_index;
          (PCB).key_sp = NULL;
          (PCB).key_state = 0;
          break;
        } else if (*(PCB).key_sp) continue;
        if (ag_key_act[(PCB).key_state] == ag_cf_end_key) {
          int ag_k1;
          int ag_k2;
          if ((PCB).rx >= (PCB).fx) {
            (PCB).rx--;
            (PCB).key_sp--;
            return;
          }
          (PCB).key_sp = NULL;
          ag_k1 = ag_key_parm[(PCB).key_state];
          ag_k2 = ag_key_pt[ag_k1];
          if (ag_key_itt[ag_k2 + CONVERT_CASE((PCB).lab[(PCB).rx])])
            (PCB).rx = (PCB).save_index;
          else {
            (PCB).token_number =  (parseSumData_token_type) ag_key_pt[ag_k1+1];
            (PCB).key_state = 0;
          }
          break;
        }
        else {
          (PCB).token_number = (parseSumData_token_type) ag_key_parm[(PCB).key_state];
          (PCB).key_state = 0;
          (PCB).key_sp = NULL;
        }
        break;
      }
      if ((PCB).key_state == 0) {
        (PCB).token_number = (parseSumData_token_type) AG_TCV(ag_ch);
        if (((PCB).key_state = ag_key_index[(PCB).sn]) == 0) break;
        (PCB).save_index = 1;
      }
      ag_p = &ag_key_ch[(PCB).key_state];
      if (ag_ch <= 255) while (*ag_p < ag_ch) ag_p++;
      if (*ag_p == ag_ch) {
        (PCB).key_state = (int)(ag_p - ag_key_ch);
        switch (ag_key_act[(PCB).key_state]) {
        case ag_cf_set_key: {
          int ag_k1;
          int ag_k2;
          if ((PCB).rx >= (PCB).fx) {
            (PCB).rx--;
            return;
          }
          ag_k1 = ag_key_parm[(PCB).key_state];
          ag_k2 = ag_key_pt[ag_k1];
          (PCB).key_state = ag_key_jmp[(PCB).key_state];
          if (ag_key_itt[ag_k2 + CONVERT_CASE((PCB).lab[(PCB).rx])]) continue;
          (PCB).save_index = (PCB).rx;
          (PCB).token_number = (parseSumData_token_type) ag_key_pt[ag_k1+1];
          continue;
        }
        case ag_set_key:
          (PCB).save_index = (PCB).rx;
          (PCB).token_number = (parseSumData_token_type) ag_key_parm[(PCB).key_state];
        case ag_jmp_key:
          (PCB).key_state = ag_key_jmp[(PCB).key_state];
          continue;
        case ag_cf_end_key:
        case ag_end_key:
          (PCB).key_sp = ag_key_ends + ag_key_jmp[(PCB).key_state];
          continue;
        case ag_accept_key:
          (PCB).token_number = (parseSumData_token_type) ag_key_parm[(PCB).key_state];
          (PCB).key_state = 0;
          break;
        case ag_cf_accept_key: {
          int ag_k1;
          int ag_k2;
          if ((PCB).rx >= (PCB).fx) {
            (PCB).rx--;
            return;
          }
          ag_k1 = ag_key_parm[(PCB).key_state];
          ag_k2 = ag_key_pt[ag_k1];
          if (ag_key_itt[ag_k2 + CONVERT_CASE((PCB).lab[(PCB).rx])])
            (PCB).rx = (PCB).save_index;
          else {
            (PCB).token_number = (parseSumData_token_type) ag_key_pt[ag_k1+1];
            (PCB).key_state = 0;
          }
          break;
        }
        }
        break;
      } else {
        (PCB).rx = (PCB).save_index;
        (PCB).key_state = 0;
        break;
      }
    }

    {
      unsigned ag_t1 = ag_sbt[(PCB).sn];
      unsigned ag_t2 = ag_sbe[(PCB).sn] - 1;
      do {
        unsigned ag_tx = (ag_t1 + ag_t2)/2;
        if (ag_tstt[ag_tx] > (unsigned char)(PCB).token_number)
          ag_t1 = ag_tx + 1;
        else ag_t2 = ag_tx;
      } while (ag_t1 < ag_t2);
      if (ag_tstt[ag_t1] != (PCB).token_number)  ag_t1 = ag_sbe[(PCB).sn];
      (PCB).ag_ap = ag_pstt[ag_t1];
      (ag_gt_procs_scan[ag_astt[ag_t1]])();
    }
  }
}