view tests/agcl/examples/good/rcalc.c @ 0:13d2b8934445

Import AnaGram (near-)release tree into Mercurial.
author David A. Holland
date Sat, 22 Dec 2007 17:52:45 -0500
parents
children
line wrap: on
line source

/*
 * AnaGram, a System for Syntax Directed Parsing
 * RCALC.SYN: A Roman Numeral Calculator Example
 *
 * Copyright MCMXCIII, MCMXCVI, Parsifal Software. All Rights Reserved.
 * Copyright MMVII David A. Holland. All Rights Reserved.
 *
 * This software is provided 'as-is', without any express or implied
 * warranty.  In no event will the authors be held liable for any damages
 * arising from the use of this software.
 *
 * Permission is granted to anyone to use this software for any purpose,
 * including commercial applications, and to alter it and redistribute it
 * freely, subject to the following restrictions:
 *
 * 1. The origin of this software must not be misrepresented; you must not
 *    claim that you wrote the original software. If you use this software
 *    in a product, an acknowledgment in the product documentation would be
 *    appreciated but is not required.
 * 2. Altered source versions must be plainly marked as such, and must not be
 *    misrepresented as being the original software.
 * 3. This notice may not be removed or altered from any source distribution.
 */
/*
 * AnaGram, A System for Syntax Directed Programming
 * File generated by: ...
 *
 * AnaGram Parsing Engine
 * Copyright 1993-2002 Parsifal Software. All Rights Reserved.
 *
 * This software is provided 'as-is', without any express or implied
 * warranty.  In no event will the authors be held liable for any damages
 * arising from the use of this software.
 *
 * Permission is granted to anyone to use this software for any purpose,
 * including commercial applications, and to alter it and redistribute it
 * freely, subject to the following restrictions:
 *
 * 1. The origin of this software must not be misrepresented; you must not
 *    claim that you wrote the original software. If you use this software
 *    in a product, an acknowledgment in the product documentation would be
 *    appreciated but is not required.
 * 2. Altered source versions must be plainly marked as such, and must not be
 *    misrepresented as being the original software.
 * 3. This notice may not be removed or altered from any source distribution.
 */

#ifndef RCALC_H
#include "rcalc.h"
#endif

#ifndef RCALC_H
#error Mismatched header file
#endif

#include <ctype.h>
#include <stdio.h>

#define RULE_CONTEXT (&((PCB).cs[(PCB).ssx]))
#define ERROR_CONTEXT ((PCB).cs[(PCB).error_frame_ssx])
#define CONTEXT ((PCB).cs[(PCB).ssx])



rcalc_pcb_type rcalc_pcb;
#define PCB rcalc_pcb

/*  Line -, rcalc.syn */
                               /* Embedded C */
#include <stdio.h>


/* Macro Definitions */

#define GET_CONTEXT CONTEXT = PCB.column
#define SYNTAX_ERROR syntax_error()

int semantic_error = 0;         /* Divide by zero flag */


/*

syntax_error() positions a '^' character under the input line at the
point where the syntax error was discovered and then writes the error
message.

*/

void syntax_error(void) {
  int k = PCB.column;
  while (k-- > 0) putchar(' ');
  printf("^? %s\n","ERRARE HUMANUM EST\n");
}


/*

divide_error() is called when an attempt is made to divide by zero. The
entire divisor is marked with '^' characters. "semantic_error" is set
in order to disable printing of a result.

*/

int divide_error(int cn) {
  int k = PCB.column - cn;
  while (cn--) putchar(' ');
  while (k--) putchar('^');
  puts(" DIVISOR NIHIL EST");
  semantic_error = 1;
  return 0;
}


/*

print_roman() prints a signed integer in upper case Roman numerals.

*/

void print_roman(long k) {
  if (semantic_error) {
    semantic_error = 0;
    return;
  }
  printf("  = ");
  if (k == 0)      {printf("NIHIL\n"); return;}

  if (k < 0)        putchar('-'), k=-k;

  while (k >= 1000) putchar('M'), k-=1000;

  if (k >= 900)     printf("CM"), k-=900;
  if (k >= 500)     putchar('D'), k-=500;
  if (k >= 400)     printf("CD"), k-=400;

  while (k >= 100)  putchar('C'), k-=100;

  if (k >= 90)      printf("XC"), k-=90;
  if (k >= 50)      putchar('L'), k-=50;
  if (k >= 40)      printf("XL"), k-=40;

  while (k >= 10)   putchar('X'), k-=10;

  if (k >= 9)       printf("IX"), k -= 9;
  if (k >= 5)       putchar('V'), k-=5;
  if (k >= 4)       printf("IV"), k-=4;

  while (k >= 1)    putchar('I'), k--;

  putchar('\n');
}


/* Main Program -- reads a line from stdin and calls parser */

int main(void) {
  char line[1024];
  while (1) {
    printf("#");
    fflush(stdout);
    if (fgets(line, sizeof(line), stdin) == NULL) break;
    rcalc_pcb.pointer = (unsigned char *) line;
    rcalc();
  }
  return 0;
}


#ifndef CONVERT_CASE

static const char agCaseTable[31] = {
  0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
  0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
  0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,    0,
  0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20
};

static int agConvertCase(int c) {
  if (c >= 'a' && c <= 'z') return c ^= 0x20;
  if (c >= 0xe0 && c < 0xff) c ^= agCaseTable[c-0xe0];
  return c;
}

#define CONVERT_CASE(c) agConvertCase(c)

#endif


#ifndef TAB_SPACING
#define TAB_SPACING 8
#endif

static void ag_rp_1(long x) {
/* Line -, rcalc.syn */
  print_roman(x);
}

static long ag_rp_2(long x, long y) {
/* Line -, rcalc.syn */
  return x+y;
}

static long ag_rp_3(long x, long y) {
/* Line -, rcalc.syn */
  return x-y;
}

static long ag_rp_4(long x, long y) {
/* Line -, rcalc.syn */
  return x*y;
}

static long ag_rp_5(long x, long y) {
/* Line -, rcalc.syn */
  return y ? x/y : divide_error(RULE_CONTEXT[2]);
}

static long ag_rp_6(void) {
/* Line -, rcalc.syn */
  return 0;
}

static long ag_rp_7(long x) {
/* Line -, rcalc.syn */
  return x;
}

static long ag_rp_8(long x) {
/* Line -, rcalc.syn */
  return -x;
}

static long ag_rp_9(long x, long y) {
/* Line -, rcalc.syn */
  return x+y;
}

static long ag_rp_10(void) {
/* Line -, rcalc.syn */
  return 1000;
}

static long ag_rp_11(long x) {
/* Line -, rcalc.syn */
  return x+1000;
}

static long ag_rp_12(long x, long y) {
/* Line -, rcalc.syn */
  return x+y;
}

static long ag_rp_13(void) {
/* Line -, rcalc.syn */
  return 900;
}

static long ag_rp_14(void) {
/* Line -, rcalc.syn */
  return 400;
}

static long ag_rp_15(void) {
/* Line -, rcalc.syn */
  return 100;
}

static long ag_rp_16(void) {
/* Line -, rcalc.syn */
  return 500;
}

static long ag_rp_17(long x) {
/* Line -, rcalc.syn */
  return x+100;
}

static long ag_rp_18(long x, long y) {
/* Line -, rcalc.syn */
  return x+y;
}

static long ag_rp_19(void) {
/* Line -, rcalc.syn */
  return 990;
}

static long ag_rp_20(void) {
/* Line -, rcalc.syn */
  return 490;
}

static long ag_rp_21(void) {
/* Line -, rcalc.syn */
  return 90;
}

static long ag_rp_22(void) {
/* Line -, rcalc.syn */
  return 40;
}

static long ag_rp_23(void) {
/* Line -, rcalc.syn */
  return 10;
}

static long ag_rp_24(void) {
/* Line -, rcalc.syn */
  return 50;
}

static long ag_rp_25(long x) {
/* Line -, rcalc.syn */
  return x+10;
}

static long ag_rp_26(void) {
/* Line -, rcalc.syn */
  return 999;
}

static long ag_rp_27(void) {
/* Line -, rcalc.syn */
  return 499;
}

static long ag_rp_28(void) {
/* Line -, rcalc.syn */
  return 99;
}

static long ag_rp_29(void) {
/* Line -, rcalc.syn */
  return 49;
}

static long ag_rp_30(void) {
/* Line -, rcalc.syn */
  return 9;
}

static long ag_rp_31(void) {
/* Line -, rcalc.syn */
  return 4;
}

static long ag_rp_32(void) {
/* Line -, rcalc.syn */
  return 1;
}

static long ag_rp_33(void) {
/* Line -, rcalc.syn */
  return 5;
}

static long ag_rp_34(long x) {
/* Line -, rcalc.syn */
  return x+1;
}


#define READ_COUNTS 
#define WRITE_COUNTS 
#undef V
#define V(i,t) (*t (&(PCB).vs[(PCB).ssx + i]))
#undef VS
#define VS(i) (PCB).vs[(PCB).ssx + i]

#ifndef GET_CONTEXT
#define GET_CONTEXT CONTEXT = (PCB).input_context
#endif

typedef enum {
  ag_action_1,
  ag_action_2,
  ag_action_3,
  ag_action_4,
  ag_action_5,
  ag_action_6,
  ag_action_7,
  ag_action_8,
  ag_action_9,
  ag_action_10,
  ag_action_11,
  ag_action_12
} ag_parser_action;


#ifndef NULL_VALUE_INITIALIZER
#define NULL_VALUE_INITIALIZER = { 0 }
#endif

static rcalc_vs_type const ag_null_value NULL_VALUE_INITIALIZER;

static const unsigned char ag_rpx[] = {
    0,  1,  0,  2,  3,  0,  4,  5,  0,  6,  7,  8,  0,  0,  9,  0, 10, 11,
    0,  0, 12,  0, 13, 14,  0, 15, 16, 17,  0,  0, 18,  0, 19, 20, 21, 22,
    0, 23, 24, 25, 26, 27, 28, 29, 30, 31,  0, 32, 33, 34
};

static const unsigned char ag_key_itt[] = {
 0
};

static const unsigned short ag_key_pt[] = {
0
};

static const unsigned char ag_key_ch[] = {
    0, 78,255
};

static const unsigned char ag_key_act[] = {
  0,3,4
};

static const unsigned char ag_key_parm[] = {
    0, 41,  0
};

static const unsigned char ag_key_jmp[] = {
    0,  0,  0
};

static const unsigned char ag_key_index[] = {
    1,  1,  1,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  1,  0,  0,  1,  1,
    0,  0,  0,  1,  1,  1,  1,  1,  1,  1,  0,  0,  0
};

static const unsigned char ag_key_ends[] = {
73,72,73,76,0, 
};

#define AG_TCV(x) ag_tcv[(x)]

static const unsigned char ag_tcv[] = {
    5,  0,  0,  0,  0,  0,  0,  0,  0,  1,  5,  0,  0,  1,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  0,  0,
    0,  0,  0,  0, 43, 42, 38, 36,  0, 37,  0, 39,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, 22, 23,  0,  0,  0,
    0, 31,  0,  0, 29, 18,  0,  0,  0,  0,  0,  0,  0,  0, 32,  0, 28,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0, 22, 23,  0,  0,  0,  0, 31,  0,  0,
   29, 18,  0,  0,  0,  0,  0,  0,  0,  0, 32,  0, 28,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0
};

#ifndef SYNTAX_ERROR
#define SYNTAX_ERROR fprintf(stderr,"%s, line %d, column %d\n", \
  (PCB).error_message, (PCB).line, (PCB).column)
#endif

#ifndef FIRST_LINE
#define FIRST_LINE 1
#endif

#ifndef FIRST_COLUMN
#define FIRST_COLUMN 1
#endif

#ifndef PARSER_STACK_OVERFLOW
#define PARSER_STACK_OVERFLOW {fprintf(stderr, \
   "\nParser stack overflow, line %d, column %d\n",\
   (PCB).line, (PCB).column);}
#endif

#ifndef REDUCTION_TOKEN_ERROR
#define REDUCTION_TOKEN_ERROR {fprintf(stderr, \
    "\nReduction token error, line %d, column %d\n", \
    (PCB).line, (PCB).column);}
#endif


#ifndef INPUT_CODE
#define INPUT_CODE(T) (T)
#endif

typedef enum
  {ag_accept_key, ag_set_key, ag_jmp_key, ag_end_key, ag_no_match_key,
   ag_cf_accept_key, ag_cf_set_key, ag_cf_end_key} key_words;

static void ag_get_key_word(int ag_k) {
  int ag_save = (int) ((PCB).la_ptr - (PCB).pointer);
  const  unsigned char *ag_p;
  int ag_ch;
  while (1) {
    switch (ag_key_act[ag_k]) {
    case ag_cf_end_key: {
      const  unsigned char *sp = ag_key_ends + ag_key_jmp[ag_k];
      do {
        if ((ag_ch = *sp++) == 0) {
          int ag_k1 = ag_key_parm[ag_k];
          int ag_k2 = ag_key_pt[ag_k1];
          if (ag_key_itt[ag_k2 + CONVERT_CASE(*(PCB).la_ptr)]) goto ag_fail;
          (PCB).token_number = (rcalc_token_type) ag_key_pt[ag_k1 + 1];
          return;
        }
      } while (CONVERT_CASE(*(PCB).la_ptr++) == ag_ch);
      goto ag_fail;
    }
    case ag_end_key: {
      const  unsigned char *sp = ag_key_ends + ag_key_jmp[ag_k];
      do {
        if ((ag_ch = *sp++) == 0) {
          (PCB).token_number = (rcalc_token_type) ag_key_parm[ag_k];
          return;
        }
      } while (CONVERT_CASE(*(PCB).la_ptr++) == ag_ch);
    }
    case ag_no_match_key:
ag_fail:
      (PCB).la_ptr = (PCB).pointer + ag_save;
      return;
    case ag_cf_set_key: {
      int ag_k1 = ag_key_parm[ag_k];
      int ag_k2 = ag_key_pt[ag_k1];
      ag_k = ag_key_jmp[ag_k];
      if (ag_key_itt[ag_k2 + CONVERT_CASE(*(PCB).la_ptr)]) break;
      ag_save = (int) ((PCB).la_ptr - (PCB).pointer);
      (PCB).token_number = (rcalc_token_type) ag_key_pt[ag_k1+1];
      break;
    }
    case ag_set_key:
      ag_save = (int) ((PCB).la_ptr - (PCB).pointer);
      (PCB).token_number = (rcalc_token_type) ag_key_parm[ag_k];
    case ag_jmp_key:
      ag_k = ag_key_jmp[ag_k];
      break;
    case ag_accept_key:
      (PCB).token_number = (rcalc_token_type) ag_key_parm[ag_k];
      return;
    case ag_cf_accept_key: {
      int ag_k1 = ag_key_parm[ag_k];
      int ag_k2 = ag_key_pt[ag_k1];
      if (ag_key_itt[ag_k2 + CONVERT_CASE(*(PCB).la_ptr)])
        (PCB).la_ptr = (PCB).pointer + ag_save;
      else (PCB).token_number = (rcalc_token_type) ag_key_pt[ag_k1+1];
      return;
    }
    }
    ag_ch = CONVERT_CASE(*(PCB).la_ptr++);
    ag_p = &ag_key_ch[ag_k];
    if (ag_ch <= 255) while (*ag_p < ag_ch) ag_p++;
    if (ag_ch > 255 || *ag_p != ag_ch) {
      (PCB).la_ptr = (PCB).pointer + ag_save;
      return;
    }
    ag_k = (int) (ag_p - ag_key_ch);
  }
}


#ifndef AG_NEWLINE
#define AG_NEWLINE 10
#endif

#ifndef AG_RETURN
#define AG_RETURN 13
#endif

#ifndef AG_FORMFEED
#define AG_FORMFEED 12
#endif

#ifndef AG_TABCHAR
#define AG_TABCHAR 9
#endif

static void ag_track(void) {
  int ag_k = (int) ((PCB).la_ptr - (PCB).pointer);
  while (ag_k--) {
    switch (*(PCB).pointer++) {
    case AG_NEWLINE:
      (PCB).column = 1, (PCB).line++;
    case AG_RETURN:
    case AG_FORMFEED:
      break;
    case AG_TABCHAR:
      (PCB).column += (TAB_SPACING) - ((PCB).column - 1) % (TAB_SPACING);
      break;
    default:
      (PCB).column++;
    }
  }
}


static void ag_prot(void) {
  int ag_k;
  ag_k = 128 - ++(PCB).btsx;
  if (ag_k <= (PCB).ssx) {
    (PCB).exit_flag = AG_STACK_ERROR_CODE;
    PARSER_STACK_OVERFLOW;
    return;
  }
  (PCB).bts[(PCB).btsx] = (PCB).sn;
  (PCB).bts[ag_k] = (PCB).ssx;
  (PCB).vs[ag_k] = (PCB).vs[(PCB).ssx];
  (PCB).ss[ag_k] = (PCB).ss[(PCB).ssx];
  (PCB).cs[ag_k] = (PCB).cs[(PCB).ssx];
}

static void ag_undo(void) {
  if ((PCB).drt == -1) return;
  while ((PCB).btsx) {
    int ag_k = 128 - (PCB).btsx;
    (PCB).sn = (PCB).bts[(PCB).btsx--];
    (PCB).ssx = (PCB).bts[ag_k];
    (PCB).vs[(PCB).ssx] = (PCB).vs[ag_k];
    (PCB).ss[(PCB).ssx] = (PCB).ss[ag_k];
    (PCB).cs[(PCB).ssx] = (PCB).cs[ag_k];
  }
  (PCB).token_number = (rcalc_token_type) (PCB).drt;
  (PCB).ssx = (PCB).dssx;
  (PCB).sn = (PCB).dsn;
  (PCB).drt = -1;
}


static const unsigned char ag_tstt[] = {
43,41,37,32,31,29,28,23,22,18,1,0,34,35,
1,0,
43,41,37,32,31,29,28,23,22,18,0,2,3,4,6,8,9,12,13,15,16,19,20,24,25,26,30,
  33,40,
31,0,
32,29,28,23,22,18,0,
28,0,
29,23,22,18,0,
42,39,38,37,36,32,31,5,1,0,26,27,33,
22,0,
23,18,0,
42,39,38,37,36,32,31,29,28,5,1,0,20,21,25,26,30,33,
42,39,38,37,36,32,31,29,28,23,22,18,5,1,0,16,17,19,20,24,25,26,30,33,
43,41,37,32,31,29,28,23,22,18,1,0,34,35,
43,41,37,32,31,29,28,23,22,18,1,0,34,35,
42,39,38,37,36,5,1,0,34,35,
42,39,38,37,36,5,1,0,34,35,
43,41,37,32,31,29,28,23,22,18,0,2,8,9,12,13,15,16,19,20,24,25,26,30,33,40,
43,41,37,32,31,29,28,23,22,18,0,2,4,6,8,9,12,13,15,16,19,20,24,25,26,30,33,
  40,
39,38,0,10,11,
37,36,5,0,7,8,
42,37,36,0,7,8,14,
43,41,37,32,31,29,28,23,22,18,1,0,34,35,
43,41,37,32,31,29,28,23,22,18,0,2,8,9,12,13,15,16,19,20,24,25,26,30,33,40,
43,41,37,32,31,29,28,23,22,18,1,0,34,35,
43,41,37,32,31,29,28,23,22,18,0,2,8,9,12,13,15,16,19,20,24,25,26,30,33,40,
43,41,37,32,31,29,28,23,22,18,0,2,6,8,9,12,13,15,16,19,20,24,25,26,30,33,40,
43,41,37,32,31,29,28,23,22,18,1,0,34,35,
43,41,37,32,31,29,28,23,22,18,0,2,6,8,9,12,13,15,16,19,20,24,25,26,30,33,40,
42,39,38,37,36,5,1,0,34,35,
39,38,0,10,11,
39,38,0,10,11,

};


static unsigned const char ag_astt[409] = {
  8,8,8,8,8,8,8,8,8,8,1,7,1,1,9,5,1,1,1,2,1,2,1,2,1,2,7,1,0,1,1,1,1,2,1,1,1,
  1,1,1,1,1,1,1,1,10,5,2,2,2,2,2,2,4,10,5,2,2,2,2,4,5,5,5,5,5,2,1,5,5,7,2,2,
  1,10,5,2,2,4,5,5,5,5,5,2,1,2,1,5,5,7,2,2,1,2,1,1,5,5,5,5,5,2,1,2,1,2,1,10,
  5,5,7,2,2,1,2,1,1,2,1,1,5,5,5,5,5,5,5,5,5,5,1,7,1,3,5,5,5,5,5,5,5,5,5,5,1,
  7,1,3,5,5,5,5,5,5,1,7,1,3,5,5,5,5,5,5,1,7,1,3,1,1,1,2,1,2,1,2,1,2,7,2,1,2,
  2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,2,1,2,1,2,7,1,1,1,1,1,2,1,1,1,1,1,1,1,1,
  1,1,1,1,1,5,1,1,1,1,2,7,1,1,1,1,1,7,1,1,2,5,5,5,5,5,5,5,5,5,5,1,7,1,3,1,1,
  1,2,1,2,1,2,1,2,7,2,1,2,2,1,1,1,1,1,1,1,1,1,1,1,5,5,5,5,5,5,5,5,5,5,1,7,1,
  3,1,1,1,2,1,2,1,2,1,2,7,2,1,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,2,1,2,1,2,
  7,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,5,5,5,5,5,5,5,5,5,5,1,7,1,3,1,1,1,2,1,2,
  1,2,1,2,7,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,5,5,5,5,5,5,1,7,1,3,1,1,4,1,1,1,
  1,4,1,1
};


static const unsigned char ag_pstt[] = {
2,2,2,2,2,2,2,2,2,2,1,0,1,2,
51,53,
13,14,12,48,4,38,6,26,9,16,2,18,0,19,18,16,18,9,17,11,15,10,15,8,7,15,5,3,
  15,
49,46,
45,43,44,41,42,40,47,
39,36,
35,33,34,32,37,
28,28,28,28,28,48,4,28,28,7,30,30,3,
27,24,
23,22,25,
18,18,18,18,18,48,4,38,6,18,18,10,20,20,7,20,5,3,
12,12,12,12,12,48,4,38,6,26,9,17,12,12,11,14,14,10,14,8,7,14,5,3,
52,52,52,52,52,52,52,52,52,52,1,12,1,55,
52,52,52,52,52,52,52,52,52,52,1,13,1,61,
52,52,52,52,52,52,1,14,1,59,
52,52,52,52,52,52,1,15,1,58,
13,14,12,48,4,38,6,26,9,16,16,11,16,11,9,17,11,15,10,15,8,7,15,5,3,15,
13,14,12,48,4,38,6,26,9,16,17,18,20,18,16,18,9,17,11,15,10,15,8,7,15,5,3,15,
21,23,2,24,22,
12,26,1,19,27,25,
28,12,26,20,27,25,10,
52,52,52,52,52,52,52,52,52,52,1,21,1,57,
13,14,12,48,4,38,6,26,9,16,22,7,16,7,9,17,11,15,10,15,8,7,15,5,3,15,
52,52,52,52,52,52,52,52,52,52,1,23,1,56,
13,14,12,48,4,38,6,26,9,16,24,6,16,6,9,17,11,15,10,15,8,7,15,5,3,15,
13,14,12,48,4,38,6,26,9,16,25,29,29,16,29,9,17,11,15,10,15,8,7,15,5,3,15,
52,52,52,52,52,52,52,52,52,52,1,26,1,54,
13,14,12,48,4,38,6,26,9,16,27,30,30,16,30,9,17,11,15,10,15,8,7,15,5,3,15,
52,52,52,52,52,52,1,28,1,60,
21,23,4,24,22,
21,23,3,24,22,

};


static const unsigned short ag_sbt[] = {
     0,  14,  16,  45,  47,  54,  56,  61,  74,  76,  79,  97, 121, 135,
   149, 159, 169, 195, 223, 228, 234, 241, 255, 281, 295, 321, 348, 362,
   389, 399, 404, 409
};


static const unsigned short ag_sbe[] = {
    11,  15,  26,  46,  53,  55,  60,  70,  75,  78,  90, 111, 132, 146,
   156, 166, 179, 205, 225, 231, 237, 252, 265, 292, 305, 331, 359, 372,
   396, 401, 406, 409
};


static const unsigned char ag_fl[] = {
  2,2,1,3,3,1,3,3,1,1,3,2,0,1,2,1,1,2,0,1,2,1,2,2,1,1,1,2,0,1,2,1,2,2,2,
  2,1,1,1,2,2,2,2,2,2,2,1,1,1,2,1,2,0,1,2,2,2,2,2,2,2,2
};

static const unsigned char ag_ptt[] = {
    0,  3,  4,  4,  4,  6,  6,  6,  9,  9,  9,  9, 17, 17, 40, 40, 15, 15,
   21, 21, 16, 16, 19, 19, 19, 24, 24, 24, 27, 27, 20, 20, 25, 25, 25, 25,
   25, 30, 30, 30, 26, 26, 26, 26, 26, 26, 26, 33, 33, 33, 34, 34, 35, 35,
    7,  8, 10, 11,  2, 12, 14, 13
};


static void ag_ra(void)
{
  switch(ag_rpx[(PCB).ag_ap]) {
    case 1: ag_rp_1(V(0,(long *))); break;
    case 2: V(0,(long *)) = ag_rp_2(V(0,(long *)), V(2,(long *))); break;
    case 3: V(0,(long *)) = ag_rp_3(V(0,(long *)), V(2,(long *))); break;
    case 4: V(0,(long *)) = ag_rp_4(V(0,(long *)), V(2,(long *))); break;
    case 5: V(0,(long *)) = ag_rp_5(V(0,(long *)), V(2,(long *))); break;
    case 6: V(0,(long *)) = ag_rp_6(); break;
    case 7: V(0,(long *)) = ag_rp_7(V(1,(long *))); break;
    case 8: V(0,(long *)) = ag_rp_8(V(1,(long *))); break;
    case 9: V(0,(long *)) = ag_rp_9(V(0,(long *)), V(1,(long *))); break;
    case 10: V(0,(long *)) = ag_rp_10(); break;
    case 11: V(0,(long *)) = ag_rp_11(V(0,(long *))); break;
    case 12: V(0,(long *)) = ag_rp_12(V(0,(long *)), V(1,(long *))); break;
    case 13: V(0,(long *)) = ag_rp_13(); break;
    case 14: V(0,(long *)) = ag_rp_14(); break;
    case 15: V(0,(long *)) = ag_rp_15(); break;
    case 16: V(0,(long *)) = ag_rp_16(); break;
    case 17: V(0,(long *)) = ag_rp_17(V(0,(long *))); break;
    case 18: V(0,(long *)) = ag_rp_18(V(0,(long *)), V(1,(long *))); break;
    case 19: V(0,(long *)) = ag_rp_19(); break;
    case 20: V(0,(long *)) = ag_rp_20(); break;
    case 21: V(0,(long *)) = ag_rp_21(); break;
    case 22: V(0,(long *)) = ag_rp_22(); break;
    case 23: V(0,(long *)) = ag_rp_23(); break;
    case 24: V(0,(long *)) = ag_rp_24(); break;
    case 25: V(0,(long *)) = ag_rp_25(V(0,(long *))); break;
    case 26: V(0,(long *)) = ag_rp_26(); break;
    case 27: V(0,(long *)) = ag_rp_27(); break;
    case 28: V(0,(long *)) = ag_rp_28(); break;
    case 29: V(0,(long *)) = ag_rp_29(); break;
    case 30: V(0,(long *)) = ag_rp_30(); break;
    case 31: V(0,(long *)) = ag_rp_31(); break;
    case 32: V(0,(long *)) = ag_rp_32(); break;
    case 33: V(0,(long *)) = ag_rp_33(); break;
    case 34: V(0,(long *)) = ag_rp_34(V(0,(long *))); break;
  }
  (PCB).la_ptr = (PCB).pointer;
}

#define TOKEN_NAMES rcalc_token_names
const char *const rcalc_token_names[44] = {
  "calculation",
  "ws",
  "roman numeral",
  "calculation",
  "expression",
  "eof",
  "term",
  "'+'",
  "'-'",
  "factor",
  "'*'",
  "'/'",
  "\"NIHIL\"",
  "'('",
  "')'",
  "thousands",
  "hundreds",
  "",
  "m",
  "hundreds field",
  "tens",
  "",
  "c",
  "d",
  "count hundreds",
  "tens field",
  "units",
  "",
  "x",
  "l",
  "count tens",
  "i",
  "v",
  "count units",
  "",
  "",
  "'+'",
  "'-'",
  "'*'",
  "'/'",
  "roman numeral",
  "\"NIHIL\"",
  "')'",
  "'('",

};

#ifndef MISSING_FORMAT
#define MISSING_FORMAT "Missing %s"
#endif
#ifndef UNEXPECTED_FORMAT
#define UNEXPECTED_FORMAT "Unexpected %s"
#endif
#ifndef UNNAMED_TOKEN
#define UNNAMED_TOKEN "input"
#endif


static void ag_diagnose(void) {
  int ag_snd = (PCB).sn;
  int ag_k = ag_sbt[ag_snd];

  if (*TOKEN_NAMES[ag_tstt[ag_k]] && ag_astt[ag_k + 1] == ag_action_8) {
    sprintf((PCB).ag_msg, MISSING_FORMAT, TOKEN_NAMES[ag_tstt[ag_k]]);
  }
  else if (ag_astt[ag_sbe[(PCB).sn]] == ag_action_8
          && (ag_k = (int) ag_sbe[(PCB).sn] + 1) == (int) ag_sbt[(PCB).sn+1] - 1
          && *TOKEN_NAMES[ag_tstt[ag_k]]) {
    sprintf((PCB).ag_msg, MISSING_FORMAT, TOKEN_NAMES[ag_tstt[ag_k]]);
  }
  else if ((PCB).token_number && *TOKEN_NAMES[(PCB).token_number]) {
    sprintf((PCB).ag_msg, UNEXPECTED_FORMAT, TOKEN_NAMES[(PCB).token_number]);
  }
  else if (isprint(INPUT_CODE((*(PCB).pointer))) && INPUT_CODE((*(PCB).pointer)) != '\\') {
    char buf[20];
    sprintf(buf, "\'%c\'", (char) INPUT_CODE((*(PCB).pointer)));
    sprintf((PCB).ag_msg, UNEXPECTED_FORMAT, buf);
  }
  else sprintf((PCB).ag_msg, UNEXPECTED_FORMAT, UNNAMED_TOKEN);
  (PCB).error_message = (PCB).ag_msg;


}
static int ag_action_1_r_proc(void);
static int ag_action_2_r_proc(void);
static int ag_action_3_r_proc(void);
static int ag_action_4_r_proc(void);
static int ag_action_1_s_proc(void);
static int ag_action_3_s_proc(void);
static int ag_action_1_proc(void);
static int ag_action_2_proc(void);
static int ag_action_3_proc(void);
static int ag_action_4_proc(void);
static int ag_action_5_proc(void);
static int ag_action_6_proc(void);
static int ag_action_7_proc(void);
static int ag_action_8_proc(void);
static int ag_action_9_proc(void);
static int ag_action_10_proc(void);
static int ag_action_11_proc(void);
static int ag_action_8_proc(void);


static int (*const  ag_r_procs_scan[])(void) = {
  ag_action_1_r_proc,
  ag_action_2_r_proc,
  ag_action_3_r_proc,
  ag_action_4_r_proc
};

static int (*const  ag_s_procs_scan[])(void) = {
  ag_action_1_s_proc,
  ag_action_2_r_proc,
  ag_action_3_s_proc,
  ag_action_4_r_proc
};

static int (*const  ag_gt_procs_scan[])(void) = {
  ag_action_1_proc,
  ag_action_2_proc,
  ag_action_3_proc,
  ag_action_4_proc,
  ag_action_5_proc,
  ag_action_6_proc,
  ag_action_7_proc,
  ag_action_8_proc,
  ag_action_9_proc,
  ag_action_10_proc,
  ag_action_11_proc,
  ag_action_8_proc
};


static int ag_action_10_proc(void) {
  int ag_t = (PCB).token_number;
  (PCB).btsx = 0, (PCB).drt = -1;
  do {
    ag_track();
    (PCB).token_number = (rcalc_token_type) AG_TCV(INPUT_CODE(*(PCB).la_ptr));
    (PCB).la_ptr++;
    if (ag_key_index[(PCB).sn]) {
      unsigned ag_k = ag_key_index[(PCB).sn];
      int ag_ch = CONVERT_CASE(INPUT_CODE(*(PCB).pointer));
      if (ag_ch <= 255) {
        while (ag_key_ch[ag_k] < ag_ch) ag_k++;
        if (ag_key_ch[ag_k] == ag_ch) ag_get_key_word(ag_k);
      }
    }
  } while ((PCB).token_number == (rcalc_token_type) ag_t);
  (PCB).la_ptr =  (PCB).pointer;
  return 1;
}

static int ag_action_11_proc(void) {
  int ag_t = (PCB).token_number;

  (PCB).btsx = 0, (PCB).drt = -1;
  do {
    (*(int *) &(PCB).vs[(PCB).ssx]) = *(PCB).pointer;
    (PCB).ssx--;
    ag_track();
    ag_ra();
    if ((PCB).exit_flag != AG_RUNNING_CODE) return 0;
    (PCB).ssx++;
    (PCB).token_number = (rcalc_token_type) AG_TCV(INPUT_CODE(*(PCB).la_ptr));
    (PCB).la_ptr++;
    if (ag_key_index[(PCB).sn]) {
      unsigned ag_k = ag_key_index[(PCB).sn];
      int ag_ch = CONVERT_CASE(INPUT_CODE(*(PCB).pointer));
      if (ag_ch <= 255) {
        while (ag_key_ch[ag_k] < ag_ch) ag_k++;
        if (ag_key_ch[ag_k] == ag_ch) ag_get_key_word(ag_k);
      }
    }
  }
  while ((PCB).token_number == (rcalc_token_type) ag_t);
  (PCB).la_ptr =  (PCB).pointer;
  return 1;
}

static int ag_action_3_r_proc(void) {
  int ag_sd = ag_fl[(PCB).ag_ap] - 1;
  if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd];
  (PCB).btsx = 0, (PCB).drt = -1;
  (PCB).reduction_token = (rcalc_token_type) ag_ptt[(PCB).ag_ap];
  ag_ra();
  return (PCB).exit_flag == AG_RUNNING_CODE;
}

static int ag_action_3_s_proc(void) {
  int ag_sd = ag_fl[(PCB).ag_ap] - 1;
  if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd];
  (PCB).btsx = 0, (PCB).drt = -1;
  (PCB).reduction_token = (rcalc_token_type) ag_ptt[(PCB).ag_ap];
  ag_ra();
  return (PCB).exit_flag == AG_RUNNING_CODE;
}

static int ag_action_4_r_proc(void) {
  int ag_sd = ag_fl[(PCB).ag_ap] - 1;
  if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd];
  (PCB).reduction_token = (rcalc_token_type) ag_ptt[(PCB).ag_ap];
  return 1;
}

static int ag_action_2_proc(void) {
  (PCB).btsx = 0, (PCB).drt = -1;
  if ((PCB).ssx >= 128) {
    (PCB).exit_flag = AG_STACK_ERROR_CODE;
    PARSER_STACK_OVERFLOW;
  }
  (*(int *) &(PCB).vs[(PCB).ssx]) = *(PCB).pointer;
  GET_CONTEXT;
  (PCB).ss[(PCB).ssx] = (PCB).sn;
  (PCB).ssx++;
  (PCB).sn = (PCB).ag_ap;
  ag_track();
  return 0;
}

static int ag_action_9_proc(void) {
  if ((PCB).drt == -1) {
    (PCB).drt=(PCB).token_number;
    (PCB).dssx=(PCB).ssx;
    (PCB).dsn=(PCB).sn;
  }
  ag_prot();
  (PCB).vs[(PCB).ssx] = ag_null_value;
  GET_CONTEXT;
  (PCB).ss[(PCB).ssx] = (PCB).sn;
  (PCB).ssx++;
  (PCB).sn = (PCB).ag_ap;
  (PCB).la_ptr =  (PCB).pointer;
  return (PCB).exit_flag == AG_RUNNING_CODE;
}

static int ag_action_2_r_proc(void) {
  (PCB).ssx++;
  (PCB).sn = (PCB).ag_ap;
  return 0;
}

static int ag_action_7_proc(void) {
  --(PCB).ssx;
  (PCB).la_ptr =  (PCB).pointer;
  (PCB).exit_flag = AG_SUCCESS_CODE;
  return 0;
}

static int ag_action_1_proc(void) {
  ag_track();
  (PCB).exit_flag = AG_SUCCESS_CODE;
  return 0;
}

static int ag_action_1_r_proc(void) {
  (PCB).exit_flag = AG_SUCCESS_CODE;
  return 0;
}

static int ag_action_1_s_proc(void) {
  (PCB).exit_flag = AG_SUCCESS_CODE;
  return 0;
}

static int ag_action_4_proc(void) {
  int ag_sd = ag_fl[(PCB).ag_ap] - 1;
  (PCB).reduction_token = (rcalc_token_type) ag_ptt[(PCB).ag_ap];
  (PCB).btsx = 0, (PCB).drt = -1;
  (*(int *) &(PCB).vs[(PCB).ssx]) = *(PCB).pointer;
  if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd];
  else GET_CONTEXT;
  (PCB).ss[(PCB).ssx] = (PCB).sn;
  ag_track();
  while ((PCB).exit_flag == AG_RUNNING_CODE) {
    unsigned ag_t1 = ag_sbe[(PCB).sn] + 1;
    unsigned ag_t2 = ag_sbt[(PCB).sn+1] - 1;
    do {
      unsigned ag_tx = (ag_t1 + ag_t2)/2;
      if (ag_tstt[ag_tx] < (unsigned char)(PCB).reduction_token) ag_t1 = ag_tx + 1;
      else ag_t2 = ag_tx;
    } while (ag_t1 < ag_t2);
    (PCB).ag_ap = ag_pstt[ag_t1];
    if ((ag_s_procs_scan[ag_astt[ag_t1]])() == 0) break;
  }
  return 0;
}

static int ag_action_3_proc(void) {
  int ag_sd = ag_fl[(PCB).ag_ap] - 1;
  (PCB).btsx = 0, (PCB).drt = -1;
  (*(int *) &(PCB).vs[(PCB).ssx]) = *(PCB).pointer;
  if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd];
  else GET_CONTEXT;
  (PCB).ss[(PCB).ssx] = (PCB).sn;
  ag_track();
  (PCB).reduction_token = (rcalc_token_type) ag_ptt[(PCB).ag_ap];
  ag_ra();
  while ((PCB).exit_flag == AG_RUNNING_CODE) {
    unsigned ag_t1 = ag_sbe[(PCB).sn] + 1;
    unsigned ag_t2 = ag_sbt[(PCB).sn+1] - 1;
    do {
      unsigned ag_tx = (ag_t1 + ag_t2)/2;
      if (ag_tstt[ag_tx] < (unsigned char)(PCB).reduction_token) ag_t1 = ag_tx + 1;
      else ag_t2 = ag_tx;
    } while (ag_t1 < ag_t2);
    (PCB).ag_ap = ag_pstt[ag_t1];
    if ((ag_s_procs_scan[ag_astt[ag_t1]])() == 0) break;
  }
  return 0;
}

static int ag_action_8_proc(void) {
  ag_undo();
  (PCB).la_ptr =  (PCB).pointer;
  (PCB).exit_flag = AG_SYNTAX_ERROR_CODE;
  ag_diagnose();
  SYNTAX_ERROR;
  {(PCB).la_ptr = (PCB).pointer + 1; ag_track();}
  return (PCB).exit_flag == AG_RUNNING_CODE;
}

static int ag_action_5_proc(void) {
  int ag_sd = ag_fl[(PCB).ag_ap];
  (PCB).btsx = 0, (PCB).drt = -1;
  if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd];
  else {
    GET_CONTEXT;
    (PCB).ss[(PCB).ssx] = (PCB).sn;
  }
  (PCB).la_ptr =  (PCB).pointer;
  (PCB).reduction_token = (rcalc_token_type) ag_ptt[(PCB).ag_ap];
  ag_ra();
  while ((PCB).exit_flag == AG_RUNNING_CODE) {
    unsigned ag_t1 = ag_sbe[(PCB).sn] + 1;
    unsigned ag_t2 = ag_sbt[(PCB).sn+1] - 1;
    do {
      unsigned ag_tx = (ag_t1 + ag_t2)/2;
      if (ag_tstt[ag_tx] < (unsigned char)(PCB).reduction_token) ag_t1 = ag_tx + 1;
      else ag_t2 = ag_tx;
    } while (ag_t1 < ag_t2);
    (PCB).ag_ap = ag_pstt[ag_t1];
    if ((ag_r_procs_scan[ag_astt[ag_t1]])() == 0) break;
  }
  return (PCB).exit_flag == AG_RUNNING_CODE;
}

static int ag_action_6_proc(void) {
  int ag_sd = ag_fl[(PCB).ag_ap];
  (PCB).reduction_token = (rcalc_token_type) ag_ptt[(PCB).ag_ap];
  if ((PCB).drt == -1) {
    (PCB).drt=(PCB).token_number;
    (PCB).dssx=(PCB).ssx;
    (PCB).dsn=(PCB).sn;
  }
  if (ag_sd) {
    (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd];
  }
  else {
    ag_prot();
    (PCB).vs[(PCB).ssx] = ag_null_value;
    GET_CONTEXT;
    (PCB).ss[(PCB).ssx] = (PCB).sn;
  }
  (PCB).la_ptr =  (PCB).pointer;
  while ((PCB).exit_flag == AG_RUNNING_CODE) {
    unsigned ag_t1 = ag_sbe[(PCB).sn] + 1;
    unsigned ag_t2 = ag_sbt[(PCB).sn+1] - 1;
    do {
      unsigned ag_tx = (ag_t1 + ag_t2)/2;
      if (ag_tstt[ag_tx] < (unsigned char)(PCB).reduction_token) ag_t1 = ag_tx + 1;
      else ag_t2 = ag_tx;
    } while (ag_t1 < ag_t2);
    (PCB).ag_ap = ag_pstt[ag_t1];
    if ((ag_r_procs_scan[ag_astt[ag_t1]])() == 0) break;
  }
  return (PCB).exit_flag == AG_RUNNING_CODE;
}


void init_rcalc(void) {
  (PCB).la_ptr = (PCB).pointer;
  (PCB).ss[0] = (PCB).sn = (PCB).ssx = 0;
  (PCB).exit_flag = AG_RUNNING_CODE;
  (PCB).line = FIRST_LINE;
  (PCB).column = FIRST_COLUMN;
  (PCB).btsx = 0, (PCB).drt = -1;
}

void rcalc(void) {
  init_rcalc();
  (PCB).exit_flag = AG_RUNNING_CODE;
  while ((PCB).exit_flag == AG_RUNNING_CODE) {
    unsigned ag_t1 = ag_sbt[(PCB).sn];
    if (ag_tstt[ag_t1]) {
      unsigned ag_t2 = ag_sbe[(PCB).sn] - 1;
      (PCB).token_number = (rcalc_token_type) AG_TCV(INPUT_CODE(*(PCB).la_ptr));
      (PCB).la_ptr++;
      if (ag_key_index[(PCB).sn]) {
        unsigned ag_k = ag_key_index[(PCB).sn];
        int ag_ch = CONVERT_CASE(INPUT_CODE(*(PCB).pointer));
        if (ag_ch <= 255) {
          while (ag_key_ch[ag_k] < ag_ch) ag_k++;
          if (ag_key_ch[ag_k] == ag_ch) ag_get_key_word(ag_k);
        }
      }
      do {
        unsigned ag_tx = (ag_t1 + ag_t2)/2;
        if (ag_tstt[ag_tx] > (unsigned char)(PCB).token_number)
          ag_t1 = ag_tx + 1;
        else ag_t2 = ag_tx;
      } while (ag_t1 < ag_t2);
      if (ag_tstt[ag_t1] != (unsigned char)(PCB).token_number)
        ag_t1 = ag_sbe[(PCB).sn];
    }
    (PCB).ag_ap = ag_pstt[ag_t1];
    (ag_gt_procs_scan[ag_astt[ag_t1]])();
  }
}