Mercurial > ~dholland > hg > ag > index.cgi
view tests/agcl/examples/good/rcalc.c @ 0:13d2b8934445
Import AnaGram (near-)release tree into Mercurial.
author | David A. Holland |
---|---|
date | Sat, 22 Dec 2007 17:52:45 -0500 |
parents | |
children |
line wrap: on
line source
/* * AnaGram, a System for Syntax Directed Parsing * RCALC.SYN: A Roman Numeral Calculator Example * * Copyright MCMXCIII, MCMXCVI, Parsifal Software. All Rights Reserved. * Copyright MMVII David A. Holland. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* * AnaGram, A System for Syntax Directed Programming * File generated by: ... * * AnaGram Parsing Engine * Copyright 1993-2002 Parsifal Software. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #ifndef RCALC_H #include "rcalc.h" #endif #ifndef RCALC_H #error Mismatched header file #endif #include <ctype.h> #include <stdio.h> #define RULE_CONTEXT (&((PCB).cs[(PCB).ssx])) #define ERROR_CONTEXT ((PCB).cs[(PCB).error_frame_ssx]) #define CONTEXT ((PCB).cs[(PCB).ssx]) rcalc_pcb_type rcalc_pcb; #define PCB rcalc_pcb /* Line -, rcalc.syn */ /* Embedded C */ #include <stdio.h> /* Macro Definitions */ #define GET_CONTEXT CONTEXT = PCB.column #define SYNTAX_ERROR syntax_error() int semantic_error = 0; /* Divide by zero flag */ /* syntax_error() positions a '^' character under the input line at the point where the syntax error was discovered and then writes the error message. */ void syntax_error(void) { int k = PCB.column; while (k-- > 0) putchar(' '); printf("^? %s\n","ERRARE HUMANUM EST\n"); } /* divide_error() is called when an attempt is made to divide by zero. The entire divisor is marked with '^' characters. "semantic_error" is set in order to disable printing of a result. */ int divide_error(int cn) { int k = PCB.column - cn; while (cn--) putchar(' '); while (k--) putchar('^'); puts(" DIVISOR NIHIL EST"); semantic_error = 1; return 0; } /* print_roman() prints a signed integer in upper case Roman numerals. */ void print_roman(long k) { if (semantic_error) { semantic_error = 0; return; } printf(" = "); if (k == 0) {printf("NIHIL\n"); return;} if (k < 0) putchar('-'), k=-k; while (k >= 1000) putchar('M'), k-=1000; if (k >= 900) printf("CM"), k-=900; if (k >= 500) putchar('D'), k-=500; if (k >= 400) printf("CD"), k-=400; while (k >= 100) putchar('C'), k-=100; if (k >= 90) printf("XC"), k-=90; if (k >= 50) putchar('L'), k-=50; if (k >= 40) printf("XL"), k-=40; while (k >= 10) putchar('X'), k-=10; if (k >= 9) printf("IX"), k -= 9; if (k >= 5) putchar('V'), k-=5; if (k >= 4) printf("IV"), k-=4; while (k >= 1) putchar('I'), k--; putchar('\n'); } /* Main Program -- reads a line from stdin and calls parser */ int main(void) { char line[1024]; while (1) { printf("#"); fflush(stdout); if (fgets(line, sizeof(line), stdin) == NULL) break; rcalc_pcb.pointer = (unsigned char *) line; rcalc(); } return 0; } #ifndef CONVERT_CASE static const char agCaseTable[31] = { 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20 }; static int agConvertCase(int c) { if (c >= 'a' && c <= 'z') return c ^= 0x20; if (c >= 0xe0 && c < 0xff) c ^= agCaseTable[c-0xe0]; return c; } #define CONVERT_CASE(c) agConvertCase(c) #endif #ifndef TAB_SPACING #define TAB_SPACING 8 #endif static void ag_rp_1(long x) { /* Line -, rcalc.syn */ print_roman(x); } static long ag_rp_2(long x, long y) { /* Line -, rcalc.syn */ return x+y; } static long ag_rp_3(long x, long y) { /* Line -, rcalc.syn */ return x-y; } static long ag_rp_4(long x, long y) { /* Line -, rcalc.syn */ return x*y; } static long ag_rp_5(long x, long y) { /* Line -, rcalc.syn */ return y ? x/y : divide_error(RULE_CONTEXT[2]); } static long ag_rp_6(void) { /* Line -, rcalc.syn */ return 0; } static long ag_rp_7(long x) { /* Line -, rcalc.syn */ return x; } static long ag_rp_8(long x) { /* Line -, rcalc.syn */ return -x; } static long ag_rp_9(long x, long y) { /* Line -, rcalc.syn */ return x+y; } static long ag_rp_10(void) { /* Line -, rcalc.syn */ return 1000; } static long ag_rp_11(long x) { /* Line -, rcalc.syn */ return x+1000; } static long ag_rp_12(long x, long y) { /* Line -, rcalc.syn */ return x+y; } static long ag_rp_13(void) { /* Line -, rcalc.syn */ return 900; } static long ag_rp_14(void) { /* Line -, rcalc.syn */ return 400; } static long ag_rp_15(void) { /* Line -, rcalc.syn */ return 100; } static long ag_rp_16(void) { /* Line -, rcalc.syn */ return 500; } static long ag_rp_17(long x) { /* Line -, rcalc.syn */ return x+100; } static long ag_rp_18(long x, long y) { /* Line -, rcalc.syn */ return x+y; } static long ag_rp_19(void) { /* Line -, rcalc.syn */ return 990; } static long ag_rp_20(void) { /* Line -, rcalc.syn */ return 490; } static long ag_rp_21(void) { /* Line -, rcalc.syn */ return 90; } static long ag_rp_22(void) { /* Line -, rcalc.syn */ return 40; } static long ag_rp_23(void) { /* Line -, rcalc.syn */ return 10; } static long ag_rp_24(void) { /* Line -, rcalc.syn */ return 50; } static long ag_rp_25(long x) { /* Line -, rcalc.syn */ return x+10; } static long ag_rp_26(void) { /* Line -, rcalc.syn */ return 999; } static long ag_rp_27(void) { /* Line -, rcalc.syn */ return 499; } static long ag_rp_28(void) { /* Line -, rcalc.syn */ return 99; } static long ag_rp_29(void) { /* Line -, rcalc.syn */ return 49; } static long ag_rp_30(void) { /* Line -, rcalc.syn */ return 9; } static long ag_rp_31(void) { /* Line -, rcalc.syn */ return 4; } static long ag_rp_32(void) { /* Line -, rcalc.syn */ return 1; } static long ag_rp_33(void) { /* Line -, rcalc.syn */ return 5; } static long ag_rp_34(long x) { /* Line -, rcalc.syn */ return x+1; } #define READ_COUNTS #define WRITE_COUNTS #undef V #define V(i,t) (*t (&(PCB).vs[(PCB).ssx + i])) #undef VS #define VS(i) (PCB).vs[(PCB).ssx + i] #ifndef GET_CONTEXT #define GET_CONTEXT CONTEXT = (PCB).input_context #endif typedef enum { ag_action_1, ag_action_2, ag_action_3, ag_action_4, ag_action_5, ag_action_6, ag_action_7, ag_action_8, ag_action_9, ag_action_10, ag_action_11, ag_action_12 } ag_parser_action; #ifndef NULL_VALUE_INITIALIZER #define NULL_VALUE_INITIALIZER = { 0 } #endif static rcalc_vs_type const ag_null_value NULL_VALUE_INITIALIZER; static const unsigned char ag_rpx[] = { 0, 1, 0, 2, 3, 0, 4, 5, 0, 6, 7, 8, 0, 0, 9, 0, 10, 11, 0, 0, 12, 0, 13, 14, 0, 15, 16, 17, 0, 0, 18, 0, 19, 20, 21, 22, 0, 23, 24, 25, 26, 27, 28, 29, 30, 31, 0, 32, 33, 34 }; static const unsigned char ag_key_itt[] = { 0 }; static const unsigned short ag_key_pt[] = { 0 }; static const unsigned char ag_key_ch[] = { 0, 78,255 }; static const unsigned char ag_key_act[] = { 0,3,4 }; static const unsigned char ag_key_parm[] = { 0, 41, 0 }; static const unsigned char ag_key_jmp[] = { 0, 0, 0 }; static const unsigned char ag_key_index[] = { 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0 }; static const unsigned char ag_key_ends[] = { 73,72,73,76,0, }; #define AG_TCV(x) ag_tcv[(x)] static const unsigned char ag_tcv[] = { 5, 0, 0, 0, 0, 0, 0, 0, 0, 1, 5, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 43, 42, 38, 36, 0, 37, 0, 39, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 22, 23, 0, 0, 0, 0, 31, 0, 0, 29, 18, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 28, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 22, 23, 0, 0, 0, 0, 31, 0, 0, 29, 18, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 28, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; #ifndef SYNTAX_ERROR #define SYNTAX_ERROR fprintf(stderr,"%s, line %d, column %d\n", \ (PCB).error_message, (PCB).line, (PCB).column) #endif #ifndef FIRST_LINE #define FIRST_LINE 1 #endif #ifndef FIRST_COLUMN #define FIRST_COLUMN 1 #endif #ifndef PARSER_STACK_OVERFLOW #define PARSER_STACK_OVERFLOW {fprintf(stderr, \ "\nParser stack overflow, line %d, column %d\n",\ (PCB).line, (PCB).column);} #endif #ifndef REDUCTION_TOKEN_ERROR #define REDUCTION_TOKEN_ERROR {fprintf(stderr, \ "\nReduction token error, line %d, column %d\n", \ (PCB).line, (PCB).column);} #endif #ifndef INPUT_CODE #define INPUT_CODE(T) (T) #endif typedef enum {ag_accept_key, ag_set_key, ag_jmp_key, ag_end_key, ag_no_match_key, ag_cf_accept_key, ag_cf_set_key, ag_cf_end_key} key_words; static void ag_get_key_word(int ag_k) { int ag_save = (int) ((PCB).la_ptr - (PCB).pointer); const unsigned char *ag_p; int ag_ch; while (1) { switch (ag_key_act[ag_k]) { case ag_cf_end_key: { const unsigned char *sp = ag_key_ends + ag_key_jmp[ag_k]; do { if ((ag_ch = *sp++) == 0) { int ag_k1 = ag_key_parm[ag_k]; int ag_k2 = ag_key_pt[ag_k1]; if (ag_key_itt[ag_k2 + CONVERT_CASE(*(PCB).la_ptr)]) goto ag_fail; (PCB).token_number = (rcalc_token_type) ag_key_pt[ag_k1 + 1]; return; } } while (CONVERT_CASE(*(PCB).la_ptr++) == ag_ch); goto ag_fail; } case ag_end_key: { const unsigned char *sp = ag_key_ends + ag_key_jmp[ag_k]; do { if ((ag_ch = *sp++) == 0) { (PCB).token_number = (rcalc_token_type) ag_key_parm[ag_k]; return; } } while (CONVERT_CASE(*(PCB).la_ptr++) == ag_ch); } case ag_no_match_key: ag_fail: (PCB).la_ptr = (PCB).pointer + ag_save; return; case ag_cf_set_key: { int ag_k1 = ag_key_parm[ag_k]; int ag_k2 = ag_key_pt[ag_k1]; ag_k = ag_key_jmp[ag_k]; if (ag_key_itt[ag_k2 + CONVERT_CASE(*(PCB).la_ptr)]) break; ag_save = (int) ((PCB).la_ptr - (PCB).pointer); (PCB).token_number = (rcalc_token_type) ag_key_pt[ag_k1+1]; break; } case ag_set_key: ag_save = (int) ((PCB).la_ptr - (PCB).pointer); (PCB).token_number = (rcalc_token_type) ag_key_parm[ag_k]; case ag_jmp_key: ag_k = ag_key_jmp[ag_k]; break; case ag_accept_key: (PCB).token_number = (rcalc_token_type) ag_key_parm[ag_k]; return; case ag_cf_accept_key: { int ag_k1 = ag_key_parm[ag_k]; int ag_k2 = ag_key_pt[ag_k1]; if (ag_key_itt[ag_k2 + CONVERT_CASE(*(PCB).la_ptr)]) (PCB).la_ptr = (PCB).pointer + ag_save; else (PCB).token_number = (rcalc_token_type) ag_key_pt[ag_k1+1]; return; } } ag_ch = CONVERT_CASE(*(PCB).la_ptr++); ag_p = &ag_key_ch[ag_k]; if (ag_ch <= 255) while (*ag_p < ag_ch) ag_p++; if (ag_ch > 255 || *ag_p != ag_ch) { (PCB).la_ptr = (PCB).pointer + ag_save; return; } ag_k = (int) (ag_p - ag_key_ch); } } #ifndef AG_NEWLINE #define AG_NEWLINE 10 #endif #ifndef AG_RETURN #define AG_RETURN 13 #endif #ifndef AG_FORMFEED #define AG_FORMFEED 12 #endif #ifndef AG_TABCHAR #define AG_TABCHAR 9 #endif static void ag_track(void) { int ag_k = (int) ((PCB).la_ptr - (PCB).pointer); while (ag_k--) { switch (*(PCB).pointer++) { case AG_NEWLINE: (PCB).column = 1, (PCB).line++; case AG_RETURN: case AG_FORMFEED: break; case AG_TABCHAR: (PCB).column += (TAB_SPACING) - ((PCB).column - 1) % (TAB_SPACING); break; default: (PCB).column++; } } } static void ag_prot(void) { int ag_k; ag_k = 128 - ++(PCB).btsx; if (ag_k <= (PCB).ssx) { (PCB).exit_flag = AG_STACK_ERROR_CODE; PARSER_STACK_OVERFLOW; return; } (PCB).bts[(PCB).btsx] = (PCB).sn; (PCB).bts[ag_k] = (PCB).ssx; (PCB).vs[ag_k] = (PCB).vs[(PCB).ssx]; (PCB).ss[ag_k] = (PCB).ss[(PCB).ssx]; (PCB).cs[ag_k] = (PCB).cs[(PCB).ssx]; } static void ag_undo(void) { if ((PCB).drt == -1) return; while ((PCB).btsx) { int ag_k = 128 - (PCB).btsx; (PCB).sn = (PCB).bts[(PCB).btsx--]; (PCB).ssx = (PCB).bts[ag_k]; (PCB).vs[(PCB).ssx] = (PCB).vs[ag_k]; (PCB).ss[(PCB).ssx] = (PCB).ss[ag_k]; (PCB).cs[(PCB).ssx] = (PCB).cs[ag_k]; } (PCB).token_number = (rcalc_token_type) (PCB).drt; (PCB).ssx = (PCB).dssx; (PCB).sn = (PCB).dsn; (PCB).drt = -1; } static const unsigned char ag_tstt[] = { 43,41,37,32,31,29,28,23,22,18,1,0,34,35, 1,0, 43,41,37,32,31,29,28,23,22,18,0,2,3,4,6,8,9,12,13,15,16,19,20,24,25,26,30, 33,40, 31,0, 32,29,28,23,22,18,0, 28,0, 29,23,22,18,0, 42,39,38,37,36,32,31,5,1,0,26,27,33, 22,0, 23,18,0, 42,39,38,37,36,32,31,29,28,5,1,0,20,21,25,26,30,33, 42,39,38,37,36,32,31,29,28,23,22,18,5,1,0,16,17,19,20,24,25,26,30,33, 43,41,37,32,31,29,28,23,22,18,1,0,34,35, 43,41,37,32,31,29,28,23,22,18,1,0,34,35, 42,39,38,37,36,5,1,0,34,35, 42,39,38,37,36,5,1,0,34,35, 43,41,37,32,31,29,28,23,22,18,0,2,8,9,12,13,15,16,19,20,24,25,26,30,33,40, 43,41,37,32,31,29,28,23,22,18,0,2,4,6,8,9,12,13,15,16,19,20,24,25,26,30,33, 40, 39,38,0,10,11, 37,36,5,0,7,8, 42,37,36,0,7,8,14, 43,41,37,32,31,29,28,23,22,18,1,0,34,35, 43,41,37,32,31,29,28,23,22,18,0,2,8,9,12,13,15,16,19,20,24,25,26,30,33,40, 43,41,37,32,31,29,28,23,22,18,1,0,34,35, 43,41,37,32,31,29,28,23,22,18,0,2,8,9,12,13,15,16,19,20,24,25,26,30,33,40, 43,41,37,32,31,29,28,23,22,18,0,2,6,8,9,12,13,15,16,19,20,24,25,26,30,33,40, 43,41,37,32,31,29,28,23,22,18,1,0,34,35, 43,41,37,32,31,29,28,23,22,18,0,2,6,8,9,12,13,15,16,19,20,24,25,26,30,33,40, 42,39,38,37,36,5,1,0,34,35, 39,38,0,10,11, 39,38,0,10,11, }; static unsigned const char ag_astt[409] = { 8,8,8,8,8,8,8,8,8,8,1,7,1,1,9,5,1,1,1,2,1,2,1,2,1,2,7,1,0,1,1,1,1,2,1,1,1, 1,1,1,1,1,1,1,1,10,5,2,2,2,2,2,2,4,10,5,2,2,2,2,4,5,5,5,5,5,2,1,5,5,7,2,2, 1,10,5,2,2,4,5,5,5,5,5,2,1,2,1,5,5,7,2,2,1,2,1,1,5,5,5,5,5,2,1,2,1,2,1,10, 5,5,7,2,2,1,2,1,1,2,1,1,5,5,5,5,5,5,5,5,5,5,1,7,1,3,5,5,5,5,5,5,5,5,5,5,1, 7,1,3,5,5,5,5,5,5,1,7,1,3,5,5,5,5,5,5,1,7,1,3,1,1,1,2,1,2,1,2,1,2,7,2,1,2, 2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,2,1,2,1,2,7,1,1,1,1,1,2,1,1,1,1,1,1,1,1, 1,1,1,1,1,5,1,1,1,1,2,7,1,1,1,1,1,7,1,1,2,5,5,5,5,5,5,5,5,5,5,1,7,1,3,1,1, 1,2,1,2,1,2,1,2,7,2,1,2,2,1,1,1,1,1,1,1,1,1,1,1,5,5,5,5,5,5,5,5,5,5,1,7,1, 3,1,1,1,2,1,2,1,2,1,2,7,2,1,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,2,1,2,1,2, 7,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,5,5,5,5,5,5,5,5,5,5,1,7,1,3,1,1,1,2,1,2, 1,2,1,2,7,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,5,5,5,5,5,5,1,7,1,3,1,1,4,1,1,1, 1,4,1,1 }; static const unsigned char ag_pstt[] = { 2,2,2,2,2,2,2,2,2,2,1,0,1,2, 51,53, 13,14,12,48,4,38,6,26,9,16,2,18,0,19,18,16,18,9,17,11,15,10,15,8,7,15,5,3, 15, 49,46, 45,43,44,41,42,40,47, 39,36, 35,33,34,32,37, 28,28,28,28,28,48,4,28,28,7,30,30,3, 27,24, 23,22,25, 18,18,18,18,18,48,4,38,6,18,18,10,20,20,7,20,5,3, 12,12,12,12,12,48,4,38,6,26,9,17,12,12,11,14,14,10,14,8,7,14,5,3, 52,52,52,52,52,52,52,52,52,52,1,12,1,55, 52,52,52,52,52,52,52,52,52,52,1,13,1,61, 52,52,52,52,52,52,1,14,1,59, 52,52,52,52,52,52,1,15,1,58, 13,14,12,48,4,38,6,26,9,16,16,11,16,11,9,17,11,15,10,15,8,7,15,5,3,15, 13,14,12,48,4,38,6,26,9,16,17,18,20,18,16,18,9,17,11,15,10,15,8,7,15,5,3,15, 21,23,2,24,22, 12,26,1,19,27,25, 28,12,26,20,27,25,10, 52,52,52,52,52,52,52,52,52,52,1,21,1,57, 13,14,12,48,4,38,6,26,9,16,22,7,16,7,9,17,11,15,10,15,8,7,15,5,3,15, 52,52,52,52,52,52,52,52,52,52,1,23,1,56, 13,14,12,48,4,38,6,26,9,16,24,6,16,6,9,17,11,15,10,15,8,7,15,5,3,15, 13,14,12,48,4,38,6,26,9,16,25,29,29,16,29,9,17,11,15,10,15,8,7,15,5,3,15, 52,52,52,52,52,52,52,52,52,52,1,26,1,54, 13,14,12,48,4,38,6,26,9,16,27,30,30,16,30,9,17,11,15,10,15,8,7,15,5,3,15, 52,52,52,52,52,52,1,28,1,60, 21,23,4,24,22, 21,23,3,24,22, }; static const unsigned short ag_sbt[] = { 0, 14, 16, 45, 47, 54, 56, 61, 74, 76, 79, 97, 121, 135, 149, 159, 169, 195, 223, 228, 234, 241, 255, 281, 295, 321, 348, 362, 389, 399, 404, 409 }; static const unsigned short ag_sbe[] = { 11, 15, 26, 46, 53, 55, 60, 70, 75, 78, 90, 111, 132, 146, 156, 166, 179, 205, 225, 231, 237, 252, 265, 292, 305, 331, 359, 372, 396, 401, 406, 409 }; static const unsigned char ag_fl[] = { 2,2,1,3,3,1,3,3,1,1,3,2,0,1,2,1,1,2,0,1,2,1,2,2,1,1,1,2,0,1,2,1,2,2,2, 2,1,1,1,2,2,2,2,2,2,2,1,1,1,2,1,2,0,1,2,2,2,2,2,2,2,2 }; static const unsigned char ag_ptt[] = { 0, 3, 4, 4, 4, 6, 6, 6, 9, 9, 9, 9, 17, 17, 40, 40, 15, 15, 21, 21, 16, 16, 19, 19, 19, 24, 24, 24, 27, 27, 20, 20, 25, 25, 25, 25, 25, 30, 30, 30, 26, 26, 26, 26, 26, 26, 26, 33, 33, 33, 34, 34, 35, 35, 7, 8, 10, 11, 2, 12, 14, 13 }; static void ag_ra(void) { switch(ag_rpx[(PCB).ag_ap]) { case 1: ag_rp_1(V(0,(long *))); break; case 2: V(0,(long *)) = ag_rp_2(V(0,(long *)), V(2,(long *))); break; case 3: V(0,(long *)) = ag_rp_3(V(0,(long *)), V(2,(long *))); break; case 4: V(0,(long *)) = ag_rp_4(V(0,(long *)), V(2,(long *))); break; case 5: V(0,(long *)) = ag_rp_5(V(0,(long *)), V(2,(long *))); break; case 6: V(0,(long *)) = ag_rp_6(); break; case 7: V(0,(long *)) = ag_rp_7(V(1,(long *))); break; case 8: V(0,(long *)) = ag_rp_8(V(1,(long *))); break; case 9: V(0,(long *)) = ag_rp_9(V(0,(long *)), V(1,(long *))); break; case 10: V(0,(long *)) = ag_rp_10(); break; case 11: V(0,(long *)) = ag_rp_11(V(0,(long *))); break; case 12: V(0,(long *)) = ag_rp_12(V(0,(long *)), V(1,(long *))); break; case 13: V(0,(long *)) = ag_rp_13(); break; case 14: V(0,(long *)) = ag_rp_14(); break; case 15: V(0,(long *)) = ag_rp_15(); break; case 16: V(0,(long *)) = ag_rp_16(); break; case 17: V(0,(long *)) = ag_rp_17(V(0,(long *))); break; case 18: V(0,(long *)) = ag_rp_18(V(0,(long *)), V(1,(long *))); break; case 19: V(0,(long *)) = ag_rp_19(); break; case 20: V(0,(long *)) = ag_rp_20(); break; case 21: V(0,(long *)) = ag_rp_21(); break; case 22: V(0,(long *)) = ag_rp_22(); break; case 23: V(0,(long *)) = ag_rp_23(); break; case 24: V(0,(long *)) = ag_rp_24(); break; case 25: V(0,(long *)) = ag_rp_25(V(0,(long *))); break; case 26: V(0,(long *)) = ag_rp_26(); break; case 27: V(0,(long *)) = ag_rp_27(); break; case 28: V(0,(long *)) = ag_rp_28(); break; case 29: V(0,(long *)) = ag_rp_29(); break; case 30: V(0,(long *)) = ag_rp_30(); break; case 31: V(0,(long *)) = ag_rp_31(); break; case 32: V(0,(long *)) = ag_rp_32(); break; case 33: V(0,(long *)) = ag_rp_33(); break; case 34: V(0,(long *)) = ag_rp_34(V(0,(long *))); break; } (PCB).la_ptr = (PCB).pointer; } #define TOKEN_NAMES rcalc_token_names const char *const rcalc_token_names[44] = { "calculation", "ws", "roman numeral", "calculation", "expression", "eof", "term", "'+'", "'-'", "factor", "'*'", "'/'", "\"NIHIL\"", "'('", "')'", "thousands", "hundreds", "", "m", "hundreds field", "tens", "", "c", "d", "count hundreds", "tens field", "units", "", "x", "l", "count tens", "i", "v", "count units", "", "", "'+'", "'-'", "'*'", "'/'", "roman numeral", "\"NIHIL\"", "')'", "'('", }; #ifndef MISSING_FORMAT #define MISSING_FORMAT "Missing %s" #endif #ifndef UNEXPECTED_FORMAT #define UNEXPECTED_FORMAT "Unexpected %s" #endif #ifndef UNNAMED_TOKEN #define UNNAMED_TOKEN "input" #endif static void ag_diagnose(void) { int ag_snd = (PCB).sn; int ag_k = ag_sbt[ag_snd]; if (*TOKEN_NAMES[ag_tstt[ag_k]] && ag_astt[ag_k + 1] == ag_action_8) { sprintf((PCB).ag_msg, MISSING_FORMAT, TOKEN_NAMES[ag_tstt[ag_k]]); } else if (ag_astt[ag_sbe[(PCB).sn]] == ag_action_8 && (ag_k = (int) ag_sbe[(PCB).sn] + 1) == (int) ag_sbt[(PCB).sn+1] - 1 && *TOKEN_NAMES[ag_tstt[ag_k]]) { sprintf((PCB).ag_msg, MISSING_FORMAT, TOKEN_NAMES[ag_tstt[ag_k]]); } else if ((PCB).token_number && *TOKEN_NAMES[(PCB).token_number]) { sprintf((PCB).ag_msg, UNEXPECTED_FORMAT, TOKEN_NAMES[(PCB).token_number]); } else if (isprint(INPUT_CODE((*(PCB).pointer))) && INPUT_CODE((*(PCB).pointer)) != '\\') { char buf[20]; sprintf(buf, "\'%c\'", (char) INPUT_CODE((*(PCB).pointer))); sprintf((PCB).ag_msg, UNEXPECTED_FORMAT, buf); } else sprintf((PCB).ag_msg, UNEXPECTED_FORMAT, UNNAMED_TOKEN); (PCB).error_message = (PCB).ag_msg; } static int ag_action_1_r_proc(void); static int ag_action_2_r_proc(void); static int ag_action_3_r_proc(void); static int ag_action_4_r_proc(void); static int ag_action_1_s_proc(void); static int ag_action_3_s_proc(void); static int ag_action_1_proc(void); static int ag_action_2_proc(void); static int ag_action_3_proc(void); static int ag_action_4_proc(void); static int ag_action_5_proc(void); static int ag_action_6_proc(void); static int ag_action_7_proc(void); static int ag_action_8_proc(void); static int ag_action_9_proc(void); static int ag_action_10_proc(void); static int ag_action_11_proc(void); static int ag_action_8_proc(void); static int (*const ag_r_procs_scan[])(void) = { ag_action_1_r_proc, ag_action_2_r_proc, ag_action_3_r_proc, ag_action_4_r_proc }; static int (*const ag_s_procs_scan[])(void) = { ag_action_1_s_proc, ag_action_2_r_proc, ag_action_3_s_proc, ag_action_4_r_proc }; static int (*const ag_gt_procs_scan[])(void) = { ag_action_1_proc, ag_action_2_proc, ag_action_3_proc, ag_action_4_proc, ag_action_5_proc, ag_action_6_proc, ag_action_7_proc, ag_action_8_proc, ag_action_9_proc, ag_action_10_proc, ag_action_11_proc, ag_action_8_proc }; static int ag_action_10_proc(void) { int ag_t = (PCB).token_number; (PCB).btsx = 0, (PCB).drt = -1; do { ag_track(); (PCB).token_number = (rcalc_token_type) AG_TCV(INPUT_CODE(*(PCB).la_ptr)); (PCB).la_ptr++; if (ag_key_index[(PCB).sn]) { unsigned ag_k = ag_key_index[(PCB).sn]; int ag_ch = CONVERT_CASE(INPUT_CODE(*(PCB).pointer)); if (ag_ch <= 255) { while (ag_key_ch[ag_k] < ag_ch) ag_k++; if (ag_key_ch[ag_k] == ag_ch) ag_get_key_word(ag_k); } } } while ((PCB).token_number == (rcalc_token_type) ag_t); (PCB).la_ptr = (PCB).pointer; return 1; } static int ag_action_11_proc(void) { int ag_t = (PCB).token_number; (PCB).btsx = 0, (PCB).drt = -1; do { (*(int *) &(PCB).vs[(PCB).ssx]) = *(PCB).pointer; (PCB).ssx--; ag_track(); ag_ra(); if ((PCB).exit_flag != AG_RUNNING_CODE) return 0; (PCB).ssx++; (PCB).token_number = (rcalc_token_type) AG_TCV(INPUT_CODE(*(PCB).la_ptr)); (PCB).la_ptr++; if (ag_key_index[(PCB).sn]) { unsigned ag_k = ag_key_index[(PCB).sn]; int ag_ch = CONVERT_CASE(INPUT_CODE(*(PCB).pointer)); if (ag_ch <= 255) { while (ag_key_ch[ag_k] < ag_ch) ag_k++; if (ag_key_ch[ag_k] == ag_ch) ag_get_key_word(ag_k); } } } while ((PCB).token_number == (rcalc_token_type) ag_t); (PCB).la_ptr = (PCB).pointer; return 1; } static int ag_action_3_r_proc(void) { int ag_sd = ag_fl[(PCB).ag_ap] - 1; if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; (PCB).btsx = 0, (PCB).drt = -1; (PCB).reduction_token = (rcalc_token_type) ag_ptt[(PCB).ag_ap]; ag_ra(); return (PCB).exit_flag == AG_RUNNING_CODE; } static int ag_action_3_s_proc(void) { int ag_sd = ag_fl[(PCB).ag_ap] - 1; if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; (PCB).btsx = 0, (PCB).drt = -1; (PCB).reduction_token = (rcalc_token_type) ag_ptt[(PCB).ag_ap]; ag_ra(); return (PCB).exit_flag == AG_RUNNING_CODE; } static int ag_action_4_r_proc(void) { int ag_sd = ag_fl[(PCB).ag_ap] - 1; if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; (PCB).reduction_token = (rcalc_token_type) ag_ptt[(PCB).ag_ap]; return 1; } static int ag_action_2_proc(void) { (PCB).btsx = 0, (PCB).drt = -1; if ((PCB).ssx >= 128) { (PCB).exit_flag = AG_STACK_ERROR_CODE; PARSER_STACK_OVERFLOW; } (*(int *) &(PCB).vs[(PCB).ssx]) = *(PCB).pointer; GET_CONTEXT; (PCB).ss[(PCB).ssx] = (PCB).sn; (PCB).ssx++; (PCB).sn = (PCB).ag_ap; ag_track(); return 0; } static int ag_action_9_proc(void) { if ((PCB).drt == -1) { (PCB).drt=(PCB).token_number; (PCB).dssx=(PCB).ssx; (PCB).dsn=(PCB).sn; } ag_prot(); (PCB).vs[(PCB).ssx] = ag_null_value; GET_CONTEXT; (PCB).ss[(PCB).ssx] = (PCB).sn; (PCB).ssx++; (PCB).sn = (PCB).ag_ap; (PCB).la_ptr = (PCB).pointer; return (PCB).exit_flag == AG_RUNNING_CODE; } static int ag_action_2_r_proc(void) { (PCB).ssx++; (PCB).sn = (PCB).ag_ap; return 0; } static int ag_action_7_proc(void) { --(PCB).ssx; (PCB).la_ptr = (PCB).pointer; (PCB).exit_flag = AG_SUCCESS_CODE; return 0; } static int ag_action_1_proc(void) { ag_track(); (PCB).exit_flag = AG_SUCCESS_CODE; return 0; } static int ag_action_1_r_proc(void) { (PCB).exit_flag = AG_SUCCESS_CODE; return 0; } static int ag_action_1_s_proc(void) { (PCB).exit_flag = AG_SUCCESS_CODE; return 0; } static int ag_action_4_proc(void) { int ag_sd = ag_fl[(PCB).ag_ap] - 1; (PCB).reduction_token = (rcalc_token_type) ag_ptt[(PCB).ag_ap]; (PCB).btsx = 0, (PCB).drt = -1; (*(int *) &(PCB).vs[(PCB).ssx]) = *(PCB).pointer; if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; else GET_CONTEXT; (PCB).ss[(PCB).ssx] = (PCB).sn; ag_track(); while ((PCB).exit_flag == AG_RUNNING_CODE) { unsigned ag_t1 = ag_sbe[(PCB).sn] + 1; unsigned ag_t2 = ag_sbt[(PCB).sn+1] - 1; do { unsigned ag_tx = (ag_t1 + ag_t2)/2; if (ag_tstt[ag_tx] < (unsigned char)(PCB).reduction_token) ag_t1 = ag_tx + 1; else ag_t2 = ag_tx; } while (ag_t1 < ag_t2); (PCB).ag_ap = ag_pstt[ag_t1]; if ((ag_s_procs_scan[ag_astt[ag_t1]])() == 0) break; } return 0; } static int ag_action_3_proc(void) { int ag_sd = ag_fl[(PCB).ag_ap] - 1; (PCB).btsx = 0, (PCB).drt = -1; (*(int *) &(PCB).vs[(PCB).ssx]) = *(PCB).pointer; if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; else GET_CONTEXT; (PCB).ss[(PCB).ssx] = (PCB).sn; ag_track(); (PCB).reduction_token = (rcalc_token_type) ag_ptt[(PCB).ag_ap]; ag_ra(); while ((PCB).exit_flag == AG_RUNNING_CODE) { unsigned ag_t1 = ag_sbe[(PCB).sn] + 1; unsigned ag_t2 = ag_sbt[(PCB).sn+1] - 1; do { unsigned ag_tx = (ag_t1 + ag_t2)/2; if (ag_tstt[ag_tx] < (unsigned char)(PCB).reduction_token) ag_t1 = ag_tx + 1; else ag_t2 = ag_tx; } while (ag_t1 < ag_t2); (PCB).ag_ap = ag_pstt[ag_t1]; if ((ag_s_procs_scan[ag_astt[ag_t1]])() == 0) break; } return 0; } static int ag_action_8_proc(void) { ag_undo(); (PCB).la_ptr = (PCB).pointer; (PCB).exit_flag = AG_SYNTAX_ERROR_CODE; ag_diagnose(); SYNTAX_ERROR; {(PCB).la_ptr = (PCB).pointer + 1; ag_track();} return (PCB).exit_flag == AG_RUNNING_CODE; } static int ag_action_5_proc(void) { int ag_sd = ag_fl[(PCB).ag_ap]; (PCB).btsx = 0, (PCB).drt = -1; if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; else { GET_CONTEXT; (PCB).ss[(PCB).ssx] = (PCB).sn; } (PCB).la_ptr = (PCB).pointer; (PCB).reduction_token = (rcalc_token_type) ag_ptt[(PCB).ag_ap]; ag_ra(); while ((PCB).exit_flag == AG_RUNNING_CODE) { unsigned ag_t1 = ag_sbe[(PCB).sn] + 1; unsigned ag_t2 = ag_sbt[(PCB).sn+1] - 1; do { unsigned ag_tx = (ag_t1 + ag_t2)/2; if (ag_tstt[ag_tx] < (unsigned char)(PCB).reduction_token) ag_t1 = ag_tx + 1; else ag_t2 = ag_tx; } while (ag_t1 < ag_t2); (PCB).ag_ap = ag_pstt[ag_t1]; if ((ag_r_procs_scan[ag_astt[ag_t1]])() == 0) break; } return (PCB).exit_flag == AG_RUNNING_CODE; } static int ag_action_6_proc(void) { int ag_sd = ag_fl[(PCB).ag_ap]; (PCB).reduction_token = (rcalc_token_type) ag_ptt[(PCB).ag_ap]; if ((PCB).drt == -1) { (PCB).drt=(PCB).token_number; (PCB).dssx=(PCB).ssx; (PCB).dsn=(PCB).sn; } if (ag_sd) { (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; } else { ag_prot(); (PCB).vs[(PCB).ssx] = ag_null_value; GET_CONTEXT; (PCB).ss[(PCB).ssx] = (PCB).sn; } (PCB).la_ptr = (PCB).pointer; while ((PCB).exit_flag == AG_RUNNING_CODE) { unsigned ag_t1 = ag_sbe[(PCB).sn] + 1; unsigned ag_t2 = ag_sbt[(PCB).sn+1] - 1; do { unsigned ag_tx = (ag_t1 + ag_t2)/2; if (ag_tstt[ag_tx] < (unsigned char)(PCB).reduction_token) ag_t1 = ag_tx + 1; else ag_t2 = ag_tx; } while (ag_t1 < ag_t2); (PCB).ag_ap = ag_pstt[ag_t1]; if ((ag_r_procs_scan[ag_astt[ag_t1]])() == 0) break; } return (PCB).exit_flag == AG_RUNNING_CODE; } void init_rcalc(void) { (PCB).la_ptr = (PCB).pointer; (PCB).ss[0] = (PCB).sn = (PCB).ssx = 0; (PCB).exit_flag = AG_RUNNING_CODE; (PCB).line = FIRST_LINE; (PCB).column = FIRST_COLUMN; (PCB).btsx = 0, (PCB).drt = -1; } void rcalc(void) { init_rcalc(); (PCB).exit_flag = AG_RUNNING_CODE; while ((PCB).exit_flag == AG_RUNNING_CODE) { unsigned ag_t1 = ag_sbt[(PCB).sn]; if (ag_tstt[ag_t1]) { unsigned ag_t2 = ag_sbe[(PCB).sn] - 1; (PCB).token_number = (rcalc_token_type) AG_TCV(INPUT_CODE(*(PCB).la_ptr)); (PCB).la_ptr++; if (ag_key_index[(PCB).sn]) { unsigned ag_k = ag_key_index[(PCB).sn]; int ag_ch = CONVERT_CASE(INPUT_CODE(*(PCB).pointer)); if (ag_ch <= 255) { while (ag_key_ch[ag_k] < ag_ch) ag_k++; if (ag_key_ch[ag_k] == ag_ch) ag_get_key_word(ag_k); } } do { unsigned ag_tx = (ag_t1 + ag_t2)/2; if (ag_tstt[ag_tx] > (unsigned char)(PCB).token_number) ag_t1 = ag_tx + 1; else ag_t2 = ag_tx; } while (ag_t1 < ag_t2); if (ag_tstt[ag_t1] != (unsigned char)(PCB).token_number) ag_t1 = ag_sbe[(PCB).sn]; } (PCB).ag_ap = ag_pstt[ag_t1]; (ag_gt_procs_scan[ag_astt[ag_t1]])(); } }