Mercurial > ~dholland > hg > ag > index.cgi
view helpgen/readhelp.c @ 13:43d8b194fb4e
Remove unused variables.
author | David A. Holland |
---|---|
date | Tue, 31 May 2022 00:59:00 -0400 |
parents | ec2b657edf13 |
children | 5581ef01f993 |
line wrap: on
line source
/* * AnaGram, a System for Syntax Directed Programming * Copyright 1993 Parsifal Software. All Rights Reserved. * Copyright 2006 David A. Holland. All Rights Reserved. * See the file COPYING for license and usage terms. * * readhelp.syn - Toplevel syntax for help source file. */ #include <sys/types.h> #include <sys/stat.h> #include <assert.h> #include <errno.h> #include <fcntl.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include "utils.h" #include "topic.h" #include "helpgen.h" /* * AnaGram, A System for Syntax Directed Programming * File generated by: Version 2.40-current, built Jun 13 2007 * * AnaGram Parsing Engine * Copyright 1993-2002 Parsifal Software. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #ifndef READHELP_H_1181769468 #include "readhelp.h" #endif #ifndef READHELP_H_1181769468 #error Mismatched header file #endif #include <ctype.h> #include <stdio.h> #define RULE_CONTEXT (&((PCB).cs[(PCB).ssx])) #define ERROR_CONTEXT ((PCB).cs[(PCB).error_frame_ssx]) #define CONTEXT ((PCB).cs[(PCB).ssx]) readhelp_pcb_type readhelp_pcb; #define PCB readhelp_pcb #line 124 "/disk/disk0/home/dholland/projects/ag/src/helpgen/readhelp.syn" static char string_space[4096]; static size_t string_pos; static void startstr(void) { string_pos = 0; } static void addstr(int ch) { if (string_pos >= sizeof(string_space)-1) { fprintf(stderr, "String buffer overflow - make string_space larger\n"); exit(1); } string_space[string_pos++] = ch; } static const char *getstr(void) { string_space[string_pos] = 0; return string_space; } #line 88 "readhelp.c" #line 149 "/disk/disk0/home/dholland/projects/ag/src/helpgen/readhelp.syn" static struct topic *curtopic; static void startblock(void) { assert(curtopic == NULL); curtopic = topic_create(); } static void endblock(void) { help_addtopic(curtopic); curtopic = NULL; } static void see_xref(const char *ref) { topic_addref(curtopic, ref); } #line 106 "readhelp.c" #line 172 "/disk/disk0/home/dholland/projects/ag/src/helpgen/readhelp.syn" #define GET_CONTEXT CONTEXT = PCB.pointer static unsigned char *inputdata; static void block(long head, long tail) { long length = tail - head; assert(length >= 0); if (length > 0) { topic_setbody(curtopic, (const char *)(inputdata+head), length); } } static off_t getlength(int fd) { struct stat st; if (fstat(fd, &st) < 0) { fprintf(stderr, "fstat failed: %s", strerror(errno)); exit(1); } return st.st_size; } void load(const char *path) { char *buf; off_t len; int fd, r; fd = open(path, O_RDONLY); if (fd < 0) { fprintf(stderr, "%s: %s\n", path, strerror(errno)); exit(1); } len = getlength(fd); buf = domalloc(len+1); r = read(fd, buf, len); if (r < 0) { fprintf(stderr, "%s: read: %s\n", path, strerror(errno)); exit(1); } if (r < len) { fprintf(stderr, "%s: read: short count %d of %ld\n", path, r, (long) len); exit(1); } buf[r] = 0; close(fd); inputdata = (unsigned char *) buf; PCB.pointer = inputdata; readhelp(); inputdata = NULL; free(buf); } #line 161 "readhelp.c" #ifndef CONVERT_CASE #define CONVERT_CASE(c) (c) #endif #ifndef TAB_SPACING #define TAB_SPACING 8 #endif #define ag_rp_1(c) (c) #define ag_rp_2(c) (startstr(), addstr(c)) #define ag_rp_3(c) (addstr(c)) #define ag_rp_4(c) (addstr(' '), addstr(c)) #define ag_rp_5() (getstr()) #define ag_rp_6(t) (topic_addtitle(curtopic, t)) #define ag_rp_7(t) (topic_addtitle(curtopic, t)) #define ag_rp_8() (CONTEXT - inputdata) #define ag_rp_9() (see_xref(getstr())) #define ag_rp_10() (startstr()) #define ag_rp_11(c) (addstr(c)) #define ag_rp_12(c) (addstr(' '), addstr(c)) #define ag_rp_13() (addstr(' ')) #define ag_rp_14() (CONTEXT - inputdata) #define ag_rp_15() (CONTEXT - inputdata) static void ag_rp_16(void) { #line 105 "/disk/disk0/home/dholland/projects/ag/src/helpgen/readhelp.syn" startblock(); #line 203 "readhelp.c" } #define ag_rp_17() (endblock()) #define ag_rp_18(bb, be) (block(bb,be)) #define ag_rp_19() (block(0,0)) #define READ_COUNTS #define WRITE_COUNTS #undef V #define V(i,t) (*t (&(PCB).vs[(PCB).ssx + i])) #undef VS #define VS(i) (PCB).vs[(PCB).ssx + i] #ifndef GET_CONTEXT #define GET_CONTEXT CONTEXT = (PCB).input_context #endif typedef enum { ag_action_1, ag_action_2, ag_action_3, ag_action_4, ag_action_5, ag_action_6, ag_action_7, ag_action_8, ag_action_9, ag_action_10, ag_action_11, ag_action_12 } ag_parser_action; #ifndef NULL_VALUE_INITIALIZER #define NULL_VALUE_INITIALIZER = { 0 } #endif static readhelp_vs_type const ag_null_value NULL_VALUE_INITIALIZER; static const unsigned char ag_rpx[] = { 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 4, 5, 6, 7, 0, 0, 8, 0, 0, 0, 9, 10, 11, 12, 13, 0, 0, 14, 0, 0, 15, 16, 17, 0, 0, 18, 19 }; static const unsigned char ag_key_itt[] = { 0 }; static const unsigned short ag_key_pt[] = { 0 }; static const unsigned char ag_key_ch[] = { 0, 47,255, 35,255 }; static const unsigned char ag_key_act[] = { 0,3,4,3,4 }; static const unsigned char ag_key_parm[] = { 0, 6, 0, 32, 0 }; static const unsigned char ag_key_jmp[] = { 0, 0, 0, 2, 0 }; static const unsigned char ag_key_index[] = { 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 3, 1, 0, 0, 0, 3, 0, 1, 0, 0, 0, 3, 3, 0, 0, 0, 0, 3, 0, 3 }; static const unsigned char ag_key_ends[] = { 47,0, 35,0, }; #define AG_TCV(x) ag_tcv[(x)] static const unsigned char ag_tcv[] = { 39, 2, 2, 2, 2, 2, 2, 2, 2, 4, 12, 2, 2, 10, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 20, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 28, 27, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 }; #ifndef SYNTAX_ERROR #define SYNTAX_ERROR fprintf(stderr,"%s, line %d, column %d\n", \ (PCB).error_message, (PCB).line, (PCB).column) #endif #ifndef FIRST_LINE #define FIRST_LINE 1 #endif #ifndef FIRST_COLUMN #define FIRST_COLUMN 1 #endif #ifndef PARSER_STACK_OVERFLOW #define PARSER_STACK_OVERFLOW {fprintf(stderr, \ "\nParser stack overflow, line %d, column %d\n",\ (PCB).line, (PCB).column);} #endif #ifndef REDUCTION_TOKEN_ERROR #define REDUCTION_TOKEN_ERROR {fprintf(stderr, \ "\nReduction token error, line %d, column %d\n", \ (PCB).line, (PCB).column);} #endif #ifndef INPUT_CODE #define INPUT_CODE(T) (T) #endif typedef enum {ag_accept_key, ag_set_key, ag_jmp_key, ag_end_key, ag_no_match_key, ag_cf_accept_key, ag_cf_set_key, ag_cf_end_key} key_words; static void ag_get_key_word(int ag_k) { int ag_save = (int) ((PCB).la_ptr - (PCB).pointer); const unsigned char *ag_p; int ag_ch; while (1) { switch (ag_key_act[ag_k]) { case ag_cf_end_key: { const unsigned char *sp = ag_key_ends + ag_key_jmp[ag_k]; do { if ((ag_ch = *sp++) == 0) { int ag_k1 = ag_key_parm[ag_k]; int ag_k2 = ag_key_pt[ag_k1]; if (ag_key_itt[ag_k2 + CONVERT_CASE(*(PCB).la_ptr)]) goto ag_fail; (PCB).token_number = (readhelp_token_type) ag_key_pt[ag_k1 + 1]; return; } } while (CONVERT_CASE(*(PCB).la_ptr++) == ag_ch); goto ag_fail; } case ag_end_key: { const unsigned char *sp = ag_key_ends + ag_key_jmp[ag_k]; do { if ((ag_ch = *sp++) == 0) { (PCB).token_number = (readhelp_token_type) ag_key_parm[ag_k]; return; } } while (CONVERT_CASE(*(PCB).la_ptr++) == ag_ch); } /* FALLTHROUGH */ case ag_no_match_key: ag_fail: (PCB).la_ptr = (PCB).pointer + ag_save; return; case ag_cf_set_key: { int ag_k1 = ag_key_parm[ag_k]; int ag_k2 = ag_key_pt[ag_k1]; ag_k = ag_key_jmp[ag_k]; if (ag_key_itt[ag_k2 + CONVERT_CASE(*(PCB).la_ptr)]) break; ag_save = (int) ((PCB).la_ptr - (PCB).pointer); (PCB).token_number = (readhelp_token_type) ag_key_pt[ag_k1+1]; break; } case ag_set_key: ag_save = (int) ((PCB).la_ptr - (PCB).pointer); (PCB).token_number = (readhelp_token_type) ag_key_parm[ag_k]; /* FALLTHROUGH */ case ag_jmp_key: ag_k = ag_key_jmp[ag_k]; break; case ag_accept_key: (PCB).token_number = (readhelp_token_type) ag_key_parm[ag_k]; return; case ag_cf_accept_key: { int ag_k1 = ag_key_parm[ag_k]; int ag_k2 = ag_key_pt[ag_k1]; if (ag_key_itt[ag_k2 + CONVERT_CASE(*(PCB).la_ptr)]) (PCB).la_ptr = (PCB).pointer + ag_save; else (PCB).token_number = (readhelp_token_type) ag_key_pt[ag_k1+1]; return; } } ag_ch = CONVERT_CASE(*(PCB).la_ptr++); ag_p = &ag_key_ch[ag_k]; if (ag_ch <= 255) while (*ag_p < ag_ch) ag_p++; if (ag_ch > 255 || *ag_p != ag_ch) { (PCB).la_ptr = (PCB).pointer + ag_save; return; } ag_k = (int) (ag_p - ag_key_ch); } } #ifndef AG_NEWLINE #define AG_NEWLINE 10 #endif #ifndef AG_RETURN #define AG_RETURN 13 #endif #ifndef AG_FORMFEED #define AG_FORMFEED 12 #endif #ifndef AG_TABCHAR #define AG_TABCHAR 9 #endif static void ag_track(void) { int ag_k = (int) ((PCB).la_ptr - (PCB).pointer); while (ag_k--) { switch (*(PCB).pointer++) { case AG_NEWLINE: (PCB).column = 1, (PCB).line++; case AG_RETURN: case AG_FORMFEED: break; case AG_TABCHAR: (PCB).column += (TAB_SPACING) - ((PCB).column - 1) % (TAB_SPACING); break; default: (PCB).column++; } } } static void ag_prot(void) { int ag_k; ag_k = 128 - ++(PCB).btsx; if (ag_k <= (PCB).ssx) { (PCB).exit_flag = AG_STACK_ERROR_CODE; PARSER_STACK_OVERFLOW; return; } (PCB).bts[(PCB).btsx] = (PCB).sn; (PCB).bts[ag_k] = (PCB).ssx; (PCB).vs[ag_k] = (PCB).vs[(PCB).ssx]; (PCB).ss[ag_k] = (PCB).ss[(PCB).ssx]; (PCB).cs[ag_k] = (PCB).cs[(PCB).ssx]; } static void ag_undo(void) { if ((PCB).drt == -1) return; while ((PCB).btsx) { int ag_k = 128 - (PCB).btsx; (PCB).sn = (PCB).bts[(PCB).btsx--]; (PCB).ssx = (PCB).bts[ag_k]; (PCB).vs[(PCB).ssx] = (PCB).vs[ag_k]; (PCB).ss[(PCB).ssx] = (PCB).ss[ag_k]; (PCB).cs[(PCB).ssx] = (PCB).cs[ag_k]; } (PCB).token_number = (readhelp_token_type) (PCB).drt; (PCB).ssx = (PCB).dssx; (PCB).sn = (PCB).dsn; (PCB).drt = -1; } static const unsigned char ag_tstt[] = { 39,12,10,6,4,2,0,37,38, 39,12,10,6,4,2,0,3,15,33,34, 2,0,1,17,18,19, 4,0, 12,10,6,0,5,9, 20,12,10,6,4,2,0,1,3,15, 20,12,10,6,0,5,9, 28,27,20,4,2,0,8, 12,10,0,11, 4,2,0,1, 32,28,20,12,10,4,2,0,11,13,30,31,35,36, 12,10,6,4,2,0,3,14,15, 28,27,20,4,2,0, 12,0, 12,0, 32,28,20,12,10,4,2,0,11,13, 28,20,4,2,0,21,22,23,25,26,29, 12,10,6,2,0,5,9,16, 2,0,1,17,18, 27,12,10,4,2,0,1,3,15, 28,20,12,10,4,2,0,11,13,22,25,26, 28,20,4,2,0,22,23,25,26, 32,12,10,0,11,13,30,31, 4,2,0,3,15, 4,2,0,1, 27,12,10,0,11, 28,20,12,10,4,2,0,11,13,22,25,26, 32,28,20,12,10,4,2,0,11,13,21,22,23,25,26, 12,0, 28,20,4,2,0,22,23,25,26, }; static unsigned const char ag_astt[223] = { 8,5,5,5,8,8,7,0,1,3,8,8,8,1,4,7,1,1,3,1,2,7,2,1,2,1,9,5,5,8,1,7,3,1,5,5,5, 5,1,2,7,2,1,2,1,5,8,1,7,1,1,1,1,1,1,1,7,1,8,1,7,1,9,2,5,2,2,8,8,8,1,8,8,7, 1,2,1,2,2,1,8,8,8,1,5,7,1,1,1,9,9,9,9,9,5,3,7,3,7,3,5,5,8,1,5,5,7,1,3,2,1, 1,1,7,1,1,1,1,1,1,5,8,1,5,7,1,1,3,2,7,2,1,2,8,5,8,1,2,7,2,1,1,2,9,8,1,9,9, 7,1,2,3,3,1,2,1,1,1,5,1,1,1,1,2,8,1,7,1,2,1,2,1,5,7,1,3,9,2,5,2,2,8,1,7,1, 2,9,8,1,9,9,7,1,3,3,3,1,3,2,1,8,1,1,1,7,1,3,1,1,1,1,1,2,7,2,1,1,1,5,1,1,1, 1 }; static const unsigned char ag_pstt[] = { 1,47,47,47,1,1,0,0,1, 46,4,4,4,3,40,1,3,4,49,2, 1,2,17,5,21,6, 3,13, 6,8,7,4,48,8, 12,12,12,12,9,1,5,18,9,20, 11,6,8,7,6,10,8, 12,12,12,12,12,7,12, 13,13,8,13, 3,1,13,19, 39,16,16,14,14,16,16,10,14,36,15,45,41,16, 17,17,17,3,12,11,3,18,17, 5,5,5,5,5,7, 10,13, 11,14, 38,43,43,14,14,43,43,15,14,37, 30,20,20,20,16,21,20,20,20,19,22, 6,8,7,14,17,23,8,16, 1,18,17,5,22, 25,12,25,24,1,19,31,24,25, 30,24,14,14,24,24,20,14,25,24,24,19, 30,26,26,26,34,26,26,26,19, 39,14,14,22,14,36,27,44, 3,12,23,3,15, 3,1,13,32, 29,28,28,25,28, 30,24,14,14,24,24,26,14,26,24,24,19, 38,30,20,14,14,20,20,27,14,37,29,20,20,20,19, 33,28, 30,26,26,26,35,26,26,26,19, }; static const unsigned char ag_sbt[] = { 0, 9, 20, 26, 28, 34, 44, 51, 58, 62, 66, 80, 89, 95, 97, 99, 109, 120, 128, 133, 142, 154, 163, 171, 176, 180, 185, 197, 212, 214, 223 }; static const unsigned char ag_sbe[] = { 6, 15, 21, 27, 31, 40, 48, 56, 60, 64, 73, 85, 94, 96, 98, 106, 113, 124, 129, 138, 148, 158, 166, 173, 178, 183, 191, 204, 213, 218, 223 }; static const unsigned char ag_fl[] = { 1,1,1,2,1,2,0,2,0,1,3,2,0,1,0,2,2,1,2,3,2,1,4,1,2,2,3,1,1,3,1,2,3,4,1, 3,1,2,2,1,0,4,0,1,3,1,2,0,3,2 }; static const unsigned char ag_ptt[] = { 0, 1, 3, 3, 8, 8, 9, 9, 11, 11, 5, 13, 15, 15, 16, 16, 14, 17, 17, 17, 18, 19, 19, 23, 23, 21, 21, 22, 22, 25, 26, 26, 26, 26, 29, 29, 30, 30, 31, 31, 34, 33, 36, 36, 35, 35, 37, 38, 38, 38 }; static void ag_ra(void) { switch(ag_rpx[(PCB).ag_ap]) { case 1: V(0,(int *)) = ag_rp_1(V(0,(int *))); break; case 2: ag_rp_2(V(0,(int *))); break; case 3: ag_rp_3(V(1,(int *))); break; case 4: ag_rp_4(V(2,(int *))); break; case 5: V(0,(const char * *)) = ag_rp_5(); break; case 6: ag_rp_6(V(0,(const char * *))); break; case 7: ag_rp_7(V(3,(const char * *))); break; case 8: V(0,(long *)) = ag_rp_8(); break; case 9: ag_rp_9(); break; case 10: ag_rp_10(); break; case 11: ag_rp_11(V(1,(int *))); break; case 12: ag_rp_12(V(2,(int *))); break; case 13: ag_rp_13(); break; case 14: V(0,(long *)) = ag_rp_14(); break; case 15: V(0,(long *)) = ag_rp_15(); break; case 16: ag_rp_16(); break; case 17: ag_rp_17(); break; case 18: ag_rp_18(V(1,(long *)), V(2,(long *))); break; case 19: ag_rp_19(); break; } (PCB).la_ptr = (PCB).pointer; } #define TOKEN_NAMES readhelp_token_names const char *const readhelp_token_names[40] = { "file", "letter", "", "blanks", "blank", "eol", "\"//\"", "text", "", "", "cr", "", "nl", "new line", "continue", "", "", "name", "title", "titles", "','", "text lines", "text unit", "", "", "cross reference", "cross reference text", "right", "left", "block body", "blank lines", "end block", "\"##\"", "block", "", "real block body", "", "file", "blocks", "eof", }; #ifndef MISSING_FORMAT #define MISSING_FORMAT "Missing %s" #endif #ifndef UNEXPECTED_FORMAT #define UNEXPECTED_FORMAT "Unexpected %s" #endif #ifndef UNNAMED_TOKEN #define UNNAMED_TOKEN "input" #endif static void ag_diagnose(void) { int ag_snd = (PCB).sn; int ag_k = ag_sbt[ag_snd]; if (*TOKEN_NAMES[ag_tstt[ag_k]] && ag_astt[ag_k + 1] == ag_action_8) { sprintf((PCB).ag_msg, MISSING_FORMAT, TOKEN_NAMES[ag_tstt[ag_k]]); } else if (ag_astt[ag_sbe[(PCB).sn]] == ag_action_8 && (ag_k = (int) ag_sbe[(PCB).sn] + 1) == (int) ag_sbt[(PCB).sn+1] - 1 && *TOKEN_NAMES[ag_tstt[ag_k]]) { sprintf((PCB).ag_msg, MISSING_FORMAT, TOKEN_NAMES[ag_tstt[ag_k]]); } else if ((PCB).token_number && *TOKEN_NAMES[(PCB).token_number]) { sprintf((PCB).ag_msg, UNEXPECTED_FORMAT, TOKEN_NAMES[(PCB).token_number]); } else if (isprint(INPUT_CODE((*(PCB).pointer))) && INPUT_CODE((*(PCB).pointer)) != '\\') { char buf[20]; sprintf(buf, "\'%c\'", (char) INPUT_CODE((*(PCB).pointer))); sprintf((PCB).ag_msg, UNEXPECTED_FORMAT, buf); } else sprintf((PCB).ag_msg, UNEXPECTED_FORMAT, UNNAMED_TOKEN); (PCB).error_message = (PCB).ag_msg; } static int ag_action_1_r_proc(void); static int ag_action_2_r_proc(void); static int ag_action_3_r_proc(void); static int ag_action_4_r_proc(void); static int ag_action_1_s_proc(void); static int ag_action_3_s_proc(void); static int ag_action_1_proc(void); static int ag_action_2_proc(void); static int ag_action_3_proc(void); static int ag_action_4_proc(void); static int ag_action_5_proc(void); static int ag_action_6_proc(void); static int ag_action_7_proc(void); static int ag_action_8_proc(void); static int ag_action_9_proc(void); static int ag_action_10_proc(void); static int ag_action_11_proc(void); static int ag_action_8_proc(void); static int (*const ag_r_procs_scan[])(void) = { ag_action_1_r_proc, ag_action_2_r_proc, ag_action_3_r_proc, ag_action_4_r_proc }; static int (*const ag_s_procs_scan[])(void) = { ag_action_1_s_proc, ag_action_2_r_proc, ag_action_3_s_proc, ag_action_4_r_proc }; static int (*const ag_gt_procs_scan[])(void) = { ag_action_1_proc, ag_action_2_proc, ag_action_3_proc, ag_action_4_proc, ag_action_5_proc, ag_action_6_proc, ag_action_7_proc, ag_action_8_proc, ag_action_9_proc, ag_action_10_proc, ag_action_11_proc, ag_action_8_proc }; static int ag_action_10_proc(void) { int ag_t = (PCB).token_number; (PCB).btsx = 0, (PCB).drt = -1; do { ag_track(); (PCB).token_number = (readhelp_token_type) AG_TCV(INPUT_CODE(*(PCB).la_ptr)); (PCB).la_ptr++; if (ag_key_index[(PCB).sn]) { unsigned ag_k = ag_key_index[(PCB).sn]; int ag_ch = CONVERT_CASE(INPUT_CODE(*(PCB).pointer)); if (ag_ch <= 255) { while (ag_key_ch[ag_k] < ag_ch) ag_k++; if (ag_key_ch[ag_k] == ag_ch) ag_get_key_word(ag_k); } } } while ((PCB).token_number == (readhelp_token_type) ag_t); (PCB).la_ptr = (PCB).pointer; return 1; } static int ag_action_11_proc(void) { int ag_t = (PCB).token_number; (PCB).btsx = 0, (PCB).drt = -1; do { (*(int *) &(PCB).vs[(PCB).ssx]) = *(PCB).pointer; (PCB).ssx--; ag_track(); ag_ra(); if ((PCB).exit_flag != AG_RUNNING_CODE) return 0; (PCB).ssx++; (PCB).token_number = (readhelp_token_type) AG_TCV(INPUT_CODE(*(PCB).la_ptr)); (PCB).la_ptr++; if (ag_key_index[(PCB).sn]) { unsigned ag_k = ag_key_index[(PCB).sn]; int ag_ch = CONVERT_CASE(INPUT_CODE(*(PCB).pointer)); if (ag_ch <= 255) { while (ag_key_ch[ag_k] < ag_ch) ag_k++; if (ag_key_ch[ag_k] == ag_ch) ag_get_key_word(ag_k); } } } while ((PCB).token_number == (readhelp_token_type) ag_t); (PCB).la_ptr = (PCB).pointer; return 1; } static int ag_action_3_r_proc(void) { int ag_sd = ag_fl[(PCB).ag_ap] - 1; if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; (PCB).btsx = 0, (PCB).drt = -1; (PCB).reduction_token = (readhelp_token_type) ag_ptt[(PCB).ag_ap]; ag_ra(); return (PCB).exit_flag == AG_RUNNING_CODE; } static int ag_action_3_s_proc(void) { int ag_sd = ag_fl[(PCB).ag_ap] - 1; if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; (PCB).btsx = 0, (PCB).drt = -1; (PCB).reduction_token = (readhelp_token_type) ag_ptt[(PCB).ag_ap]; ag_ra(); return (PCB).exit_flag == AG_RUNNING_CODE; } static int ag_action_4_r_proc(void) { int ag_sd = ag_fl[(PCB).ag_ap] - 1; if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; (PCB).reduction_token = (readhelp_token_type) ag_ptt[(PCB).ag_ap]; return 1; } static int ag_action_2_proc(void) { (PCB).btsx = 0, (PCB).drt = -1; if ((PCB).ssx >= 128) { (PCB).exit_flag = AG_STACK_ERROR_CODE; PARSER_STACK_OVERFLOW; } (*(int *) &(PCB).vs[(PCB).ssx]) = *(PCB).pointer; GET_CONTEXT; (PCB).ss[(PCB).ssx] = (PCB).sn; (PCB).ssx++; (PCB).sn = (PCB).ag_ap; ag_track(); return 0; } static int ag_action_9_proc(void) { if ((PCB).drt == -1) { (PCB).drt=(PCB).token_number; (PCB).dssx=(PCB).ssx; (PCB).dsn=(PCB).sn; } ag_prot(); (PCB).vs[(PCB).ssx] = ag_null_value; GET_CONTEXT; (PCB).ss[(PCB).ssx] = (PCB).sn; (PCB).ssx++; (PCB).sn = (PCB).ag_ap; (PCB).la_ptr = (PCB).pointer; return (PCB).exit_flag == AG_RUNNING_CODE; } static int ag_action_2_r_proc(void) { (PCB).ssx++; (PCB).sn = (PCB).ag_ap; return 0; } static int ag_action_7_proc(void) { --(PCB).ssx; (PCB).la_ptr = (PCB).pointer; (PCB).exit_flag = AG_SUCCESS_CODE; return 0; } static int ag_action_1_proc(void) { ag_track(); (PCB).exit_flag = AG_SUCCESS_CODE; return 0; } static int ag_action_1_r_proc(void) { (PCB).exit_flag = AG_SUCCESS_CODE; return 0; } static int ag_action_1_s_proc(void) { (PCB).exit_flag = AG_SUCCESS_CODE; return 0; } static int ag_action_4_proc(void) { int ag_sd = ag_fl[(PCB).ag_ap] - 1; (PCB).reduction_token = (readhelp_token_type) ag_ptt[(PCB).ag_ap]; (PCB).btsx = 0, (PCB).drt = -1; (*(int *) &(PCB).vs[(PCB).ssx]) = *(PCB).pointer; if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; else GET_CONTEXT; (PCB).ss[(PCB).ssx] = (PCB).sn; ag_track(); while ((PCB).exit_flag == AG_RUNNING_CODE) { unsigned ag_t1 = ag_sbe[(PCB).sn] + 1; unsigned ag_t2 = ag_sbt[(PCB).sn+1] - 1; do { unsigned ag_tx = (ag_t1 + ag_t2)/2; if (ag_tstt[ag_tx] < (unsigned char)(PCB).reduction_token) ag_t1 = ag_tx + 1; else ag_t2 = ag_tx; } while (ag_t1 < ag_t2); (PCB).ag_ap = ag_pstt[ag_t1]; if ((ag_s_procs_scan[ag_astt[ag_t1]])() == 0) break; } return 0; } static int ag_action_3_proc(void) { int ag_sd = ag_fl[(PCB).ag_ap] - 1; (PCB).btsx = 0, (PCB).drt = -1; (*(int *) &(PCB).vs[(PCB).ssx]) = *(PCB).pointer; if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; else GET_CONTEXT; (PCB).ss[(PCB).ssx] = (PCB).sn; ag_track(); (PCB).reduction_token = (readhelp_token_type) ag_ptt[(PCB).ag_ap]; ag_ra(); while ((PCB).exit_flag == AG_RUNNING_CODE) { unsigned ag_t1 = ag_sbe[(PCB).sn] + 1; unsigned ag_t2 = ag_sbt[(PCB).sn+1] - 1; do { unsigned ag_tx = (ag_t1 + ag_t2)/2; if (ag_tstt[ag_tx] < (unsigned char)(PCB).reduction_token) ag_t1 = ag_tx + 1; else ag_t2 = ag_tx; } while (ag_t1 < ag_t2); (PCB).ag_ap = ag_pstt[ag_t1]; if ((ag_s_procs_scan[ag_astt[ag_t1]])() == 0) break; } return 0; } static int ag_action_8_proc(void) { ag_undo(); (PCB).la_ptr = (PCB).pointer; (PCB).exit_flag = AG_SYNTAX_ERROR_CODE; ag_diagnose(); SYNTAX_ERROR; {(PCB).la_ptr = (PCB).pointer + 1; ag_track();} return (PCB).exit_flag == AG_RUNNING_CODE; } static int ag_action_5_proc(void) { int ag_sd = ag_fl[(PCB).ag_ap]; (PCB).btsx = 0, (PCB).drt = -1; if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; else { GET_CONTEXT; (PCB).ss[(PCB).ssx] = (PCB).sn; } (PCB).la_ptr = (PCB).pointer; (PCB).reduction_token = (readhelp_token_type) ag_ptt[(PCB).ag_ap]; ag_ra(); while ((PCB).exit_flag == AG_RUNNING_CODE) { unsigned ag_t1 = ag_sbe[(PCB).sn] + 1; unsigned ag_t2 = ag_sbt[(PCB).sn+1] - 1; do { unsigned ag_tx = (ag_t1 + ag_t2)/2; if (ag_tstt[ag_tx] < (unsigned char)(PCB).reduction_token) ag_t1 = ag_tx + 1; else ag_t2 = ag_tx; } while (ag_t1 < ag_t2); (PCB).ag_ap = ag_pstt[ag_t1]; if ((ag_r_procs_scan[ag_astt[ag_t1]])() == 0) break; } return (PCB).exit_flag == AG_RUNNING_CODE; } static int ag_action_6_proc(void) { int ag_sd = ag_fl[(PCB).ag_ap]; (PCB).reduction_token = (readhelp_token_type) ag_ptt[(PCB).ag_ap]; if ((PCB).drt == -1) { (PCB).drt=(PCB).token_number; (PCB).dssx=(PCB).ssx; (PCB).dsn=(PCB).sn; } if (ag_sd) { (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; } else { ag_prot(); (PCB).vs[(PCB).ssx] = ag_null_value; GET_CONTEXT; (PCB).ss[(PCB).ssx] = (PCB).sn; } (PCB).la_ptr = (PCB).pointer; while ((PCB).exit_flag == AG_RUNNING_CODE) { unsigned ag_t1 = ag_sbe[(PCB).sn] + 1; unsigned ag_t2 = ag_sbt[(PCB).sn+1] - 1; do { unsigned ag_tx = (ag_t1 + ag_t2)/2; if (ag_tstt[ag_tx] < (unsigned char)(PCB).reduction_token) ag_t1 = ag_tx + 1; else ag_t2 = ag_tx; } while (ag_t1 < ag_t2); (PCB).ag_ap = ag_pstt[ag_t1]; if ((ag_r_procs_scan[ag_astt[ag_t1]])() == 0) break; } return (PCB).exit_flag == AG_RUNNING_CODE; } void init_readhelp(void) { (PCB).la_ptr = (PCB).pointer; (PCB).ss[0] = (PCB).sn = (PCB).ssx = 0; (PCB).exit_flag = AG_RUNNING_CODE; (PCB).line = FIRST_LINE; (PCB).column = FIRST_COLUMN; (PCB).btsx = 0, (PCB).drt = -1; } void readhelp(void) { init_readhelp(); (PCB).exit_flag = AG_RUNNING_CODE; while ((PCB).exit_flag == AG_RUNNING_CODE) { unsigned ag_t1 = ag_sbt[(PCB).sn]; if (ag_tstt[ag_t1]) { unsigned ag_t2 = ag_sbe[(PCB).sn] - 1; (PCB).token_number = (readhelp_token_type) AG_TCV(INPUT_CODE(*(PCB).la_ptr)); (PCB).la_ptr++; if (ag_key_index[(PCB).sn]) { unsigned ag_k = ag_key_index[(PCB).sn]; int ag_ch = CONVERT_CASE(INPUT_CODE(*(PCB).pointer)); if (ag_ch <= 255) { while (ag_key_ch[ag_k] < ag_ch) ag_k++; if (ag_key_ch[ag_k] == ag_ch) ag_get_key_word(ag_k); } } do { unsigned ag_tx = (ag_t1 + ag_t2)/2; if (ag_tstt[ag_tx] > (unsigned char)(PCB).token_number) ag_t1 = ag_tx + 1; else ag_t2 = ag_tx; } while (ag_t1 < ag_t2); if (ag_tstt[ag_t1] != (unsigned char)(PCB).token_number) ag_t1 = ag_sbe[(PCB).sn]; } (PCB).ag_ap = ag_pstt[ag_t1]; (ag_gt_procs_scan[ag_astt[ag_t1]])(); } }