view tests/agcl/parsifal/good/tcsoff2.c @ 0:13d2b8934445

Import AnaGram (near-)release tree into Mercurial.
author David A. Holland
date Sat, 22 Dec 2007 17:52:45 -0500
parents
children
line wrap: on
line source


/*
 * AnaGram, A System for Syntax Directed Programming
 * File generated by: ...
 *
 * AnaGram Parsing Engine
 * Copyright 1993-2002 Parsifal Software. All Rights Reserved.
 *
 * This software is provided 'as-is', without any express or implied
 * warranty.  In no event will the authors be held liable for any damages
 * arising from the use of this software.
 *
 * Permission is granted to anyone to use this software for any purpose,
 * including commercial applications, and to alter it and redistribute it
 * freely, subject to the following restrictions:
 *
 * 1. The origin of this software must not be misrepresented; you must not
 *    claim that you wrote the original software. If you use this software
 *    in a product, an acknowledgment in the product documentation would be
 *    appreciated but is not required.
 * 2. Altered source versions must be plainly marked as such, and must not be
 *    misrepresented as being the original software.
 * 3. This notice may not be removed or altered from any source distribution.
 */

#ifndef TCSOFF2_H
#include "tcsoff2.h"
#endif

#ifndef TCSOFF2_H
#error Mismatched header file
#endif

#include <ctype.h>
#include <stdio.h>

#define RULE_CONTEXT (&((PCB).cs[(PCB).ssx]))
#define ERROR_CONTEXT ((PCB).cs[(PCB).error_frame_ssx])
#define CONTEXT ((PCB).cs[(PCB).ssx])



tcsoff2_pcb_type tcsoff2_pcb;
#define PCB tcsoff2_pcb

/*  Line -, tcsoff2.syn */
  int main(void) {
    int c;
    do {
      c = PCB.input_code = getchar();
      tcsoff2();
    } while (c != -1);
  }
  return 0;

#ifndef CONVERT_CASE

static const char agCaseTable[31] = {
  0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
  0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
  0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,    0,
  0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20
};

static int agConvertCase(int c) {
  if (c >= 'a' && c <= 'z') return c ^= 0x20;
  if (c >= 0xe0 && c < 0xff) c ^= agCaseTable[c-0xe0];
  return c;
}

#define CONVERT_CASE(c) agConvertCase(c)

#endif


#ifndef TAB_SPACING
#define TAB_SPACING 8
#endif

#define ag_rp_1() (printf("Input was yes\n"))

#define ag_rp_2() (printf("Input was no\n"))

#define ag_rp_3() (printf("input was 'a-n'...\n"))

#define ag_rp_4() (printf("input was 'O-Z'...\n"))


#define READ_COUNTS 
#define WRITE_COUNTS 
#undef V
#define V(i,t) (*t (&(PCB).vs[(PCB).ssx + i]))
#undef VS
#define VS(i) (PCB).vs[(PCB).ssx + i]

#ifndef GET_CONTEXT
#define GET_CONTEXT CONTEXT = (PCB).input_context
#endif

typedef enum {
  ag_action_1,
  ag_action_2,
  ag_action_3,
  ag_action_4,
  ag_action_5,
  ag_action_6,
  ag_action_7,
  ag_action_8,
  ag_action_9,
  ag_action_10,
  ag_action_11,
  ag_action_12
} ag_parser_action;


#ifndef NULL_VALUE_INITIALIZER
#define NULL_VALUE_INITIALIZER = 0
#endif

static int const ag_null_value NULL_VALUE_INITIALIZER;

static const unsigned char ag_rpx[] = {
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  2,  0,  0,  3,  0,  0,  4
};

static const unsigned char ag_key_itt[] = {
 0
};

static const unsigned short ag_key_pt[] = {
0
};

static const unsigned char ag_key_ch[] = {
    0, 78, 89,255
};

static const unsigned char ag_key_act[] = {
  0,3,3,4
};

static const unsigned char ag_key_parm[] = {
    0, 15, 14,  0
};

static const unsigned char ag_key_jmp[] = {
    0,  0,  2,  0
};

static const unsigned char ag_key_index[] = {
    1,  1,  1,  1,  1,  1,  1,  1,  0,  0,  1,  1,  1,  1,  1,  1,  0
};

static const unsigned char ag_key_ends[] = {
79,0, 69,83,0, 
};
#define AG_TCV(x) (((int)(x) >= -1 && (int)(x) <= 255) ? ag_tcv[(x) + 1] : 0)

static const unsigned char ag_tcv[] = {
   13,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  4,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, 16, 16, 16, 16, 16, 16,
   16, 16, 16, 16, 16, 16, 16, 16, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
   18, 18,  0,  0,  0,  0,  0,  0, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
   16, 16, 16, 16, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0
};

#ifndef SYNTAX_ERROR
#define SYNTAX_ERROR fprintf(stderr,"%s, line %d, column %d\n", \
  (PCB).error_message, (PCB).line, (PCB).column)
#endif

#ifndef FIRST_LINE
#define FIRST_LINE 1
#endif

#ifndef FIRST_COLUMN
#define FIRST_COLUMN 1
#endif

#ifndef PARSER_STACK_OVERFLOW
#define PARSER_STACK_OVERFLOW {fprintf(stderr, \
   "\nParser stack overflow, line %d, column %d\n",\
   (PCB).line, (PCB).column);}
#endif

#ifndef REDUCTION_TOKEN_ERROR
#define REDUCTION_TOKEN_ERROR {fprintf(stderr, \
    "\nReduction token error, line %d, column %d\n", \
    (PCB).line, (PCB).column);}
#endif


typedef enum
  {ag_accept_key, ag_set_key, ag_jmp_key, ag_end_key, ag_no_match_key,
   ag_cf_accept_key, ag_cf_set_key, ag_cf_end_key} key_words;


#ifndef AG_NEWLINE
#define AG_NEWLINE 10
#endif

#ifndef AG_RETURN
#define AG_RETURN 13
#endif

#ifndef AG_FORMFEED
#define AG_FORMFEED 12
#endif

#ifndef AG_TABCHAR
#define AG_TABCHAR 9
#endif

static void ag_track(void) {
  int ag_k = 0;
  while (ag_k < (PCB).rx) {
    int ag_ch = (PCB).lab[ag_k++];
    switch (ag_ch) {
    case AG_NEWLINE:
      (PCB).column = 1, (PCB).line++;
    case AG_RETURN:
    case AG_FORMFEED:
      break;
    case AG_TABCHAR:
      (PCB).column += (TAB_SPACING) - ((PCB).column - 1) % (TAB_SPACING);
      break;
    default:
      (PCB).column++;
    }
  }
  ag_k = 0;
  while ((PCB).rx < (PCB).fx) (PCB).lab[ag_k++] = (PCB).lab[(PCB).rx++];
  (PCB).fx = ag_k;
  (PCB).rx = 0;
}


static void ag_prot(void) {
  int ag_k;
  ag_k = 128 - ++(PCB).btsx;
  if (ag_k <= (PCB).ssx) {
    (PCB).exit_flag = AG_STACK_ERROR_CODE;
    PARSER_STACK_OVERFLOW;
    return;
  }
  (PCB).bts[(PCB).btsx] = (PCB).sn;
  (PCB).bts[ag_k] = (PCB).ssx;
  (PCB).vs[ag_k] = (PCB).vs[(PCB).ssx];
  (PCB).ss[ag_k] = (PCB).ss[(PCB).ssx];
}

static void ag_undo(void) {
  if ((PCB).drt == -1) return;
  while ((PCB).btsx) {
    int ag_k = 128 - (PCB).btsx;
    (PCB).sn = (PCB).bts[(PCB).btsx--];
    (PCB).ssx = (PCB).bts[ag_k];
    (PCB).vs[(PCB).ssx] = (PCB).vs[ag_k];
    (PCB).ss[(PCB).ssx] = (PCB).ss[ag_k];
  }
  (PCB).token_number = (tcsoff2_token_type) (PCB).drt;
  (PCB).ssx = (PCB).dssx;
  (PCB).sn = (PCB).dsn;
  (PCB).drt = -1;
}


static const unsigned char ag_tstt[] = {
18,16,15,14,13,4,0,1,2,3,5,6,7,8,9,10,11,12,17,19,
18,0,
16,0,
4,0,
15,14,0,2,
16,15,14,4,0,2,3,5,6,17,
18,15,14,4,0,2,3,5,7,19,
18,16,15,14,0,2,3,6,7,17,19,
18,16,4,0,5,6,7,17,19,
13,0,
4,0,
15,14,0,2,
4,0,
15,14,0,2,
15,14,0,2,
4,0,
  0
};


static unsigned const char ag_astt[91] = {
  1,1,2,2,8,1,7,0,1,1,1,1,1,1,1,1,1,1,1,1,9,4,9,4,9,5,2,2,5,3,1,2,2,1,5,1,1,
  1,3,1,1,2,2,1,5,1,1,1,3,1,1,1,2,2,5,1,1,3,3,1,1,1,1,1,5,1,3,3,1,1,3,7,9,5,
  2,2,5,3,9,5,2,2,5,3,2,2,5,3,9,5,11
};


static const unsigned char ag_pstt[] = {
1,2,28,27,9,3,0,0,4,4,3,6,5,8,7,6,5,9,2,1,
33,34,
30,31,
4,10,
28,27,5,2,
2,28,27,10,25,11,11,10,16,2,
1,28,27,12,24,13,13,12,19,1,
1,2,28,27,23,14,14,14,18,2,1,
1,2,15,22,15,13,17,2,1,
26,9,
4,12,
28,27,8,2,
4,11,
28,27,7,2,
28,27,6,2,
4,9,
  0
};


static const unsigned char ag_sbt[] = {
     0,  20,  22,  24,  26,  30,  40,  50,  61,  70,  72,  74,  78,  80,
    84,  88,  90
};


static const unsigned char ag_sbe[] = {
     6,  21,  23,  25,  28,  34,  44,  54,  64,  71,  73,  76,  79,  82,
    86,  89,  90
};


static const unsigned char ag_fl[] = {
  1,1,2,1,2,1,2,2,2,2,1,2,2,2,2,1,2,2,2,2,1,0,1,1,1,1,2,1,1,1,2,1,1,2,1
};

static const unsigned char ag_ptt[] = {
    0,  3,  3,  5,  5,  8,  8,  8,  8,  9,  9,  9,  9, 10, 10, 10, 10, 11,
   11, 11, 11, 12, 12, 12, 12, 12,  1,  2,  2, 17, 17,  6, 19, 19,  7
};


static void ag_ra(void)
{
  switch(ag_rpx[(PCB).ag_ap]) {
    case 1: ag_rp_1(); break;
    case 2: ag_rp_2(); break;
    case 3: ag_rp_3(); break;
    case 4: ag_rp_4(); break;
  }
}

#define TOKEN_NAMES tcsoff2_token_names
const char *const tcsoff2_token_names[20] = {
  "grammar",
  "grammar",
  "word",
  "",
  "eol",
  "",
  "string 1",
  "string 2",
  "",
  "",
  "",
  "",
  "",
  "eof",
  "\"YES\"",
  "\"NO\"",
  "",
  "",
  "",
  "",

};

#ifndef MISSING_FORMAT
#define MISSING_FORMAT "Missing %s"
#endif
#ifndef UNEXPECTED_FORMAT
#define UNEXPECTED_FORMAT "Unexpected %s"
#endif
#ifndef UNNAMED_TOKEN
#define UNNAMED_TOKEN "input"
#endif


static void ag_diagnose(void) {
  int ag_snd = (PCB).sn;
  int ag_k = ag_sbt[ag_snd];

  if (*TOKEN_NAMES[ag_tstt[ag_k]] && ag_astt[ag_k + 1] == ag_action_8) {
    sprintf((PCB).ag_msg, MISSING_FORMAT, TOKEN_NAMES[ag_tstt[ag_k]]);
  }
  else if (ag_astt[ag_sbe[(PCB).sn]] == ag_action_8
          && (ag_k = (int) ag_sbe[(PCB).sn] + 1) == (int) ag_sbt[(PCB).sn+1] - 1
          && *TOKEN_NAMES[ag_tstt[ag_k]]) {
    sprintf((PCB).ag_msg, MISSING_FORMAT, TOKEN_NAMES[ag_tstt[ag_k]]);
  }
  else if ((PCB).token_number && *TOKEN_NAMES[(PCB).token_number]) {
    sprintf((PCB).ag_msg, UNEXPECTED_FORMAT, TOKEN_NAMES[(PCB).token_number]);
  }
  else if (isprint((*(PCB).lab)) && (*(PCB).lab) != '\\') {
    char buf[20];
    sprintf(buf, "\'%c\'", (char) (*(PCB).lab));
    sprintf((PCB).ag_msg, UNEXPECTED_FORMAT, buf);
  }
  else sprintf((PCB).ag_msg, UNEXPECTED_FORMAT, UNNAMED_TOKEN);
  (PCB).error_message = (PCB).ag_msg;


}
static int ag_action_1_r_proc(void);
static int ag_action_2_r_proc(void);
static int ag_action_3_r_proc(void);
static int ag_action_4_r_proc(void);
static int ag_action_1_s_proc(void);
static int ag_action_3_s_proc(void);
static int ag_action_1_proc(void);
static int ag_action_2_proc(void);
static int ag_action_3_proc(void);
static int ag_action_4_proc(void);
static int ag_action_5_proc(void);
static int ag_action_6_proc(void);
static int ag_action_7_proc(void);
static int ag_action_8_proc(void);
static int ag_action_9_proc(void);
static int ag_action_10_proc(void);
static int ag_action_11_proc(void);
static int ag_action_8_proc(void);


static int (*const  ag_r_procs_scan[])(void) = {
  ag_action_1_r_proc,
  ag_action_2_r_proc,
  ag_action_3_r_proc,
  ag_action_4_r_proc
};

static int (*const  ag_s_procs_scan[])(void) = {
  ag_action_1_s_proc,
  ag_action_2_r_proc,
  ag_action_3_s_proc,
  ag_action_4_r_proc
};

static int (*const  ag_gt_procs_scan[])(void) = {
  ag_action_1_proc,
  ag_action_2_proc,
  ag_action_3_proc,
  ag_action_4_proc,
  ag_action_5_proc,
  ag_action_6_proc,
  ag_action_7_proc,
  ag_action_8_proc,
  ag_action_9_proc,
  ag_action_10_proc,
  ag_action_11_proc,
  ag_action_8_proc
};


static int ag_action_10_proc(void) {
  (PCB).btsx = 0, (PCB).drt = -1;
  ag_track();
  return 0;
}

static int ag_action_11_proc(void) {
  (PCB).btsx = 0, (PCB).drt = -1;
  (PCB).vs[(PCB).ssx] = *(PCB).lab;
  (PCB).ssx--;
  ag_ra();
  (PCB).ssx++;
  ag_track();
  return 0;
}

static int ag_action_3_r_proc(void) {
  int ag_sd = ag_fl[(PCB).ag_ap] - 1;
  if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd];
  (PCB).btsx = 0, (PCB).drt = -1;
  (PCB).reduction_token = (tcsoff2_token_type) ag_ptt[(PCB).ag_ap];
  ag_ra();
  return (PCB).exit_flag == AG_RUNNING_CODE;
}

static int ag_action_3_s_proc(void) {
  int ag_sd = ag_fl[(PCB).ag_ap] - 1;
  if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd];
  (PCB).btsx = 0, (PCB).drt = -1;
  (PCB).reduction_token = (tcsoff2_token_type) ag_ptt[(PCB).ag_ap];
  ag_ra();
  return (PCB).exit_flag == AG_RUNNING_CODE;
}

static int ag_action_4_r_proc(void) {
  int ag_sd = ag_fl[(PCB).ag_ap] - 1;
  if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd];
  (PCB).reduction_token = (tcsoff2_token_type) ag_ptt[(PCB).ag_ap];
  return 1;
}

static int ag_action_2_proc(void) {
  (PCB).btsx = 0, (PCB).drt = -1;
  if ((PCB).ssx >= 128) {
    (PCB).exit_flag = AG_STACK_ERROR_CODE;
    PARSER_STACK_OVERFLOW;
  }
  (PCB).vs[(PCB).ssx] = *(PCB).lab;
  (PCB).ss[(PCB).ssx] = (PCB).sn;
  (PCB).ssx++;
  (PCB).sn = (PCB).ag_ap;
  ag_track();
  return 0;
}

static int ag_action_9_proc(void) {
  if ((PCB).drt == -1) {
    (PCB).drt=(PCB).token_number;
    (PCB).dssx=(PCB).ssx;
    (PCB).dsn=(PCB).sn;
  }
  ag_prot();
  (PCB).ss[(PCB).ssx] = (PCB).sn;
  (PCB).ssx++;
  (PCB).sn = (PCB).ag_ap;
  (PCB).rx = 0;
  return (PCB).exit_flag == AG_RUNNING_CODE;
}

static int ag_action_2_r_proc(void) {
  (PCB).ssx++;
  (PCB).sn = (PCB).ag_ap;
  return 0;
}

static int ag_action_7_proc(void) {
  --(PCB).ssx;
  (PCB).exit_flag = AG_SUCCESS_CODE;
  (PCB).rx = 0;
  return 0;
}

static int ag_action_1_proc(void) {
  (PCB).exit_flag = AG_SUCCESS_CODE;
  ag_track();
  return 0;
}

static int ag_action_1_r_proc(void) {
  (PCB).exit_flag = AG_SUCCESS_CODE;
  return 0;
}

static int ag_action_1_s_proc(void) {
  (PCB).exit_flag = AG_SUCCESS_CODE;
  return 0;
}

static int ag_action_4_proc(void) {
  int ag_sd = ag_fl[(PCB).ag_ap] - 1;
  (PCB).reduction_token = (tcsoff2_token_type) ag_ptt[(PCB).ag_ap];
  (PCB).btsx = 0, (PCB).drt = -1;
  (PCB).vs[(PCB).ssx] = *(PCB).lab;
  if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd];
  else (PCB).ss[(PCB).ssx] = (PCB).sn;
  ag_track();
  while ((PCB).exit_flag == AG_RUNNING_CODE) {
    unsigned ag_t1 = ag_sbe[(PCB).sn] + 1;
    unsigned ag_t2 = ag_sbt[(PCB).sn+1] - 1;
    do {
      unsigned ag_tx = (ag_t1 + ag_t2)/2;
      if (ag_tstt[ag_tx] < (unsigned char)(PCB).reduction_token) ag_t1 = ag_tx + 1;
      else ag_t2 = ag_tx;
    } while (ag_t1 < ag_t2);
    (PCB).ag_ap = ag_pstt[ag_t1];
    if ((ag_s_procs_scan[ag_astt[ag_t1]])() == 0) break;
  }
  return 0;
}

static int ag_action_3_proc(void) {
  int ag_sd = ag_fl[(PCB).ag_ap] - 1;
  (PCB).btsx = 0, (PCB).drt = -1;
  (PCB).vs[(PCB).ssx] = *(PCB).lab;
  if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd];
  else (PCB).ss[(PCB).ssx] = (PCB).sn;
  ag_track();
  (PCB).reduction_token = (tcsoff2_token_type) ag_ptt[(PCB).ag_ap];
  ag_ra();
  while ((PCB).exit_flag == AG_RUNNING_CODE) {
    unsigned ag_t1 = ag_sbe[(PCB).sn] + 1;
    unsigned ag_t2 = ag_sbt[(PCB).sn+1] - 1;
    do {
      unsigned ag_tx = (ag_t1 + ag_t2)/2;
      if (ag_tstt[ag_tx] < (unsigned char)(PCB).reduction_token) ag_t1 = ag_tx + 1;
      else ag_t2 = ag_tx;
    } while (ag_t1 < ag_t2);
    (PCB).ag_ap = ag_pstt[ag_t1];
    if ((ag_s_procs_scan[ag_astt[ag_t1]])() == 0) break;
  }
  return 0;
}

static int ag_action_8_proc(void) {
  ag_undo();
  (PCB).rx = 0;
  (PCB).exit_flag = AG_SYNTAX_ERROR_CODE;
  ag_diagnose();
  SYNTAX_ERROR;
  {(PCB).rx = 1; ag_track();}
  return (PCB).exit_flag == AG_RUNNING_CODE;
}

static int ag_action_5_proc(void) {
  int ag_sd = ag_fl[(PCB).ag_ap];
  (PCB).btsx = 0, (PCB).drt = -1;
  if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd];
  else {
    (PCB).ss[(PCB).ssx] = (PCB).sn;
  }
  (PCB).rx = 0;
  (PCB).reduction_token = (tcsoff2_token_type) ag_ptt[(PCB).ag_ap];
  ag_ra();
  while ((PCB).exit_flag == AG_RUNNING_CODE) {
    unsigned ag_t1 = ag_sbe[(PCB).sn] + 1;
    unsigned ag_t2 = ag_sbt[(PCB).sn+1] - 1;
    do {
      unsigned ag_tx = (ag_t1 + ag_t2)/2;
      if (ag_tstt[ag_tx] < (unsigned char)(PCB).reduction_token) ag_t1 = ag_tx + 1;
      else ag_t2 = ag_tx;
    } while (ag_t1 < ag_t2);
    (PCB).ag_ap = ag_pstt[ag_t1];
    if ((ag_r_procs_scan[ag_astt[ag_t1]])() == 0) break;
  }
  return (PCB).exit_flag == AG_RUNNING_CODE;
}

static int ag_action_6_proc(void) {
  int ag_sd = ag_fl[(PCB).ag_ap];
  (PCB).reduction_token = (tcsoff2_token_type) ag_ptt[(PCB).ag_ap];
  if ((PCB).drt == -1) {
    (PCB).drt=(PCB).token_number;
    (PCB).dssx=(PCB).ssx;
    (PCB).dsn=(PCB).sn;
  }
  if (ag_sd) {
    (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd];
  }
  else {
    ag_prot();
    (PCB).vs[(PCB).ssx] = ag_null_value;
    (PCB).ss[(PCB).ssx] = (PCB).sn;
  }
  (PCB).rx = 0;
  while ((PCB).exit_flag == AG_RUNNING_CODE) {
    unsigned ag_t1 = ag_sbe[(PCB).sn] + 1;
    unsigned ag_t2 = ag_sbt[(PCB).sn+1] - 1;
    do {
      unsigned ag_tx = (ag_t1 + ag_t2)/2;
      if (ag_tstt[ag_tx] < (unsigned char)(PCB).reduction_token) ag_t1 = ag_tx + 1;
      else ag_t2 = ag_tx;
    } while (ag_t1 < ag_t2);
    (PCB).ag_ap = ag_pstt[ag_t1];
    if ((ag_r_procs_scan[ag_astt[ag_t1]])() == 0) break;
  }
  return (PCB).exit_flag == AG_RUNNING_CODE;
}


void init_tcsoff2(void) {
  unsigned ag_t1;
  ag_t1 = 0;
  (PCB).rx = (PCB).fx = 0;
  (PCB).ss[0] = (PCB).sn = (PCB).ssx = 0;
  (PCB).exit_flag = AG_RUNNING_CODE;
  (PCB).key_sp = NULL;
  (PCB).key_state = 0;
  (PCB).line = FIRST_LINE;
  (PCB).column = FIRST_COLUMN;
  (PCB).btsx = 0, (PCB).drt = -1;
  while (ag_tstt[ag_t1] == 0) {
    (PCB).ag_ap = ag_pstt[ag_t1];
    (ag_gt_procs_scan[ag_astt[ag_t1]])();
    ag_t1 = ag_sbt[(PCB).sn];
  }
}

void tcsoff2(void) {
  (PCB).lab[(PCB).fx++] = (PCB).input_code;
  while ((PCB).exit_flag == AG_RUNNING_CODE) {
    while (1) {
      const  unsigned char *ag_p;
      int ag_ch;
      if ((PCB).rx >= (PCB).fx) return;
      ag_ch = CONVERT_CASE((PCB).lab[(PCB).rx++]);
      if ((PCB).key_sp) {
        if (ag_ch != *(PCB).key_sp++) {
          (PCB).rx = (PCB).save_index;
          (PCB).key_sp = NULL;
          (PCB).key_state = 0;
          break;
        } else if (*(PCB).key_sp) continue;
        if (ag_key_act[(PCB).key_state] == ag_cf_end_key) {
          int ag_k1;
          int ag_k2;
          if ((PCB).rx >= (PCB).fx) {
            (PCB).rx--;
            (PCB).key_sp--;
            return;
          }
          (PCB).key_sp = NULL;
          ag_k1 = ag_key_parm[(PCB).key_state];
          ag_k2 = ag_key_pt[ag_k1];
          if (ag_key_itt[ag_k2 + CONVERT_CASE((PCB).lab[(PCB).rx])])
            (PCB).rx = (PCB).save_index;
          else {
            (PCB).token_number =  (tcsoff2_token_type) ag_key_pt[ag_k1+1];
            (PCB).key_state = 0;
          }
          break;
        }
        else {
          (PCB).token_number = (tcsoff2_token_type) ag_key_parm[(PCB).key_state];
          (PCB).key_state = 0;
          (PCB).key_sp = NULL;
        }
        break;
      }
      if ((PCB).key_state == 0) {
        (PCB).token_number = (tcsoff2_token_type) AG_TCV(ag_ch);
        if (((PCB).key_state = ag_key_index[(PCB).sn]) == 0) break;
        (PCB).save_index = 1;
      }
      ag_p = &ag_key_ch[(PCB).key_state];
      if (ag_ch <= 255) while (*ag_p < ag_ch) ag_p++;
      if (*ag_p == ag_ch) {
        (PCB).key_state = (int)(ag_p - ag_key_ch);
        switch (ag_key_act[(PCB).key_state]) {
        case ag_cf_set_key: {
          int ag_k1;
          int ag_k2;
          if ((PCB).rx >= (PCB).fx) {
            (PCB).rx--;
            return;
          }
          ag_k1 = ag_key_parm[(PCB).key_state];
          ag_k2 = ag_key_pt[ag_k1];
          (PCB).key_state = ag_key_jmp[(PCB).key_state];
          if (ag_key_itt[ag_k2 + CONVERT_CASE((PCB).lab[(PCB).rx])]) continue;
          (PCB).save_index = (PCB).rx;
          (PCB).token_number = (tcsoff2_token_type) ag_key_pt[ag_k1+1];
          continue;
        }
        case ag_set_key:
          (PCB).save_index = (PCB).rx;
          (PCB).token_number = (tcsoff2_token_type) ag_key_parm[(PCB).key_state];
        case ag_jmp_key:
          (PCB).key_state = ag_key_jmp[(PCB).key_state];
          continue;
        case ag_cf_end_key:
        case ag_end_key:
          (PCB).key_sp = ag_key_ends + ag_key_jmp[(PCB).key_state];
          continue;
        case ag_accept_key:
          (PCB).token_number = (tcsoff2_token_type) ag_key_parm[(PCB).key_state];
          (PCB).key_state = 0;
          break;
        case ag_cf_accept_key: {
          int ag_k1;
          int ag_k2;
          if ((PCB).rx >= (PCB).fx) {
            (PCB).rx--;
            return;
          }
          ag_k1 = ag_key_parm[(PCB).key_state];
          ag_k2 = ag_key_pt[ag_k1];
          if (ag_key_itt[ag_k2 + CONVERT_CASE((PCB).lab[(PCB).rx])])
            (PCB).rx = (PCB).save_index;
          else {
            (PCB).token_number = (tcsoff2_token_type) ag_key_pt[ag_k1+1];
            (PCB).key_state = 0;
          }
          break;
        }
        }
        break;
      } else {
        (PCB).rx = (PCB).save_index;
        (PCB).key_state = 0;
        break;
      }
    }

    {
      unsigned ag_t1 = ag_sbt[(PCB).sn];
      unsigned ag_t2 = ag_sbe[(PCB).sn] - 1;
      do {
        unsigned ag_tx = (ag_t1 + ag_t2)/2;
        if (ag_tstt[ag_tx] > (unsigned char)(PCB).token_number)
          ag_t1 = ag_tx + 1;
        else ag_t2 = ag_tx;
      } while (ag_t1 < ag_t2);
      if (ag_tstt[ag_t1] != (PCB).token_number)  ag_t1 = ag_sbe[(PCB).sn];
      (PCB).ag_ap = ag_pstt[ag_t1];
      (ag_gt_procs_scan[ag_astt[ag_t1]])();
    }
  }
}