Mercurial > ~dholland > hg > ag > index.cgi
view tests/agcl/examples/good/hw2.cpp @ 0:13d2b8934445
Import AnaGram (near-)release tree into Mercurial.
author | David A. Holland |
---|---|
date | Sat, 22 Dec 2007 17:52:45 -0500 |
parents | |
children |
line wrap: on
line source
/* * AnaGram, A System for Syntax Directed Programming * File generated by: ... * * AnaGram Parsing Engine * Copyright 1993-2002 Parsifal Software. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #ifndef HW2_H #include "hw2.h" #endif #ifndef HW2_H #error Mismatched header file #endif #include <ctype.h> #include <stdio.h> #define RULE_CONTEXT (&((PCB).cs[(PCB).ssx])) #define ERROR_CONTEXT ((PCB).cs[(PCB).error_frame_ssx]) #define CONTEXT ((PCB).cs[(PCB).ssx]) hw2_pcb_type hw2_pcb; #define PCB hw2_pcb /* Line -, hw2.syn */ // Start of embedded C #include <iostream> int main(void) { hw2(); // Call Parser return 0; } #ifndef CONVERT_CASE #define CONVERT_CASE(c) (c) #endif #ifndef TAB_SPACING #define TAB_SPACING 8 #endif #define ag_rp_1() (cout << "Hello, world!\n") #define READ_COUNTS #define WRITE_COUNTS #undef V #define V(i,t) (*t (&(PCB).vs[(PCB).ssx + i])) #undef VS #define VS(i) (PCB).vs[(PCB).ssx + i] #ifndef GET_CONTEXT #define GET_CONTEXT CONTEXT = (PCB).input_context #endif typedef enum { ag_action_1, ag_action_2, ag_action_3, ag_action_4, ag_action_5, ag_action_6, ag_action_7, ag_action_8, ag_action_9, ag_action_10, ag_action_11, ag_action_12 } ag_parser_action; #ifndef NULL_VALUE_INITIALIZER #define NULL_VALUE_INITIALIZER = 0 #endif static int const ag_null_value NULL_VALUE_INITIALIZER; static const unsigned char ag_rpx[] = { 0, 1 }; #define AG_TCV(x) (((int)(x) >= 0 && (int)(x) <= 255) ? ag_tcv[(x)] : 0) static const unsigned char ag_tcv[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; #ifndef SYNTAX_ERROR #define SYNTAX_ERROR fprintf(stderr,"%s, line %d, column %d\n", \ (PCB).error_message, (PCB).line, (PCB).column) #endif #ifndef FIRST_LINE #define FIRST_LINE 1 #endif #ifndef FIRST_COLUMN #define FIRST_COLUMN 1 #endif #ifndef PARSER_STACK_OVERFLOW #define PARSER_STACK_OVERFLOW {fprintf(stderr, \ "\nParser stack overflow, line %d, column %d\n",\ (PCB).line, (PCB).column);} #endif #ifndef REDUCTION_TOKEN_ERROR #define REDUCTION_TOKEN_ERROR {fprintf(stderr, \ "\nReduction token error, line %d, column %d\n", \ (PCB).line, (PCB).column);} #endif #ifndef GET_INPUT #define GET_INPUT ((PCB).input_code = getchar()) #endif #ifndef AG_NEWLINE #define AG_NEWLINE 10 #endif #ifndef AG_RETURN #define AG_RETURN 13 #endif #ifndef AG_FORMFEED #define AG_FORMFEED 12 #endif #ifndef AG_TABCHAR #define AG_TABCHAR 9 #endif static void ag_track(void) { switch ((PCB).input_code) { case AG_NEWLINE: (PCB).column = 1, (PCB).line++; case AG_RETURN: case AG_FORMFEED: break; case AG_TABCHAR: (PCB).column += (TAB_SPACING) - ((PCB).column - 1) % (TAB_SPACING); break; default: (PCB).column++; } (PCB).read_flag = 1; } static void ag_prot(void) { int ag_k; ag_k = 128 - ++(PCB).btsx; if (ag_k <= (PCB).ssx) { (PCB).exit_flag = AG_STACK_ERROR_CODE; PARSER_STACK_OVERFLOW; return; } (PCB).bts[(PCB).btsx] = (PCB).sn; (PCB).bts[ag_k] = (PCB).ssx; (PCB).vs[ag_k] = (PCB).vs[(PCB).ssx]; (PCB).ss[ag_k] = (PCB).ss[(PCB).ssx]; } static void ag_undo(void) { if ((PCB).drt == -1) return; while ((PCB).btsx) { int ag_k = 128 - (PCB).btsx; (PCB).sn = (PCB).bts[(PCB).btsx--]; (PCB).ssx = (PCB).bts[ag_k]; (PCB).vs[(PCB).ssx] = (PCB).vs[ag_k]; (PCB).ss[(PCB).ssx] = (PCB).ss[ag_k]; } (PCB).token_number = (hw2_token_type) (PCB).drt; (PCB).ssx = (PCB).dssx; (PCB).sn = (PCB).dsn; (PCB).drt = -1; } static const unsigned char ag_tstt[] = { 2,0,1, }; static unsigned const char ag_astt[3] = { 2,7,0 }; static const unsigned char ag_pstt[] = { 1,0,0, }; static const unsigned char ag_sbt[] = { 0, 3 }; static const unsigned char ag_sbe[] = { 1, 3 }; static const unsigned char ag_fl[] = { 1,1 }; static const unsigned char ag_ptt[] = { 0, 1 }; static void ag_ra(void) { switch(ag_rpx[(PCB).ag_ap]) { case 1: ag_rp_1(); break; } } #define TOKEN_NAMES hw2_token_names const char *const hw2_token_names[3] = { "grammar", "grammar", "'\\n'", }; #ifndef MISSING_FORMAT #define MISSING_FORMAT "Missing %s" #endif #ifndef UNEXPECTED_FORMAT #define UNEXPECTED_FORMAT "Unexpected %s" #endif #ifndef UNNAMED_TOKEN #define UNNAMED_TOKEN "input" #endif static void ag_diagnose(void) { int ag_snd = (PCB).sn; int ag_k = ag_sbt[ag_snd]; if (*TOKEN_NAMES[ag_tstt[ag_k]] && ag_astt[ag_k + 1] == ag_action_8) { sprintf((PCB).ag_msg, MISSING_FORMAT, TOKEN_NAMES[ag_tstt[ag_k]]); } else if (ag_astt[ag_sbe[(PCB).sn]] == ag_action_8 && (ag_k = (int) ag_sbe[(PCB).sn] + 1) == (int) ag_sbt[(PCB).sn+1] - 1 && *TOKEN_NAMES[ag_tstt[ag_k]]) { sprintf((PCB).ag_msg, MISSING_FORMAT, TOKEN_NAMES[ag_tstt[ag_k]]); } else if ((PCB).token_number && *TOKEN_NAMES[(PCB).token_number]) { sprintf((PCB).ag_msg, UNEXPECTED_FORMAT, TOKEN_NAMES[(PCB).token_number]); } else if (isprint(((PCB).input_code)) && ((PCB).input_code) != '\\') { char buf[20]; sprintf(buf, "\'%c\'", (char) ((PCB).input_code)); sprintf((PCB).ag_msg, UNEXPECTED_FORMAT, buf); } else sprintf((PCB).ag_msg, UNEXPECTED_FORMAT, UNNAMED_TOKEN); (PCB).error_message = (PCB).ag_msg; } static int ag_action_1_r_proc(void); static int ag_action_2_r_proc(void); static int ag_action_3_r_proc(void); static int ag_action_4_r_proc(void); static int ag_action_1_s_proc(void); static int ag_action_3_s_proc(void); static int ag_action_1_proc(void); static int ag_action_2_proc(void); static int ag_action_3_proc(void); static int ag_action_4_proc(void); static int ag_action_5_proc(void); static int ag_action_6_proc(void); static int ag_action_7_proc(void); static int ag_action_8_proc(void); static int ag_action_9_proc(void); static int ag_action_10_proc(void); static int ag_action_11_proc(void); static int ag_action_8_proc(void); static int (*const ag_r_procs_scan[])(void) = { ag_action_1_r_proc, ag_action_2_r_proc, ag_action_3_r_proc, ag_action_4_r_proc }; static int (*const ag_s_procs_scan[])(void) = { ag_action_1_s_proc, ag_action_2_r_proc, ag_action_3_s_proc, ag_action_4_r_proc }; static int (*const ag_gt_procs_scan[])(void) = { ag_action_1_proc, ag_action_2_proc, ag_action_3_proc, ag_action_4_proc, ag_action_5_proc, ag_action_6_proc, ag_action_7_proc, ag_action_8_proc, ag_action_9_proc, ag_action_10_proc, ag_action_11_proc, ag_action_8_proc }; static int ag_action_10_proc(void) { int ag_t = (PCB).token_number; (PCB).btsx = 0, (PCB).drt = -1; do { ag_track(); if ((PCB).read_flag) { (PCB).read_flag = 0; GET_INPUT; }; (PCB).token_number = (hw2_token_type) AG_TCV((PCB).input_code); } while ((PCB).token_number == (hw2_token_type) ag_t); return 1; } static int ag_action_11_proc(void) { int ag_t = (PCB).token_number; (PCB).btsx = 0, (PCB).drt = -1; do { (PCB).vs[(PCB).ssx] = (PCB).input_code; (PCB).ssx--; ag_track(); ag_ra(); if ((PCB).exit_flag != AG_RUNNING_CODE) return 0; (PCB).ssx++; if ((PCB).read_flag) { (PCB).read_flag = 0; GET_INPUT; }; (PCB).token_number = (hw2_token_type) AG_TCV((PCB).input_code); } while ((PCB).token_number == (hw2_token_type) ag_t); return 1; } static int ag_action_3_r_proc(void) { int ag_sd = ag_fl[(PCB).ag_ap] - 1; if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; (PCB).btsx = 0, (PCB).drt = -1; (PCB).reduction_token = (hw2_token_type) ag_ptt[(PCB).ag_ap]; ag_ra(); return (PCB).exit_flag == AG_RUNNING_CODE; } static int ag_action_3_s_proc(void) { int ag_sd = ag_fl[(PCB).ag_ap] - 1; if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; (PCB).btsx = 0, (PCB).drt = -1; (PCB).reduction_token = (hw2_token_type) ag_ptt[(PCB).ag_ap]; ag_ra(); return (PCB).exit_flag == AG_RUNNING_CODE; } static int ag_action_4_r_proc(void) { int ag_sd = ag_fl[(PCB).ag_ap] - 1; if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; (PCB).reduction_token = (hw2_token_type) ag_ptt[(PCB).ag_ap]; return 1; } static int ag_action_2_proc(void) { (PCB).btsx = 0, (PCB).drt = -1; if ((PCB).ssx >= 128) { (PCB).exit_flag = AG_STACK_ERROR_CODE; PARSER_STACK_OVERFLOW; } (PCB).vs[(PCB).ssx] = (PCB).input_code; (PCB).ss[(PCB).ssx] = (PCB).sn; (PCB).ssx++; (PCB).sn = (PCB).ag_ap; ag_track(); return 0; } static int ag_action_9_proc(void) { if ((PCB).drt == -1) { (PCB).drt=(PCB).token_number; (PCB).dssx=(PCB).ssx; (PCB).dsn=(PCB).sn; } ag_prot(); (PCB).vs[(PCB).ssx] = ag_null_value; (PCB).ss[(PCB).ssx] = (PCB).sn; (PCB).ssx++; (PCB).sn = (PCB).ag_ap; return (PCB).exit_flag == AG_RUNNING_CODE; } static int ag_action_2_r_proc(void) { (PCB).ssx++; (PCB).sn = (PCB).ag_ap; return 0; } static int ag_action_7_proc(void) { --(PCB).ssx; (PCB).exit_flag = AG_SUCCESS_CODE; return 0; } static int ag_action_1_proc(void) { ag_track(); (PCB).exit_flag = AG_SUCCESS_CODE; return 0; } static int ag_action_1_r_proc(void) { (PCB).exit_flag = AG_SUCCESS_CODE; return 0; } static int ag_action_1_s_proc(void) { (PCB).exit_flag = AG_SUCCESS_CODE; return 0; } static int ag_action_4_proc(void) { int ag_sd = ag_fl[(PCB).ag_ap] - 1; (PCB).reduction_token = (hw2_token_type) ag_ptt[(PCB).ag_ap]; (PCB).btsx = 0, (PCB).drt = -1; (PCB).vs[(PCB).ssx] = (PCB).input_code; if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; else (PCB).ss[(PCB).ssx] = (PCB).sn; ag_track(); while ((PCB).exit_flag == AG_RUNNING_CODE) { unsigned ag_t1 = ag_sbe[(PCB).sn] + 1; unsigned ag_t2 = ag_sbt[(PCB).sn+1] - 1; do { unsigned ag_tx = (ag_t1 + ag_t2)/2; if (ag_tstt[ag_tx] < (unsigned char)(PCB).reduction_token) ag_t1 = ag_tx + 1; else ag_t2 = ag_tx; } while (ag_t1 < ag_t2); (PCB).ag_ap = ag_pstt[ag_t1]; if ((ag_s_procs_scan[ag_astt[ag_t1]])() == 0) break; } return 0; } static int ag_action_3_proc(void) { int ag_sd = ag_fl[(PCB).ag_ap] - 1; (PCB).btsx = 0, (PCB).drt = -1; (PCB).vs[(PCB).ssx] = (PCB).input_code; if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; else (PCB).ss[(PCB).ssx] = (PCB).sn; ag_track(); (PCB).reduction_token = (hw2_token_type) ag_ptt[(PCB).ag_ap]; ag_ra(); while ((PCB).exit_flag == AG_RUNNING_CODE) { unsigned ag_t1 = ag_sbe[(PCB).sn] + 1; unsigned ag_t2 = ag_sbt[(PCB).sn+1] - 1; do { unsigned ag_tx = (ag_t1 + ag_t2)/2; if (ag_tstt[ag_tx] < (unsigned char)(PCB).reduction_token) ag_t1 = ag_tx + 1; else ag_t2 = ag_tx; } while (ag_t1 < ag_t2); (PCB).ag_ap = ag_pstt[ag_t1]; if ((ag_s_procs_scan[ag_astt[ag_t1]])() == 0) break; } return 0; } static int ag_action_8_proc(void) { ag_undo(); (PCB).exit_flag = AG_SYNTAX_ERROR_CODE; ag_diagnose(); SYNTAX_ERROR; ag_track(); return (PCB).exit_flag == AG_RUNNING_CODE; } static int ag_action_5_proc(void) { int ag_sd = ag_fl[(PCB).ag_ap]; (PCB).btsx = 0, (PCB).drt = -1; if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; else { (PCB).ss[(PCB).ssx] = (PCB).sn; } (PCB).reduction_token = (hw2_token_type) ag_ptt[(PCB).ag_ap]; ag_ra(); while ((PCB).exit_flag == AG_RUNNING_CODE) { unsigned ag_t1 = ag_sbe[(PCB).sn] + 1; unsigned ag_t2 = ag_sbt[(PCB).sn+1] - 1; do { unsigned ag_tx = (ag_t1 + ag_t2)/2; if (ag_tstt[ag_tx] < (unsigned char)(PCB).reduction_token) ag_t1 = ag_tx + 1; else ag_t2 = ag_tx; } while (ag_t1 < ag_t2); (PCB).ag_ap = ag_pstt[ag_t1]; if ((ag_r_procs_scan[ag_astt[ag_t1]])() == 0) break; } return (PCB).exit_flag == AG_RUNNING_CODE; } static int ag_action_6_proc(void) { int ag_sd = ag_fl[(PCB).ag_ap]; (PCB).reduction_token = (hw2_token_type) ag_ptt[(PCB).ag_ap]; if ((PCB).drt == -1) { (PCB).drt=(PCB).token_number; (PCB).dssx=(PCB).ssx; (PCB).dsn=(PCB).sn; } if (ag_sd) { (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; } else { ag_prot(); (PCB).vs[(PCB).ssx] = ag_null_value; (PCB).ss[(PCB).ssx] = (PCB).sn; } while ((PCB).exit_flag == AG_RUNNING_CODE) { unsigned ag_t1 = ag_sbe[(PCB).sn] + 1; unsigned ag_t2 = ag_sbt[(PCB).sn+1] - 1; do { unsigned ag_tx = (ag_t1 + ag_t2)/2; if (ag_tstt[ag_tx] < (unsigned char)(PCB).reduction_token) ag_t1 = ag_tx + 1; else ag_t2 = ag_tx; } while (ag_t1 < ag_t2); (PCB).ag_ap = ag_pstt[ag_t1]; if ((ag_r_procs_scan[ag_astt[ag_t1]])() == 0) break; } return (PCB).exit_flag == AG_RUNNING_CODE; } void init_hw2(void) { (PCB).read_flag = 1; (PCB).ss[0] = (PCB).sn = (PCB).ssx = 0; (PCB).exit_flag = AG_RUNNING_CODE; (PCB).line = FIRST_LINE; (PCB).column = FIRST_COLUMN; (PCB).btsx = 0, (PCB).drt = -1; } void hw2(void) { init_hw2(); (PCB).exit_flag = AG_RUNNING_CODE; while ((PCB).exit_flag == AG_RUNNING_CODE) { unsigned ag_t1 = ag_sbt[(PCB).sn]; if (ag_tstt[ag_t1]) { unsigned ag_t2 = ag_sbe[(PCB).sn] - 1; if ((PCB).read_flag) { (PCB).read_flag = 0; GET_INPUT; }; (PCB).token_number = (hw2_token_type) AG_TCV((PCB).input_code); do { unsigned ag_tx = (ag_t1 + ag_t2)/2; if (ag_tstt[ag_tx] > (unsigned char)(PCB).token_number) ag_t1 = ag_tx + 1; else ag_t2 = ag_tx; } while (ag_t1 < ag_t2); if (ag_tstt[ag_t1] != (unsigned char)(PCB).token_number) ag_t1 = ag_sbe[(PCB).sn]; } (PCB).ag_ap = ag_pstt[ag_t1]; (ag_gt_procs_scan[ag_astt[ag_t1]])(); } }