Mercurial > ~dholland > hg > ag > index.cgi
view anagram/agcore/engine.cgs @ 0:13d2b8934445
Import AnaGram (near-)release tree into Mercurial.
author | David A. Holland |
---|---|
date | Sat, 22 Dec 2007 17:52:45 -0500 |
parents | |
children | 1c9dac05d040 |
line wrap: on
line source
copyright /* * AnaGram, A System for Syntax Directed Programming * File generated by: %s, built %s * * AnaGram Parsing Engine * Copyright 1993-2002 Parsifal Software. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ ## broken This copy of AnaGram appears to have been damaged or miscompiled. New copies may be obtained via http://www.parsifalsoft.com. ## header, chain header #include <stdio.h> #define RULE_CONTEXT (&((PCB).cs[(PCB).ssx])) #define ERROR_CONTEXT ((PCB).cs[(PCB).error_frame_ssx]) #define CONTEXT ((PCB).cs[(PCB).ssx]) ## function macro defs AG_GET_KEY_WORD ag_get_key_word(THISARGC#int ag_k) AG_RNS ag_rns(THISARGC#int ag_t, int *ag_sx, int ag_snd) AG_JNS ag_jns(THISARGC#int ag_t) AG_ATX ag_atx(THISARGC#int ag_t, int *ag_sx, int ag_snd) AG_CHECK_DEPTH ag_check_depth(THISARGC#int ag_fl) AG_VALID ag_valid(THISARGC#int ag_k) AG_DEFAULT ag_default(THISARGC#CONST int *ag_tp) ## function macro defs old style AG_GET_KEY_WORD ag_get_key_word(ag_k) int ag_k; AG_RNS ag_rns(ag_t,*ag_sx, ag_snd) int ag_t,*ag_sx,ag_snd; AG_JNS ag_jns(ag_t) int ag_t; AG_ATX ag_atx(ag_t,*ag_sx,ag_snd) int ag_t,*ag_sx,ag_snd; AG_CHECK_DEPTH ag_check_depth(ag_fl) int ag_fl; AG_VALID ag_valid(ag_k) int ag_k; AG_DEFAULT ag_default(ag_tp) int *ag_tp; ## pcbHeader typedef struct %s{ %s token_number, reduction_token, error_frame_token; int input_code; %s input_value; int line, column; int ssx, sn, error_frame_ssx; int drt, dssx, dsn; int ss[%d]; %s vs[%d]; int ag_ap; const char *error_message; char read_flag; char exit_flag; ## pcbTail } %s; #ifndef PRULE_CONTEXT #define PRULE_CONTEXT(pcb) (&((pcb).cs[(pcb).ssx])) #define PERROR_CONTEXT(pcb) ((pcb).cs[(pcb).error_frame_ssx]) #define PCONTEXT(pcb) ((pcb).cs[(pcb).ssx]) #endif #ifndef AG_RUNNING_CODE /* PCB.exit_flag values */ #define AG_RUNNING_CODE 0 #define AG_SUCCESS_CODE 1 #define AG_SYNTAX_ERROR_CODE 2 #define AG_REDUCTION_ERROR_CODE 3 #define AG_STACK_ERROR_CODE 4 #define AG_SEMANTIC_ERROR_CODE 5 #endif ## wrap decls #undef VW #define VW(i,t) *(t) (&(PCB).vs[(PCB).ssx + (i)]) #undef VNO #define VNO new(&(PCB).vs[(PCB).ssx]) #undef VRO #define VRO(to,v) ag_replace_object((to) &(PCB).vs[(PCB).ssx], v) #undef VWD #define VWD(i,t) ag_delete_object((t) &(PCB).vs[(PCB).ssx + (i)]); #undef VDO #define VDO(to, v) ag_delete_object((to) &(PCB).vs[(PCB).ssx], v) template <class NewObject, class OldObject> static inline void ag_replace_object(AgObjectWrapper<OldObject> *p, const NewObject &o) { delete p; new(p) AgObjectWrapper<NewObject >(o); } template <class Object> static inline void ag_delete_object(AgObjectWrapper<Object> *p) { delete p; } template <class NewObject, class OldObject> static inline const NewObject &ag_delete_object(AgObjectWrapper<OldObject> *p, const NewObject &o) { delete p; return o; } ## wrapper def #ifndef AG_OBJECT_WRAPPER_DEFINED #define AG_OBJECT_WRAPPER_DEFINED #ifndef AG_PLACEMENT_DELETE_REQUIRED #if _MSC_VER >= 1200 || __INTEL_COMPILER #define AG_PLACEMENT_DELETE_REQUIRED 1 #endif #endif template <class Object> class AgObjectWrapper { Object object; public: void operator delete(void *) {} void *operator new(size_t, void *p) { return p;} #if AG_PLACEMENT_DELETE_REQUIRED void operator delete(void *, void *) { } #endif AgObjectWrapper(const Object &o) : object(o) {} ~AgObjectWrapper() {} operator Object &() {return object;} }; #endif ## declarations #undef V #define V(i,t) (*t (&(PCB).vs[(PCB).ssx + i])) #undef VS #define VS(i) (PCB).vs[(PCB).ssx + i] #ifndef GET_CONTEXT #define GET_CONTEXT CONTEXT = (PCB).input_context #endif typedef enum { ag_shift_accept, ag_go_to, ag_shift_reduce, ag_shift_simple_reduce, ag_reduce_form, ag_simple_reduce, ag_accept, ag_syn_error, ag_null_go_to, ag_skip, ag_skip_reduce, ag_recover } ag_parser_action; ## toupper #ifndef CONVERT_CASE static int agConvertCase(int c) { if (c >= 'a' && c <= 'z') return c ^ 0x20; return c; } #define CONVERT_CASE(c) agConvertCase(c) #endif ## toupper latin #ifndef CONVERT_CASE static const char agCaseTable[31] = { 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20 }; static int agConvertCase(int c) { if (c >= 'a' && c <= 'z') return c ^= 0x20; if (c >= 0xe0 && c < 0xff) c ^= agCaseTable[c-0xe0]; return c; } #define CONVERT_CASE(c) agConvertCase(c) #endif ## declare macros AG_OVERFLOW \ AG_TRACE_ERROR\ (PCB).exit_flag = AG_STACK_ERROR_CODE;\ PARSER_STACK_OVERFLOW; ag_shift_accept ag_action_1 ag_go_to ag_action_2 ag_shift_reduce ag_action_3 ag_shift_simple_reduce ag_action_4 ag_reduce_form ag_action_5 ag_simple_reduce ag_action_6 ag_accept ag_action_7 ag_syn_error ag_action_8 ag_null_go_to ag_action_9 ag_skip ag_action_10 ag_skip_reduce ag_action_11 ag_recover ag_action_12 ag_shift_accept_proc ag_action_1_proc ag_go_to_proc ag_action_2_proc ag_shift_reduce_proc ag_action_3_proc ag_simple_shift_reduce_proc ag_action_4_proc ag_reduce_proc ag_action_5_proc ag_simple_reduce_proc ag_action_6_proc ag_accept_proc ag_action_7_proc ag_error_proc ag_action_8_proc ag_null_go_to_proc ag_action_9_proc ag_skip_proc ag_action_10_proc ag_skip_reduce_proc ag_action_11_proc ag_recover_proc ag_action_12_proc ag_er_shift_accept_proc ag_action_1_er_proc ag_er_go_to_proc ag_action_2_er_proc ag_er_shift_reduce_proc ag_action_3_er_proc ag_er_simple_shift_reduce_proc ag_action_4_er_proc ag_r_shift_accept_proc ag_action_1_r_proc ag_r_go_to_proc ag_action_2_r_proc ag_r_simple_shift_reduce_error_proc ag_action_3_er_proc ag_s_shift_accept_proc ag_action_1_s_proc ag_go_to_error_proc ag_action_2_e_proc ag_simple_shift_reduce_error_proc ag_action_4_e_proc ag_simple_reduce_error_proc ag_action_6_e_proc ag_skip_reduce_error_proc ag_action_11_e_proc ag_r_shift_reduce_proc ag_action_3_r_proc ag_r_simple_shift_reduce_proc ag_action_4_r_proc ag_s_shift_reduce_proc ag_action_3_s_proc ## error trace #ifndef AG_TRACE_FILE_NAME #define AG_TRACE_FILE_NAME AG_TRACE_FILE #endif STATIC#VOID NEAR#QUAL#ag_trace_error(THISARG) { FILE *ag_file = fopen(AG_TRACE_FILE_NAME, "w"); int i; if (ag_file == NULL) return; fprintf(ag_file, "%d\n", (PCB).ssx); for (i = 0; i < (PCB).ssx; i++) fprintf(ag_file, "%d\n", (PCB).ss[i]); fprintf(ag_file, "%d\n", (PCB).sn); fprintf(ag_file, "%d\n", (PCB).token_number); fclose(ag_file); } ## read write counts AG_READ_COUNTS { FILE *ag_file = fopen(AG_COUNT_FILE, "r"); int i; if (ag_file) { long ag_file_id; fscanf(ag_file, "%ld", &ag_file_id); if (ag_file_id == AG_COUNT_FILE_ID) { for (i = 0; i < AG_COUNT_FILE_RC; i++) fscanf(ag_file,"%u", &(AG_RULE_COUNT[i])); fclose(ag_file); return; } } for (i = 0; i < AG_COUNT_FILE_RC; i++) AG_RULE_COUNT[i] = 0; } AG_WRITE_COUNTS { FILE *ag_file = fopen(AG_COUNT_FILE, "w"); int i; if (ag_file == NULL) return; fprintf(ag_file, "%ld\n", AG_COUNT_FILE_ID); for (i = 0; i < AG_COUNT_FILE_RC; i++) fprintf(ag_file,"%u\n", AG_RULE_COUNT[i]); fclose(ag_file); } ## parse action macros AG_GT ag_gt_procs_scan AG_SR ag_s_procs_scan AG_RD ag_r_procs_scan AG_INIT_RESYNCH ## error resynch macros AG_GT ag_gt_procs_scan AG_SR ag_s_procs_scan AG_RD ag_r_procs_scan AG_ER ag_er_procs_scan AG_INIT_RESYNCH ## init col #ifndef SYNTAX_ERROR #define SYNTAX_ERROR fprintf(stderr,"%s, line %d, column %d\n", \ (PCB).error_message, (PCB).line, (PCB).column) #endif #ifndef FIRST_LINE #define FIRST_LINE 1 #endif #ifndef FIRST_COLUMN #define FIRST_COLUMN 1 #endif #ifndef PARSER_STACK_OVERFLOW #define PARSER_STACK_OVERFLOW {fprintf(stderr, \ "\nParser stack overflow, line %d, column %d\n",\ (PCB).line, (PCB).column);} #endif #ifndef REDUCTION_TOKEN_ERROR #define REDUCTION_TOKEN_ERROR {fprintf(stderr, \ "\nReduction token error, line %d, column %d\n", \ (PCB).line, (PCB).column);} #endif ## init nocol #ifndef SYNTAX_ERROR #define SYNTAX_ERROR fprintf(stderr,"%s\n", (PCB).error_message) #endif #ifndef PARSER_STACK_OVERFLOW #define PARSER_STACK_OVERFLOW {fprintf(stderr, \ "\nParser stack overflow\n");} #endif #ifndef REDUCTION_TOKEN_ERROR #define REDUCTION_TOKEN_ERROR {fprintf(stderr, \ "\nReduction token error\n");} #endif ## backtrack off ## backtrack off macros AG_STACK AG_SAVE_CONTEXT\ (PCB).ss[(PCB).ssx] = (PCB).sn; AG_CHKOVFLO if ((PCB).ssx >= AG_PARSER_STACK_SIZE) {\ AG_TRACE_ERROR\ (PCB).exit_flag = AG_STACK_ERROR_CODE;\ PARSER_STACK_OVERFLOW;\ } AG_PROT if ((PCB).ssx >= AG_PARSER_STACK_SIZE) {\ AG_TRACE_ERROR\ (PCB).exit_flag = AG_STACK_ERROR_CODE;\ PARSER_STACK_OVERFLOW;\ } AG_PROTX if ((PCB).ssx >= AG_PARSER_STACK_SIZE) {\ AG_TRACE_ERROR\ (PCB).exit_flag = AG_STACK_ERROR_CODE;\ PARSER_STACK_OVERFLOW;\ } AG_SET_BACK AG_UNDO AG_CLEAR_BACK AG_PROT_CONTEXT AG_UNDO_CONTEXT ## backtrack on STATIC#VOID NEAR#QUAL#ag_prot(THISARG) { int ag_k; ag_k = AG_PARSER_STACK_SIZE - ++(PCB).btsx; if (ag_k <= (PCB).ssx) { AG_OVERFLOW return; } (PCB).bts[(PCB).btsx] = (PCB).sn; (PCB).bts[ag_k] = (PCB).ssx; (PCB).vs[ag_k] = (PCB).vs[(PCB).ssx]; (PCB).ss[ag_k] = (PCB).ss[(PCB).ssx]; AG_PROT_CONTEXT } STATIC#VOID NEAR#QUAL#ag_undo(THISARG) { if ((PCB).drt == -1) return; while ((PCB).btsx) { int ag_k = AG_PARSER_STACK_SIZE - (PCB).btsx; (PCB).sn = (PCB).bts[(PCB).btsx--]; (PCB).ssx = (PCB).bts[ag_k]; (PCB).vs[(PCB).ssx] = (PCB).vs[ag_k]; (PCB).ss[(PCB).ssx] = (PCB).ss[ag_k]; AG_UNDO_CONTEXT } (PCB).token_number = (AG_TOKEN_TYPE) (PCB).drt; (PCB).ssx = (PCB).dssx; (PCB).sn = (PCB).dsn; (PCB).drt = -1; } ## backtrack on macros AG_CLEAR_BACK (PCB).btsx = 0, (PCB).drt = -1; AG_SET_BACK if ((PCB).drt == -1) {\ (PCB).drt=(PCB).token_number;\ (PCB).dssx=(PCB).ssx;\ (PCB).dsn=(PCB).sn;\ } AG_CHKOVFLO if ((PCB).ssx >= AG_PARSER_STACK_SIZE) {\ AG_TRACE_ERROR\ (PCB).exit_flag = AG_STACK_ERROR_CODE;\ PARSER_STACK_OVERFLOW;\ } AG_STACK AG_SAVE_CONTEXT\ (PCB).ss[(PCB).ssx] = (PCB).sn; AG_PROT if ((PCB).drt >= 0) ag_prot(PCBARG);\ else if ((PCB).ssx >= AG_PARSER_STACK_SIZE) {\ AG_TRACE_ERROR\ (PCB).exit_flag = AG_STACK_ERROR_CODE;\ PARSER_STACK_OVERFLOW;\ } AG_PROTX ag_prot(PCBARG); ## error resynch undo AG_UNDO int ag_k = ag_sbt[(PCB).sn];\ while (ag_tstt[ag_k] != AG_ERROR && ag_tstt[ag_k]) ag_k++;\ if (ag_tstt[ag_k] == 0) ag_undo(PCBARG); ## undo macro AG_UNDO ag_undo(PCBARG); ## context macros AG_PROT_CONTEXT (PCB).cs[ag_k] = (PCB).cs[(PCB).ssx]; AG_UNDO_CONTEXT (PCB).cs[(PCB).ssx] = (PCB).cs[ag_k]; ## no context macros AG_PROT_CONTEXT AG_UNDO_CONTEXT ## trk char key col, trk char sink key col #ifndef AG_NEWLINE #define AG_NEWLINE 10 #endif #ifndef AG_RETURN #define AG_RETURN 13 #endif #ifndef AG_FORMFEED #define AG_FORMFEED 12 #endif #ifndef AG_TABCHAR #define AG_TABCHAR 9 #endif STATIC#VOID NEAR#QUAL#ag_track(THISARG) { int ag_k = 0; while (ag_k < (PCB).rx) { int ag_ch = (PCB).lab[ag_k++]; switch (ag_ch) { case AG_NEWLINE: (PCB).column = 1, (PCB).line++; case AG_RETURN: case AG_FORMFEED: break; case AG_TABCHAR: (PCB).column += (TAB_SPACING) - ((PCB).column - 1) % (TAB_SPACING); break; default: (PCB).column++; } } ag_k = 0; while ((PCB).rx < (PCB).fx) (PCB).lab[ag_k++] = (PCB).lab[(PCB).rx++]; (PCB).fx = ag_k; (PCB).rx = 0; } ## trk macros char key col, trk macros char sink key col AG_TRK_PTR ag_track(PCBARG); AG_INC_PTR {(PCB).rx = 1; ag_track(PCBARG);} AG_INIT_TRK (PCB).line = FIRST_LINE;\ (PCB).column = FIRST_COLUMN; ## trk char key, trk char sink key STATIC#VOID NEAR#QUAL#ag_track(THISARG) { int ag_k = 0; while ((PCB).rx < (PCB).fx) (PCB).lab[ag_k++] = (PCB).lab[(PCB).rx++]; (PCB).fx = ag_k; (PCB).rx = 0; } ## trk macros char key, trk macros char sink key AG_INC_PTR {(PCB).rx = 1; ag_track(PCBARG);} AG_TRK_PTR ag_track(PCBARG); AG_INIT_TRK ## trk char col, trk char sink col #ifndef AG_NEWLINE #define AG_NEWLINE 10 #endif #ifndef AG_RETURN #define AG_RETURN 13 #endif #ifndef AG_FORMFEED #define AG_FORMFEED 12 #endif #ifndef AG_TABCHAR #define AG_TABCHAR 9 #endif STATIC#VOID NEAR#QUAL#ag_track(THISARG) { switch ((PCB).input_code) { case AG_NEWLINE: (PCB).column = 1, (PCB).line++; case AG_RETURN: case AG_FORMFEED: break; case AG_TABCHAR: (PCB).column += (TAB_SPACING) - ((PCB).column - 1) % (TAB_SPACING); break; default: (PCB).column++; } (PCB).read_flag = 1; } ## trk macros char col, trk macros char sink col AG_TRK_PTR ag_track(PCBARG); AG_INC_PTR ag_track(PCBARG); AG_INIT_TRK (PCB).line = FIRST_LINE;\ (PCB).column = FIRST_COLUMN; ## trk char, trk token ## trk macros char, trk macros token AG_TRK_PTR {if ((PCB).read_flag == 0) (PCB).read_flag = 1;} AG_INC_PTR {if ((PCB).read_flag == 0) (PCB).read_flag = 1;} AG_INIT_TRK ## trk token col ## trk macros token col AG_TRK_PTR {if ((PCB).read_flag == 0) (PCB).read_flag = 1;} AG_INC_PTR {if ((PCB).read_flag == 0) (PCB).read_flag = 1;} AG_INIT_TRK (PCB).line = FIRST_LINE;\ (PCB).column = FIRST_COLUMN; ## init char key typedef enum {ag_accept_key, ag_set_key, ag_jmp_key, ag_end_key, ag_no_match_key, ag_cf_accept_key, ag_cf_set_key, ag_cf_end_key} key_words; #ifndef GET_INPUT #define GET_INPUT ((PCB).input_code = getchar()) #endif STATIC#int NEAR#QUAL#ag_look_ahead(THISARG) { if ((PCB).rx < (PCB).fx) { return CONVERT_CASE((PCB).lab[(PCB).rx++]); } GET_INPUT; (PCB).fx++; return CONVERT_CASE((PCB).lab[(PCB).rx++] = (PCB).input_code); } STATIC#VOID NEAR#QUAL#AG_GET_KEY_WORD { int save_index = (PCB).rx; CONST unsigned char *sp; int ag_ch; while (1) { switch (ag_key_act[ag_k]) { case ag_cf_end_key: sp = ag_key_ends + ag_key_jmp[ag_k]; do { if ((ag_ch = *sp++) == 0) { int ag_k1 = ag_key_parm[ag_k]; int ag_k2 = ag_key_pt[ag_k1]; if (ag_key_itt[ag_k2 + ag_look_ahead(PCBARG)]) goto ag_fail; (PCB).rx--; (PCB).token_number = (AG_TOKEN_TYPE) ag_key_pt[ag_k1 + 1]; return; } } while (ag_look_ahead(PCBARG) == ag_ch); goto ag_fail; case ag_end_key: sp = ag_key_ends + ag_key_jmp[ag_k]; do { if ((ag_ch = *sp++) == 0) { (PCB).token_number = (AG_TOKEN_TYPE) ag_key_parm[ag_k]; return; } } while (ag_look_ahead(PCBARG) == ag_ch); case ag_no_match_key: ag_fail: (PCB).rx = save_index; return; case ag_cf_set_key: { int ag_k1 = ag_key_parm[ag_k]; int ag_k2 = ag_key_pt[ag_k1]; ag_k = ag_key_jmp[ag_k]; if (ag_key_itt[ag_k2 + (ag_ch = ag_look_ahead(PCBARG))]) break; save_index = --(PCB).rx; (PCB).token_number = (AG_TOKEN_TYPE) ag_key_pt[ag_k1+1]; break; } case ag_set_key: save_index = (PCB).rx; (PCB).token_number = (AG_TOKEN_TYPE) ag_key_parm[ag_k]; case ag_jmp_key: ag_k = ag_key_jmp[ag_k]; ag_ch = ag_look_ahead(PCBARG); break; case ag_accept_key: (PCB).token_number = (AG_TOKEN_TYPE) ag_key_parm[ag_k]; return; case ag_cf_accept_key: { int ag_k1 = ag_key_parm[ag_k]; int ag_k2 = ag_key_pt[ag_k1]; if (ag_key_itt[ag_k2 + ag_look_ahead(PCBARG)]) (PCB).rx = save_index; else { (PCB).rx--; (PCB).token_number = (AG_TOKEN_TYPE) ag_key_pt[ag_k1+1]; } return; } default: /* not reachable; here to suppress compiler warnings */ goto ag_fail; } if (ag_ch <= 255) while (ag_key_ch[ag_k] < ag_ch) ag_k++; if (ag_ch > 255 || ag_key_ch[ag_k] != ag_ch) { (PCB).rx = save_index; return; } } } ## init macros char key AG_CHAR ((PCB).rx < (PCB).fx ? (PCB).lab[(PCB).rx-1] : (PCB).input_code) AG_INIT_PTR (PCB).rx = (PCB).fx = 0; AG_RST_PTR (PCB).rx = 0; ## init char sink key typedef enum {ag_accept_key, ag_set_key, ag_jmp_key, ag_end_key, ag_no_match_key, ag_cf_accept_key, ag_cf_set_key, ag_cf_end_key} key_words; ## init macros char sink key AG_CHAR ((PCB).rx < (PCB).fx ? (PCB).lab[(PCB).rx-1] : (PCB).input_code) AG_INIT_PTR (PCB).rx = (PCB).fx = 0; AG_RST_PTR (PCB).rx = 0; ## get char key AG_GET_TKN if ((PCB).rx < (PCB).fx) {\ (PCB).input_code = (PCB).lab[(PCB).rx++];\ (PCB).token_number = (AG_TOKEN_TYPE) AG_TCV((PCB).input_code);}\ else {\ GET_INPUT;\ (PCB).lab[(PCB).fx++] = (PCB).input_code;\ (PCB).token_number = (AG_TOKEN_TYPE) AG_TCV((PCB).input_code);\ (PCB).rx++;\ }\ if (ag_key_index[(PCB).sn]) {\ unsigned ag_k = ag_key_index[(PCB).sn];\ int ag_ch = CONVERT_CASE((PCB).input_code);\ if (ag_ch < 255) {\ while (ag_key_ch[ag_k] < ag_ch) ag_k++;\ if (ag_key_ch[ag_k] == ag_ch) ag_get_key_word(PCBARGC#ag_k);\ }\ } ## init char #ifndef GET_INPUT #define GET_INPUT ((PCB).input_code = getchar()) #endif ## init macros char AG_CHAR (PCB).input_code; AG_INIT_PTR (PCB).read_flag = 1; AG_RST_PTR ## init char sink ## init macros char sink AG_CHAR (PCB).input_code; AG_INIT_PTR AG_RST_PTR ## init token ## init macros token AG_INIT_PTR (PCB).read_flag = 1; AG_RST_PTR ## init token sink ## init macros token sink AG_INIT_PTR AG_RST_PTR ## get token sink, get char sink ## trk token sink, trk char sink ## trk macros token sink, trk macros char sink AG_TRK_PTR AG_INC_PTR AG_INIT_TRK ## get char, get token AG_GET_TKN if ((PCB).read_flag) {\ (PCB).read_flag = 0;\ GET_INPUT;\ };\ (PCB).token_number = (AG_TOKEN_TYPE) AG_TCV((PCB).input_code); ## init ptr key #ifndef INPUT_CODE #define INPUT_CODE(T) (T) #endif typedef enum {ag_accept_key, ag_set_key, ag_jmp_key, ag_end_key, ag_no_match_key, ag_cf_accept_key, ag_cf_set_key, ag_cf_end_key} key_words; STATIC#VOID NEAR#QUAL#AG_GET_KEY_WORD { int ag_save = (int) ((PCB).la_ptr - (PCB).pointer); CONST unsigned char *ag_p; int ag_ch; while (1) { switch (ag_key_act[ag_k]) { case ag_cf_end_key: { CONST unsigned char *sp = ag_key_ends + ag_key_jmp[ag_k]; do { if ((ag_ch = *sp++) == 0) { int ag_k1 = ag_key_parm[ag_k]; int ag_k2 = ag_key_pt[ag_k1]; if (ag_key_itt[ag_k2 + CONVERT_CASE(*(PCB).la_ptr)]) goto ag_fail; (PCB).token_number = (AG_TOKEN_TYPE) ag_key_pt[ag_k1 + 1]; return; } } while (CONVERT_CASE(*(PCB).la_ptr++) == ag_ch); goto ag_fail; } case ag_end_key: { CONST unsigned char *sp = ag_key_ends + ag_key_jmp[ag_k]; do { if ((ag_ch = *sp++) == 0) { (PCB).token_number = (AG_TOKEN_TYPE) ag_key_parm[ag_k]; return; } } while (CONVERT_CASE(*(PCB).la_ptr++) == ag_ch); } case ag_no_match_key: ag_fail: (PCB).la_ptr = (PCB).pointer + ag_save; return; case ag_cf_set_key: { int ag_k1 = ag_key_parm[ag_k]; int ag_k2 = ag_key_pt[ag_k1]; ag_k = ag_key_jmp[ag_k]; if (ag_key_itt[ag_k2 + CONVERT_CASE(*(PCB).la_ptr)]) break; ag_save = (int) ((PCB).la_ptr - (PCB).pointer); (PCB).token_number = (AG_TOKEN_TYPE) ag_key_pt[ag_k1+1]; break; } case ag_set_key: ag_save = (int) ((PCB).la_ptr - (PCB).pointer); (PCB).token_number = (AG_TOKEN_TYPE) ag_key_parm[ag_k]; case ag_jmp_key: ag_k = ag_key_jmp[ag_k]; break; case ag_accept_key: (PCB).token_number = (AG_TOKEN_TYPE) ag_key_parm[ag_k]; return; case ag_cf_accept_key: { int ag_k1 = ag_key_parm[ag_k]; int ag_k2 = ag_key_pt[ag_k1]; if (ag_key_itt[ag_k2 + CONVERT_CASE(*(PCB).la_ptr)]) (PCB).la_ptr = (PCB).pointer + ag_save; else (PCB).token_number = (AG_TOKEN_TYPE) ag_key_pt[ag_k1+1]; return; } } ag_ch = CONVERT_CASE(*(PCB).la_ptr++); ag_p = &ag_key_ch[ag_k]; if (ag_ch <= 255) while (*ag_p < ag_ch) ag_p++; if (ag_ch > 255 || *ag_p != ag_ch) { (PCB).la_ptr = (PCB).pointer + ag_save; return; } ag_k = (int) (ag_p - ag_key_ch); } } ## init macros ptr key AG_CHAR *(PCB).pointer AG_INIT_PTR (PCB).la_ptr = (PCB).pointer; AG_RST_PTR (PCB).la_ptr = (PCB).pointer; ## trk ptr key ## trk macros ptr key AG_TRK_PTR (PCB).pointer = (PCB).la_ptr; AG_INC_PTR (PCB).la_ptr = ++(PCB).pointer; AG_INIT_TRK ## trk ptr key col #ifndef AG_NEWLINE #define AG_NEWLINE 10 #endif #ifndef AG_RETURN #define AG_RETURN 13 #endif #ifndef AG_FORMFEED #define AG_FORMFEED 12 #endif #ifndef AG_TABCHAR #define AG_TABCHAR 9 #endif STATIC#VOID NEAR#QUAL#ag_track(THISARG) { int ag_k = (int) ((PCB).la_ptr - (PCB).pointer); while (ag_k--) { switch (*(PCB).pointer++) { case AG_NEWLINE: (PCB).column = 1, (PCB).line++; case AG_RETURN: case AG_FORMFEED: break; case AG_TABCHAR: (PCB).column += (TAB_SPACING) - ((PCB).column - 1) % (TAB_SPACING); break; default: (PCB).column++; } } } ## trk macros ptr key col AG_TRK_PTR ag_track(PCBARG); AG_INIT_TRK (PCB).line = FIRST_LINE;\ (PCB).column = FIRST_COLUMN; AG_INC_PTR {(PCB).la_ptr = (PCB).pointer + 1; ag_track(PCBARG);} ## get ptr key AG_GET_TKN (PCB).token_number = (AG_TOKEN_TYPE) AG_TCV(INPUT_CODE(*(PCB).la_ptr));\ (PCB).la_ptr++;\ if (ag_key_index[(PCB).sn]) {\ unsigned ag_k = ag_key_index[(PCB).sn];\ int ag_ch = CONVERT_CASE(INPUT_CODE(*(PCB).pointer));\ if (ag_ch <= 255) {\ while (ag_key_ch[ag_k] < ag_ch) ag_k++;\ if (ag_key_ch[ag_k] == ag_ch) ag_get_key_word(PCB_TYPE_CAST#PCBARGC#ag_k);\ }\ } ## init ptr #ifndef INPUT_CODE #define INPUT_CODE(T) (T) #endif ## init macros ptr AG_RST_PTR (PCB).la_ptr = (PCB).pointer; AG_INIT_PTR (PCB).la_ptr = (PCB).pointer; AG_CHAR *(PCB).pointer ## trk ptr ## trk macros ptr AG_TRK_PTR (PCB).pointer = (PCB).la_ptr; AG_INC_PTR (PCB).la_ptr = ++(PCB).pointer; AG_INIT_TRK ## trk ptr col #ifndef AG_NEWLINE #define AG_NEWLINE 10 #endif #ifndef AG_RETURN #define AG_RETURN 13 #endif #ifndef AG_FORMFEED #define AG_FORMFEED 12 #endif #ifndef AG_TABCHAR #define AG_TABCHAR 9 #endif STATIC#VOID NEAR#QUAL#ag_track(THISARG) { int ag_k = (int) ((PCB).la_ptr - (PCB).pointer); while (ag_k--) { switch (*(PCB).pointer++) { case AG_NEWLINE: (PCB).column = 1, (PCB).line++; case AG_RETURN: case AG_FORMFEED: break; case AG_TABCHAR: (PCB).column += (TAB_SPACING) - ((PCB).column - 1) % (TAB_SPACING); break; default: (PCB).column++; } } } ## trk macros ptr col AG_TRK_PTR ag_track(PCBARG); AG_INC_PTR {(PCB).la_ptr = (PCB).pointer + 1; ag_track(PCBARG);} AG_INIT_TRK (PCB).line = FIRST_LINE;\ (PCB).column = FIRST_COLUMN; ## get ptr AG_GET_TKN (PCB).token_number = (AG_TOKEN_TYPE) AG_TCV(INPUT_CODE(*(PCB).la_ptr));\ (PCB).la_ptr++; ## jns proc STATIC#int NEAR#QUAL#AG_RNS { while (1) { int ag_act, ag_k = ag_sbt[ag_snd], ag_lim = ag_sbt[ag_snd+1]; int ag_p; while (ag_k < ag_lim && ag_tstt[ag_k] != ag_t) ag_k++; if (ag_k == ag_lim) break; ag_act = ag_astt[ag_k]; ag_p = ag_pstt[ag_k]; if (ag_act == ag_go_to) return ag_p; if (ag_act == ag_skip || ag_act == ag_skip_reduce) { (*ag_sx)--; return ag_snd; } if (ag_act != ag_shift_reduce && ag_act != ag_shift_simple_reduce) break; *ag_sx -= (ag_fl[ag_p] - 1); ag_snd = (PCB).ss[*ag_sx]; ag_t = ag_ptt[ag_p]; } return 0; } STATIC#int NEAR#QUAL#AG_JNS { int ag_k; ag_k = ag_sbt[(PCB).sn]; while (ag_tstt[ag_k] != ag_t && ag_tstt[ag_k]) ag_k++; while (1) { int ag_p = ag_pstt[ag_k]; int ag_sd; switch (ag_astt[ag_k]) { case ag_go_to: AG_STACK return ag_p; case ag_skip: case ag_skip_reduce: return (PCB).ss[(PCB).ssx--]; case ag_null_go_to: AG_STACK (PCB).ssx++; (PCB).sn = ag_p; ag_k = ag_sbt[(PCB).sn]; while (ag_tstt[ag_k] != ag_t && ag_tstt[ag_k]) ag_k++; continue; case ag_shift_reduce: case ag_shift_simple_reduce: ag_sd = ag_fl[ag_p] - 1; if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; else AG_STACK ag_t = ag_ptt[ag_p]; ag_k = ag_sbt[(PCB).sn+1]; while (ag_tstt[--ag_k] != ag_t); continue; case ag_reduce_form: case ag_simple_reduce: if (ag_fl[ag_p]) break; (PCB).sn = ag_rns(PCBARGC#ag_ptt[ag_p],&(PCB).ssx, (PCB).sn); (PCB).ss[++(PCB).ssx] = (PCB).sn; ag_k = ag_sbt[(PCB).sn]; while (ag_tstt[ag_k] != ag_t && ag_tstt[ag_k]) ag_k++; continue; } break; } return 0; } ## no resynch AG_RESYNCH (PCB).exit_flag = AG_SYNTAX_ERROR_CODE;\ AG_DIAGNOSE\ SYNTAX_ERROR;\ AG_INC_PTR ## error resynch token sink mode STATIC#VOID NEAR#QUAL#ag_error_resynch(THISARG) { int ag_k; int ag_ssx = (PCB).ssx; AG_DIAGNOSE SYNTAX_ERROR; if ((PCB).exit_flag != AG_RUNNING_CODE) return; while (1) { ag_k = ag_sbt[(PCB).sn]; while (ag_tstt[ag_k] != AG_ERROR && ag_tstt[ag_k]) ag_k++; if (ag_tstt[ag_k] || (PCB).ssx == 0) break; DELETE_OBJECT } if (ag_tstt[ag_k] == 0) { (PCB).sn = (PCB).ss[(PCB).ssx = ag_ssx]; (PCB).exit_flag = AG_SYNTAX_ERROR_CODE; return; } ag_k = ag_sbt[(PCB).sn]; while (ag_tstt[ag_k] != AG_ERROR && ag_tstt[ag_k]) ag_k++; (PCB).ag_ap = ag_pstt[ag_k]; (AG_ER[ag_astt[ag_k]])(PCBARG); (PCB).ss[(PCB).ssx++] = (PCB).sn; (PCB).sn = AG_ERROR_STATE; return; } STATIC#int NEAR#QUAL#ag_recover_proc(THISARG) { int ag_t, ag_k = ag_sbt[(PCB).ss[(PCB).ssx-1]]; while (ag_tstt[ag_k] != (AG_TSTT_CAST) (PCB).token_number && ag_tstt[ag_k]) ag_k++; ag_t = ag_tstt[ag_k]; if (ag_t && ag_astt[ag_k] != ag_skip){ (PCB).sn = (PCB).ss[--(PCB).ssx]; AG_RST_PTR return 1; } if ((PCB).token_number == AG_EOF) {(PCB).exit_flag = AG_SYNTAX_ERROR_CODE; return 0;} AG_TRK_PTR return 0; } ## error resynch STATIC#VOID NEAR#QUAL#ag_error_resynch(THISARG) { int ag_k; int ag_ssx = (PCB).ssx; AG_DIAGNOSE SYNTAX_ERROR; if ((PCB).exit_flag != AG_RUNNING_CODE) return; while (1) { ag_k = ag_sbt[(PCB).sn]; while (ag_tstt[ag_k] != AG_ERROR && ag_tstt[ag_k]) ag_k++; if (ag_tstt[ag_k] || (PCB).ssx == 0) break; DELETE_OBJECT } if (ag_tstt[ag_k] == 0) { (PCB).sn = PCB.ss[(PCB).ssx = ag_ssx]; (PCB).exit_flag = AG_SYNTAX_ERROR_CODE; return; } ag_k = ag_sbt[(PCB).sn]; while (ag_tstt[ag_k] != AG_ERROR && ag_tstt[ag_k]) ag_k++; (PCB).ag_ap = ag_pstt[ag_k]; (AG_ER[ag_astt[ag_k]])(PCBARG); while (1) { ag_k = ag_sbt[(PCB).sn]; while (ag_tstt[ag_k] != (AG_TSTT_CAST) (PCB).token_number && ag_tstt[ag_k]) ag_k++; if (ag_tstt[ag_k] && ag_astt[ag_k] != ag_skip) break; if ((PCB).token_number == AG_EOF) {(PCB).exit_flag = AG_SYNTAX_ERROR_CODE; return;} AG_INC_PTR AG_GET_TKN } AG_RST_PTR } ## auto resynch macros AG_GT *(PCB).gt_procs AG_SR *(PCB).s_procs AG_RD *(PCB).r_procs AG_INIT_RESYNCH (PCB).gt_procs = ag_gt_procs_scan;\ (PCB).r_procs = ag_r_procs_scan;\ (PCB).s_procs = ag_s_procs_scan;\ (PCB).ag_error_depth = (PCB).ag_min_depth = (PCB).ag_tmp_depth = 0;\ (PCB).ag_resynch_active = 0; ## auto resynch defs int ag_error_depth, ag_min_depth, ag_tmp_depth; int ag_rss[2*AG_PARSER_STACK_SIZE], ag_lrss; ## auto resynch event defs int ag_error_depth, ag_min_depth, ag_tmp_depth; int ag_rss[2*AG_PARSER_STACK_SIZE], ag_lrss; int ag_rk1, ag_tk1; ## auto resynch token sink mode STATIC#int NEAR#QUAL#AG_ATX { int ag_k, ag_f; int ag_save_btsx = (PCB).btsx; int ag_flag = 1; while (1) { int ag_a; (PCB).bts[AG_PARSER_STACK_SIZE - ++(PCB).btsx] = *ag_sx; (PCB).ss[AG_PARSER_STACK_SIZE - (PCB).btsx] = (PCB).ss[*ag_sx]; (PCB).ss[*ag_sx] = ag_snd; ag_k = ag_sbt[ag_snd]; while (ag_tstt[ag_k] != ag_t && ag_tstt[ag_k]) ag_k++; ag_a = ag_astt[ag_k]; if (ag_a == ag_go_to || ag_a == ag_shift_reduce || ag_a == ag_skip || ag_a == ag_skip_reduce || ag_a == ag_shift_accept || ag_a == ag_shift_simple_reduce) break; if ((ag_a == ag_reduce_form || ag_a == ag_simple_reduce) && (ag_k = ag_fl[ag_f = ag_pstt[ag_k]]) == 0) { ag_snd = ag_rns(PCBARGC#ag_ptt[ag_f],ag_sx, (PCB).ss[*ag_sx]); (*ag_sx)++; continue; } if (ag_a == ag_null_go_to) { ag_snd = ag_pstt[ag_k]; (*ag_sx)++; continue; } ag_flag = 0; break; } while ((PCB).btsx > ag_save_btsx) { *ag_sx = (PCB).bts[AG_PARSER_STACK_SIZE - (PCB).btsx]; (PCB).ss[*ag_sx] = (PCB).ss[AG_PARSER_STACK_SIZE - (PCB).btsx--]; } return ag_flag; } STATIC#int NEAR#QUAL#ag_tst_tkn(THISARG) { int ag_rk, ag_sx, ag_snd; for (ag_rk = 0; ag_rk < (PCB).ag_lrss; ag_rk += 2) { ag_sx = (PCB).ag_rss[ag_rk]; if (ag_sx > (PCB).ssx) continue; ag_snd = (PCB).ag_rss[ag_rk + 1]; if (ag_sx > (PCB).ag_min_depth) continue; if (ag_atx(PCBARGC#(PCB).token_number, &ag_sx, ag_snd)) break; } return ag_rk; } STATIC#VOID NEAR#QUAL#ag_set_error_procs(THISARG); STATIC#VOID NEAR#QUAL#ag_auto_resynch(THISARG) { int ag_sx; MY_DELETE_WRAPPERS (PCB).ss[(PCB).ssx] = (PCB).sn; if ((PCB).ag_error_depth && (PCB).ag_min_depth >= (PCB).ag_error_depth) { (PCB).ssx = (PCB).ag_error_depth; (PCB).sn = (PCB).ss[(PCB).ssx]; } else { AG_DIAGNOSE SYNTAX_ERROR; if ((PCB).exit_flag != AG_RUNNING_CODE) return; (PCB).ag_error_depth = (PCB).ag_min_depth = 0; (PCB).ag_lrss = 0; (PCB).ss[ag_sx = (PCB).ssx] = (PCB).sn; (PCB).ag_min_depth = (PCB).ag_rss[(PCB).ag_lrss++] = ag_sx; (PCB).ag_rss[(PCB).ag_lrss++] = (PCB).sn; while (ag_sx && (PCB).ag_lrss < 2*AG_PARSER_STACK_SIZE) { int ag_t = 0, ag_x, ag_s, ag_sxs = ag_sx; while (ag_sx && (ag_t = ag_ctn[2*(PCB).sn]) == 0) (PCB).sn = (PCB).ss[--ag_sx]; if (ag_t) (PCB).sn = (PCB).ss[ag_sx -= ag_ctn[2*(PCB).sn +1]]; else { if (ag_sx == 0) (PCB).sn = 0; ag_t = ag_ptt[0]; } if ((ag_s = ag_rns(PCBARGC#ag_t, &ag_sx, (PCB).sn)) == 0) break; for (ag_x = 0; ag_x < (PCB).ag_lrss; ag_x += 2) if ((PCB).ag_rss[ag_x] == ag_sx + 1 && (PCB).ag_rss[ag_x+1] == ag_s) break; if (ag_x == (PCB).ag_lrss) { (PCB).ag_rss[(PCB).ag_lrss++] = ++ag_sx; (PCB).ag_rss[(PCB).ag_lrss++] = (PCB).sn = ag_s; } else if (ag_sx >= ag_sxs) ag_sx--; } ag_set_error_procs(PCBARG); } (PCB).ssx++; (PCB).sn = AG_ERROR_STATE; (PCB).ag_rk1 = (PCB).ag_lrss; return; } STATIC#int NEAR#QUAL#ag_recover_proc(THISARG) { int ag_k, ag_rk; (PCB).ssx--; if ((PCB).ag_rk1 == (PCB).ag_lrss) { (PCB).ag_rk1 = ag_tst_tkn(PCBARG); (PCB).ssx++; if ((PCB).token_number == AG_EOF) {(PCB).exit_flag = AG_SYNTAX_ERROR_CODE; return 0;} (PCB).ag_tk1 = (PCB).token_number; AG_TRK_PTR return 0; } ag_rk = ag_tst_tkn(PCBARG); if (ag_rk < (PCB).ag_rk1) { ag_k = 0; AG_TRK_PTR } else { ag_k = 1; ag_rk = (PCB).ag_rk1; (PCB).token_number = (AG_TOKEN_TYPE) (PCB).ag_tk1; AG_RST_PTR } (PCB).ag_min_depth = (PCB).ssx = (PCB).ag_rss[ag_rk++]; (PCB).sn = (PCB).ss[(PCB).ssx] = (PCB).ag_rss[ag_rk]; (PCB).sn = ag_jns(PCBARGC#(PCB).token_number); if ((PCB).ag_error_depth == 0 || (PCB).ag_error_depth > (PCB).ssx) (PCB).ag_error_depth = (PCB).ssx; if (++(PCB).ssx >= AG_PARSER_STACK_SIZE) { AG_OVERFLOW return 0; } AG_STACK (PCB).ag_tmp_depth = (PCB).ag_min_depth; return ag_k; } ## auto resynch STATIC#int NEAR#QUAL#AG_ATX { int ag_k, ag_f; int ag_save_btsx = (PCB).btsx; int ag_flag = 1; while (1) { int ag_a; (PCB).bts[AG_PARSER_STACK_SIZE - ++(PCB).btsx] = *ag_sx; (PCB).ss[AG_PARSER_STACK_SIZE - (PCB).btsx] = (PCB).ss[*ag_sx]; (PCB).ss[*ag_sx] = ag_snd; ag_k = ag_sbt[ag_snd]; while (ag_tstt[ag_k] != ag_t && ag_tstt[ag_k]) ag_k++; ag_a = ag_astt[ag_k]; if (ag_a == ag_go_to || ag_a == ag_shift_reduce || ag_a == ag_skip || ag_a == ag_skip_reduce || ag_a == ag_shift_accept || ag_a == ag_shift_simple_reduce) break; if ((ag_a == ag_reduce_form || ag_a == ag_simple_reduce) && (ag_k = ag_fl[ag_f = ag_pstt[ag_k]]) == 0) { ag_snd = ag_rns(PCBARGC#ag_ptt[ag_f],ag_sx, (PCB).ss[*ag_sx]); (*ag_sx)++; continue; } if (ag_a == ag_null_go_to) { ag_snd = ag_pstt[ag_k]; (*ag_sx)++; continue; } ag_flag = 0; break; } while ((PCB).btsx > ag_save_btsx) { *ag_sx = (PCB).bts[AG_PARSER_STACK_SIZE - (PCB).btsx]; (PCB).ss[*ag_sx] = (PCB).ss[AG_PARSER_STACK_SIZE - (PCB).btsx--]; } return ag_flag; } STATIC#int NEAR#QUAL#ag_tst_tkn(THISARG) { int ag_rk, ag_sx, ag_snd = (PCB).sn; AG_GET_TKN for (ag_rk = 0; ag_rk < (PCB).ag_lrss; ag_rk += 2) { ag_sx = (PCB).ag_rss[ag_rk]; if (ag_sx > (PCB).ssx || ag_sx > (PCB).ag_min_depth) continue; (PCB).sn = (PCB).ag_rss[ag_rk + 1]; if (ag_atx(PCBARGC#(PCB).token_number, &ag_sx, (PCB).sn)) break; } (PCB).sn = ag_snd; return ag_rk; } STATIC#VOID NEAR#QUAL#ag_set_error_procs(THISARG); STATIC#VOID NEAR#QUAL#ag_auto_resynch(THISARG) { int ag_sx, ag_rk; int ag_rk1, ag_rk2, ag_tk1; MY_DELETE_WRAPPERS (PCB).ss[(PCB).ssx] = (PCB).sn; if ((PCB).ag_error_depth && (PCB).ag_min_depth >= (PCB).ag_error_depth) { (PCB).ssx = (PCB).ag_error_depth; (PCB).sn = (PCB).ss[(PCB).ssx]; } else { AG_DIAGNOSE SYNTAX_ERROR; if ((PCB).exit_flag != AG_RUNNING_CODE) return; (PCB).ag_error_depth = (PCB).ag_min_depth = 0; (PCB).ag_lrss = 0; (PCB).ss[ag_sx = (PCB).ssx] = (PCB).sn; (PCB).ag_min_depth = (PCB).ag_rss[(PCB).ag_lrss++] = ag_sx; (PCB).ag_rss[(PCB).ag_lrss++] = (PCB).sn; while (ag_sx && (PCB).ag_lrss < 2*AG_PARSER_STACK_SIZE) { int ag_t = 0, ag_x, ag_s, ag_sxs = ag_sx; while (ag_sx && (ag_t = ag_ctn[2*(PCB).sn]) == 0) (PCB).sn = (PCB).ss[--ag_sx]; if (ag_t) (PCB).sn = (PCB).ss[ag_sx -= ag_ctn[2*(PCB).sn +1]]; else { if (ag_sx == 0) (PCB).sn = 0; ag_t = ag_ptt[0]; } if ((ag_s = ag_rns(PCBARGC#ag_t, &ag_sx, (PCB).sn)) == 0) break; for (ag_x = 0; ag_x < (PCB).ag_lrss; ag_x += 2) if ((PCB).ag_rss[ag_x] == ag_sx + 1 && (PCB).ag_rss[ag_x+1] == ag_s) break; if (ag_x == (PCB).ag_lrss) { (PCB).ag_rss[(PCB).ag_lrss++] = ++ag_sx; (PCB).ag_rss[(PCB).ag_lrss++] = (PCB).sn = ag_s; } else if (ag_sx >= ag_sxs) ag_sx--; } ag_set_error_procs(PCBARG); } AG_RST_PTR if ((PCB).ssx > (PCB).ag_min_depth) (PCB).ag_min_depth = (PCB).ssx; while (1) { ag_rk1 = ag_tst_tkn(PCBARG); if ((PCB).token_number == AG_EOF) {(PCB).exit_flag = AG_SYNTAX_ERROR_CODE; return;} if (ag_rk1 < (PCB).ag_lrss) break; AG_INC_PTR } ag_tk1 = (PCB).token_number; AG_TRK_PTR ag_rk2 = ag_tst_tkn(PCBARG); if (ag_rk2 < ag_rk1) {ag_rk = ag_rk2; AG_TRK_PTR} else {ag_rk = ag_rk1; (PCB).token_number = (AG_TOKEN_TYPE) ag_tk1; AG_RST_PTR} (PCB).ag_min_depth = (PCB).ssx = (PCB).ag_rss[ag_rk++]; (PCB).sn = (PCB).ss[(PCB).ssx] = (PCB).ag_rss[ag_rk]; (PCB).sn = ag_jns(PCBARGC#(PCB).token_number); if ((PCB).ag_error_depth == 0 || (PCB).ag_error_depth > (PCB).ssx) (PCB).ag_error_depth = (PCB).ssx; if (++(PCB).ssx >= AG_PARSER_STACK_SIZE) { AG_OVERFLOW return; } AG_STACK (PCB).ag_tmp_depth = (PCB).ag_min_depth; AG_RST_PTR return; } ## error parse procs STATIC#VOID NEAR#QUAL#AG_CHECK_DEPTH { int ag_sx = (PCB).ssx - ag_fl; if ((PCB).ag_error_depth && ag_sx < (PCB).ag_tmp_depth) (PCB).ag_tmp_depth = ag_sx; } STATIC#int NEAR#QUAL#ag_r_simple_shift_reduce_error_proc(THISARG) { ag_check_depth(PCBARGC#ag_fl[(PCB).ag_ap] - 1); return ag_r_simple_shift_reduce_proc(PCBARG); } STATIC#int NEAR#QUAL#ag_go_to_error_proc(THISARG) { ag_go_to_proc(PCBARG); (PCB).ag_min_depth = (PCB).ag_tmp_depth; return 0; } STATIC#int NEAR#QUAL#ag_simple_shift_reduce_error_proc(THISARG) { ag_check_depth(PCBARGC#ag_fl[(PCB).ag_ap] - 1); (PCB).ag_min_depth = (PCB).ag_tmp_depth; return ag_simple_shift_reduce_proc(PCBARG); } STATIC#int NEAR#QUAL#ag_simple_reduce_error_proc(THISARG) { ag_check_depth(PCBARGC#ag_fl[(PCB).ag_ap]); return ag_simple_reduce_proc(PCBARG); } STATIC#int NEAR#QUAL#ag_skip_reduce_error_proc(THISARG) { return ag_skip_proc(PCBARG); } STATIC#int (NEAR#*QUAL#ag_r_procs_error[])(THISARG) = { ag_r_shift_accept_proc, ag_r_go_to_proc, ag_r_simple_shift_reduce_error_proc, ag_r_simple_shift_reduce_error_proc }; STATIC#int (NEAR#*QUAL#ag_s_procs_error[])(THISARG) = { ag_s_shift_accept_proc, ag_r_go_to_proc, ag_r_simple_shift_reduce_error_proc, ag_r_simple_shift_reduce_error_proc }; STATIC#int (NEAR#*QUAL#ag_gt_procs_error[])(THISARG) = { ag_shift_accept_proc, ag_go_to_error_proc, ag_simple_shift_reduce_error_proc, ag_simple_shift_reduce_error_proc, ag_simple_reduce_error_proc, ag_simple_reduce_error_proc, ag_accept_proc, ag_error_proc, ag_null_go_to_proc, ag_skip_proc, ag_skip_reduce_error_proc, AG_RECOVER }; STATIC#VOID NEAR#QUAL#ag_set_error_procs(THISARG) { (PCB).gt_procs = ag_gt_procs_error; (PCB).r_procs = ag_r_procs_error; (PCB).s_procs = ag_s_procs_error; } ## diagnose context { int ag_sx, ag_t; ag_sx = (PCB).ssx; (PCB).ss[ag_sx] = (PCB).sn; do { while (ag_sx && ag_ctn[2*(ag_snd = (PCB).ss[ag_sx])] == 0) ag_sx--; if (ag_sx) { ag_t = ag_ctn[2*ag_snd]; ag_sx -= ag_ctn[2*ag_snd +1]; ag_snd = (PCB).ss[ag_sx]; } else { ag_snd = 0; ag_t = ag_ptt[0]; } } while (ag_sx && *TOKEN_NAMES[ag_t]==0); if (*TOKEN_NAMES[ag_t] == 0) ag_t = 0; (PCB).error_frame_ssx = ag_sx; (PCB).error_frame_token = (AG_TOKEN_TYPE) ag_t; } ## diagnose defs #ifndef MISSING_FORMAT #define MISSING_FORMAT "Missing %s" #endif #ifndef UNEXPECTED_FORMAT #define UNEXPECTED_FORMAT "Unexpected %s" #endif #ifndef UNNAMED_TOKEN #define UNNAMED_TOKEN "input" #endif ## diagnose char STATIC#VOID NEAR#QUAL#ag_diagnose(THISARG) { int ag_snd = (PCB).sn; int ag_k = ag_sbt[ag_snd]; if (*TOKEN_NAMES[ag_tstt[ag_k]] && ag_astt[ag_k + 1] == ag_syn_error) { sprintf((PCB).ag_msg, MISSING_FORMAT, TOKEN_NAMES[ag_tstt[ag_k]]); } else if (ag_astt[ag_sbe[(PCB).sn]] == ag_action_8 && (ag_k = (int) ag_sbe[(PCB).sn] + 1) == (int) ag_sbt[(PCB).sn+1] - 1 && *TOKEN_NAMES[ag_tstt[ag_k]]) { sprintf((PCB).ag_msg, MISSING_FORMAT, TOKEN_NAMES[ag_tstt[ag_k]]); } else if ((PCB).token_number && *TOKEN_NAMES[(PCB).token_number]) { sprintf((PCB).ag_msg, UNEXPECTED_FORMAT, TOKEN_NAMES[(PCB).token_number]); } else if (isprint(AG_INPUT_CODE) && AG_INPUT_CODE != '\\') { char buf[20]; sprintf(buf, "\'%c\'", (char) AG_INPUT_CODE); sprintf((PCB).ag_msg, UNEXPECTED_FORMAT, buf); } else sprintf((PCB).ag_msg, UNEXPECTED_FORMAT, UNNAMED_TOKEN); (PCB).error_message = (PCB).ag_msg; ## diagnose token STATIC#VOID NEAR#QUAL#ag_diagnose(THISARG) { int ag_snd = (PCB).sn; CONST char *ag_p; int ag_k = ag_sbt[ag_snd]; if (*(ag_p = TOKEN_NAMES[ag_tstt[ag_k++]]) != 0 && ag_astt[ag_k] == ag_syn_error) { sprintf((PCB).ag_msg, MISSING_FORMAT, ag_p); } else if ((ag_k = (int) ag_sbe[(PCB).sn] + 1) == (int) ag_sbt[(PCB).sn+1] - 1 && *TOKEN_NAMES[ag_tstt[ag_k]]) { sprintf((PCB).ag_msg, MISSING_FORMAT, TOKEN_NAMES[ag_tstt[ag_k]]); } else { ag_p = TOKEN_NAMES[(PCB).token_number]; if ((PCB).token_number == 0 || *ag_p == 0) ag_p = UNNAMED_TOKEN; sprintf((PCB).ag_msg, UNEXPECTED_FORMAT, ag_p); } (PCB).error_message = (PCB).ag_msg; ## reduce loop ## reduce macros AG_REDUCE \ AG_COUNT_RULE_P\ (PCB).reduction_token = (AG_TOKEN_TYPE) ag_ptt[(PCB).ag_ap];\ ag_ra(PCBARG); AG_SIMPLE_REDUCE \ AG_COUNT_RULE_P\ (PCB).reduction_token = (AG_TOKEN_TYPE) ag_ptt[(PCB).ag_ap]; AG_NSR_SR while ((PCB).exit_flag == AG_RUNNING_CODE) {\ unsigned ag_t1 = ag_sbe[(PCB).sn] + 1;\ unsigned ag_t2 = ag_sbt[(PCB).sn+1] - 1;\ do {\ unsigned ag_tx = (ag_t1 + ag_t2)/2;\ if (ag_tstt[ag_tx] < (AG_TSTT_CAST)(PCB).reduction_token) ag_t1 = ag_tx + 1;\ else ag_t2 = ag_tx;\ } while (ag_t1 < ag_t2);\ (PCB).ag_ap = ag_pstt[ag_t1];\ if ((AG_SR[ag_astt[ag_t1]])(PCBARG) == 0) break;\ } AG_NSR_RD while ((PCB).exit_flag == AG_RUNNING_CODE) {\ unsigned ag_t1 = ag_sbe[(PCB).sn] + 1;\ unsigned ag_t2 = ag_sbt[(PCB).sn+1] - 1;\ do {\ unsigned ag_tx = (ag_t1 + ag_t2)/2;\ if (ag_tstt[ag_tx] < (AG_TSTT_CAST)(PCB).reduction_token) ag_t1 = ag_tx + 1;\ else ag_t2 = ag_tx;\ } while (ag_t1 < ag_t2);\ (PCB).ag_ap = ag_pstt[ag_t1];\ if ((AG_RD[ag_astt[ag_t1]])(PCBARG) == 0) break;\ } ## reduce loop vars CONST int *ag_dtl; int ag_dsn; ## reduce loop checking STATIC#AG_TSTT_TYPE LOCUS *QUAL#AG_VALID { AG_TSTT_TYPE LOCUS *ag_tp = &ag_tstt[ag_sbt[(PCB).sn+1]]; while (*--ag_tp != (AG_TSTT_CAST) ag_k) if (*ag_tp == 0) return NULL; return ag_tp; } int AG_CHANGE_REDUCTION { if (!ag_valid(PCBARGC#ag_k)) return 0; (PCB).reduction_token = ag_k; return 1; } STATIC#VOID NEAR#QUAL#AG_DEFAULT { (PCB).ag_dsn = (PCB).sn; (PCB).ag_dtl = ag_tp; while (!ag_valid(PCBARGC#(AG_TOKEN_TYPE) *ag_tp)) ag_tp++; (PCB).reduction_token = (AG_TOKEN_TYPE) *ag_tp; } ## reduce macros checking AG_REDUCE \ AG_COUNT_RULE_P\ (PCB).reduction_token = (AG_TOKEN_TYPE) ag_ptt[(PCB).ag_ap];\ ag_ra(PCBARG); AG_SIMPLE_REDUCE \ AG_COUNT_RULE_P\ (PCB).reduction_token = (AG_TOKEN_TYPE) ag_ptt[(PCB).ag_ap]; AG_NSR_SR while ((PCB).exit_flag == AG_RUNNING_CODE) {\ unsigned ag_t1 = ag_sbe[(PCB).sn] + 1;\ unsigned ag_t2 = ag_sbt[(PCB).sn+1] - 1;\ do {\ unsigned ag_tx = (ag_t1 + ag_t2)/2;\ if (ag_tstt[ag_tx] < (AG_TSTT_CAST)(PCB).reduction_token) ag_t1 = ag_tx + 1;\ else ag_t2 = ag_tx;\ } while (ag_t1 < ag_t2);\ if (ag_tstt[ag_t1] != (PCB).reduction_token) {\ (PCB).exit_flag = AG_REDUCTION_ERROR_CODE; AG_TRACE_ERROR\ REDUCTION_TOKEN_ERROR; break;}\ (PCB).ag_ap = ag_pstt[ag_t1];\ if ((AG_SR[ag_astt[ag_t1]])(PCBARG) == 0) break;\ } AG_NSR_RD while ((PCB).exit_flag == AG_RUNNING_CODE) {\ unsigned ag_t1 = ag_sbe[(PCB).sn] + 1;\ unsigned ag_t2 = ag_sbt[(PCB).sn+1] - 1;\ do {\ unsigned ag_tx = (ag_t1 + ag_t2)/2;\ if (ag_tstt[ag_tx] < (AG_TSTT_CAST)(PCB).reduction_token) ag_t1 = ag_tx + 1;\ else ag_t2 = ag_tx;\ } while (ag_t1 < ag_t2);\ if (ag_tstt[ag_t1] != (PCB).reduction_token) {\ (PCB).exit_flag = AG_REDUCTION_ERROR_CODE; AG_TRACE_ERROR\ REDUCTION_TOKEN_ERROR; break;}\ (PCB).ag_ap = ag_pstt[ag_t1];\ if ((AG_RD[ag_astt[ag_t1]])(PCBARG) == 0) break;\ } ## reduction choices int AG_CHOICES { int ag_k, ag_n; if ((PCB).ag_dsn != (PCB).sn) { *ag_tp = ag_ptt[(PCB).ag_ap]; return 1; } for (ag_k = ag_n = 0; (PCB).ag_dtl[ag_k]; ag_k++) { if (!ag_valid(PCBARGC#(AG_TOKEN_TYPE) (PCB).ag_dtl[ag_k])) continue; ag_tp[ag_n++] = (PCB).ag_dtl[ag_k]; } return ag_n; } ## parse procs STATIC#int NEAR#QUAL#ag_skip_proc(THISARG) { int ag_t = (PCB).token_number; AG_COUNT_RULE_P AG_CLEAR_BACK do { AG_COUNT_RULE_P AG_TRK_PTR AG_GET_TKN } while ((PCB).token_number == (AG_TOKEN_TYPE) ag_t); AG_RST_PTR return 1; } STATIC#int NEAR#QUAL#ag_skip_reduce_proc(THISARG) { int ag_t = (PCB).token_number; AG_COUNT_RULE_P AG_CLEAR_BACK do { AG_GET_VALUE (PCB).ssx--; AG_TRK_PTR ag_ra(PCBARG); if ((PCB).exit_flag != AG_RUNNING_CODE) return 0; (PCB).ssx++; AG_GET_TKN } while ((PCB).token_number == (AG_TOKEN_TYPE) ag_t); AG_RST_PTR return 1; } STATIC#int NEAR#QUAL#ag_r_shift_reduce_proc(THISARG) { int ag_sd = ag_fl[(PCB).ag_ap] - 1; if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; AG_CLEAR_BACK AG_REDUCE return (PCB).exit_flag == AG_RUNNING_CODE; } STATIC#int NEAR#QUAL#ag_s_shift_reduce_proc(THISARG) { int ag_sd = ag_fl[(PCB).ag_ap] - 1; if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; AG_CLEAR_BACK AG_REDUCE return (PCB).exit_flag == AG_RUNNING_CODE; } STATIC#int NEAR#QUAL#ag_r_simple_shift_reduce_proc(THISARG) { int ag_sd = ag_fl[(PCB).ag_ap] - 1; if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; AG_SIMPLE_REDUCE return 1; } STATIC#int NEAR#QUAL#ag_go_to_proc(THISARG) { AG_CLEAR_BACK AG_CHKOVFLO AG_GET_VALUE AG_STACK (PCB).ssx++; (PCB).sn = (PCB).ag_ap; AG_TRK_PTR return 0; } STATIC#int NEAR#QUAL#ag_null_go_to_proc(THISARG) { AG_SET_BACK AG_PROTX AG_NULL AG_STACK (PCB).ssx++; (PCB).sn = (PCB).ag_ap; AG_RST_PTR return (PCB).exit_flag == AG_RUNNING_CODE; } STATIC#int NEAR#QUAL#ag_r_go_to_proc(THISARG) { (PCB).ssx++; (PCB).sn = (PCB).ag_ap; return 0; } STATIC#int NEAR#QUAL#ag_accept_proc(THISARG) { --(PCB).ssx; AG_RST_PTR AG_COUNT_RULE_Z (PCB).exit_flag = AG_SUCCESS_CODE; return 0; } STATIC#int NEAR#QUAL#ag_shift_accept_proc(THISARG) { AG_TRK_PTR AG_COUNT_RULE_Z (PCB).exit_flag = AG_SUCCESS_CODE; return 0; } STATIC#int NEAR#QUAL#ag_r_shift_accept_proc(THISARG) { AG_COUNT_RULE_Z (PCB).exit_flag = AG_SUCCESS_CODE; return 0; } STATIC#int NEAR#QUAL#ag_s_shift_accept_proc(THISARG) { AG_COUNT_RULE_Z (PCB).exit_flag = AG_SUCCESS_CODE; return 0; } STATIC#int NEAR#QUAL#ag_simple_shift_reduce_proc(THISARG) { int ag_sd = ag_fl[(PCB).ag_ap] - 1; AG_SIMPLE_REDUCE AG_CLEAR_BACK AG_GET_VALUE if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; else AG_STACK AG_TRK_PTR AG_NSR_SR return 0; } STATIC#int NEAR#QUAL#ag_shift_reduce_proc(THISARG) { int ag_sd = ag_fl[(PCB).ag_ap] - 1; AG_CLEAR_BACK AG_GET_VALUE if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; else AG_STACK AG_TRK_PTR AG_REDUCE AG_NSR_SR return 0; } STATIC#int NEAR#QUAL#ag_error_proc(THISARG) { AG_UNDO AG_TRACE_ERROR AG_RST_PTR AG_RESYNCH return (PCB).exit_flag == AG_RUNNING_CODE; } STATIC#int NEAR#QUAL#ag_reduce_proc(THISARG) { int ag_sd = ag_fl[(PCB).ag_ap]; AG_CLEAR_BACK if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; else { AG_STACK } AG_RST_PTR AG_REDUCE AG_NSR_RD return (PCB).exit_flag == AG_RUNNING_CODE; } STATIC#int NEAR#QUAL#ag_simple_reduce_proc(THISARG) { int ag_sd = ag_fl[(PCB).ag_ap]; AG_SIMPLE_REDUCE AG_SET_BACK if (ag_sd) { (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; } else { AG_PROTX AG_NULL AG_STACK } AG_RST_PTR AG_NSR_RD return (PCB).exit_flag == AG_RUNNING_CODE; } ## error token parse procs STATIC#int NEAR#QUAL#ag_er_go_to_proc(THISARG) { AG_CLEAR_BACK AG_GET_VALUE (PCB).ssx++; (PCB).sn = (PCB).ag_ap; return 0; } STATIC#int NEAR#QUAL#ag_er_shift_accept_proc(THISARG) { AG_CLEAR_BACK AG_COUNT_RULE_Z (PCB).exit_flag = AG_SUCCESS_CODE; return 0; } STATIC#int NEAR#QUAL#ag_er_simple_shift_reduce_proc(THISARG) { int ag_sd = ag_fl[(PCB).ag_ap] - 1; AG_CLEAR_BACK AG_SIMPLE_REDUCE if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; else (PCB).ss[(PCB).ssx] = (PCB).sn; AG_NSR_SR return 0; } STATIC#int NEAR#QUAL#ag_er_shift_reduce_proc(THISARG) { int ag_sd = ag_fl[(PCB).ag_ap] - 1; AG_CLEAR_BACK if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; else (PCB).ss[(PCB).ssx] = (PCB).sn; AG_REDUCE AG_NSR_SR return 0; } ## parse engine AG_INIT_PARSE { AG_INIT_PTR AG_INIT_ERROR_MESSAGE AG_INIT_RESYNCH (PCB).ss[0] = (PCB).sn = (PCB).ssx = 0; (PCB).exit_flag = AG_RUNNING_CODE; AG_INIT_TRK AG_CLEAR_BACK } AG_PARSE { AG_INITIALIZE; (PCB).exit_flag = AG_RUNNING_CODE; while ((PCB).exit_flag == AG_RUNNING_CODE) { unsigned ag_t1 = ag_sbt[(PCB).sn]; if (ag_tstt[ag_t1]) { unsigned ag_t2 = ag_sbe[(PCB).sn] - 1; AG_GET_TKN do { unsigned ag_tx = (ag_t1 + ag_t2)/2; if (ag_tstt[ag_tx] > (AG_TSTT_CAST)(PCB).token_number) ag_t1 = ag_tx + 1; else ag_t2 = ag_tx; } while (ag_t1 < ag_t2); if (ag_tstt[ag_t1] != (AG_TSTT_CAST)(PCB).token_number) ag_t1 = ag_sbe[(PCB).sn]; } (PCB).ag_ap = ag_pstt[ag_t1]; (AG_GT[ag_astt[ag_t1]])(PCB_TYPE_CAST#PCBARG); } } ## reduce proc defs STATIC#int NEAR#ag_r_shift_accept_proc(THISARG); STATIC#int NEAR#ag_r_go_to_proc(THISARG); STATIC#int NEAR#ag_r_shift_reduce_proc(THISARG); STATIC#int NEAR#ag_r_simple_shift_reduce_proc(THISARG); STATIC#int NEAR#ag_s_shift_accept_proc(THISARG); STATIC#int NEAR#ag_s_shift_reduce_proc(THISARG); STATIC#int NEAR#ag_shift_accept_proc(THISARG); STATIC#int NEAR#ag_go_to_proc(THISARG); STATIC#int NEAR#ag_shift_reduce_proc(THISARG); STATIC#int NEAR#ag_simple_shift_reduce_proc(THISARG); STATIC#int NEAR#ag_reduce_proc(THISARG); STATIC#int NEAR#ag_simple_reduce_proc(THISARG); STATIC#int NEAR#ag_accept_proc(THISARG); STATIC#int NEAR#ag_error_proc(THISARG); STATIC#int NEAR#ag_null_go_to_proc(THISARG); STATIC#int NEAR#ag_skip_proc(THISARG); STATIC#int NEAR#ag_skip_reduce_proc(THISARG); STATIC#int NEAR#AG_RECOVER(THISARG); STATIC#int (NEAR#*CONST QUAL#ag_r_procs_scan[])(THISARG) = { ag_r_shift_accept_proc, ag_r_go_to_proc, ag_r_shift_reduce_proc, ag_r_simple_shift_reduce_proc }; STATIC#int (NEAR#*CONST QUAL#ag_s_procs_scan[])(THISARG) = { ag_s_shift_accept_proc, ag_r_go_to_proc, ag_s_shift_reduce_proc, ag_r_simple_shift_reduce_proc }; STATIC#int (NEAR#*CONST QUAL#ag_gt_procs_scan[])(THISARG) = { ag_shift_accept_proc, ag_go_to_proc, ag_shift_reduce_proc, ag_simple_shift_reduce_proc, ag_reduce_proc, ag_simple_reduce_proc, ag_accept_proc, ag_error_proc, ag_null_go_to_proc, ag_skip_proc, ag_skip_reduce_proc, AG_RECOVER }; ## reduce proc error defs STATIC#int NEAR#ag_er_shift_accept_proc(THISARG); STATIC#int NEAR#ag_er_go_to_proc(THISARG); STATIC#int NEAR#ag_er_shift_reduce_proc(THISARG); STATIC#int NEAR#ag_er_simple_shift_reduce_proc(THISARG); STATIC#int (NEAR#*CONST QUAL#ag_er_procs_scan[])(THISARG) = { ag_er_shift_accept_proc, ag_er_go_to_proc, ag_er_shift_reduce_proc, ag_er_simple_shift_reduce_proc }; ## chain parse procs STATIC#int NEAR#QUAL#ag_skip_proc(THISARG) { AG_COUNT_RULE_P AG_CLEAR_BACK AG_TRK_PTR return 0; } STATIC#int NEAR#QUAL#ag_skip_reduce_proc(THISARG) { AG_CLEAR_BACK AG_GET_VALUE (PCB).ssx--; AG_COUNT_RULE_P ag_ra(PCBARG); (PCB).ssx++; AG_TRK_PTR return 0; } STATIC#int NEAR#QUAL#ag_r_shift_reduce_proc(THISARG) { int ag_sd = ag_fl[(PCB).ag_ap] - 1; if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; AG_CLEAR_BACK AG_REDUCE return (PCB).exit_flag == AG_RUNNING_CODE; } STATIC#int NEAR#QUAL#ag_s_shift_reduce_proc(THISARG) { int ag_sd = ag_fl[(PCB).ag_ap] - 1; if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; AG_CLEAR_BACK AG_REDUCE return (PCB).exit_flag == AG_RUNNING_CODE; } STATIC#int NEAR#QUAL#ag_r_simple_shift_reduce_proc(THISARG) { int ag_sd = ag_fl[(PCB).ag_ap] - 1; if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; AG_SIMPLE_REDUCE return 1; } STATIC#int NEAR#QUAL#ag_go_to_proc(THISARG) { AG_CLEAR_BACK AG_CHKOVFLO AG_GET_VALUE AG_STACK (PCB).ssx++; (PCB).sn = (PCB).ag_ap; AG_TRK_PTR return 0; } STATIC#int NEAR#QUAL#ag_null_go_to_proc(THISARG) { AG_SET_BACK AG_PROTX AG_STACK (PCB).ssx++; (PCB).sn = (PCB).ag_ap; AG_RST_PTR return (PCB).exit_flag == AG_RUNNING_CODE; } STATIC#int NEAR#QUAL#ag_r_go_to_proc(THISARG) { (PCB).ssx++; (PCB).sn = (PCB).ag_ap; return 0; } STATIC#int NEAR#QUAL#ag_accept_proc(THISARG) { --(PCB).ssx; AG_COUNT_RULE_Z (PCB).exit_flag = AG_SUCCESS_CODE; AG_RST_PTR return 0; } STATIC#int NEAR#QUAL#ag_shift_accept_proc(THISARG) { (PCB).exit_flag = AG_SUCCESS_CODE; AG_COUNT_RULE_Z AG_TRK_PTR return 0; } STATIC#int NEAR#QUAL#ag_r_shift_accept_proc(THISARG) { AG_COUNT_RULE_Z (PCB).exit_flag = AG_SUCCESS_CODE; return 0; } STATIC#int NEAR#QUAL#ag_s_shift_accept_proc(THISARG) { AG_COUNT_RULE_Z (PCB).exit_flag = AG_SUCCESS_CODE; return 0; } STATIC#int NEAR#QUAL#ag_simple_shift_reduce_proc(THISARG) { int ag_sd = ag_fl[(PCB).ag_ap] - 1; AG_SIMPLE_REDUCE AG_CLEAR_BACK AG_GET_VALUE if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; else AG_STACK AG_TRK_PTR AG_NSR_SR return 0; } STATIC#int NEAR#QUAL#ag_shift_reduce_proc(THISARG) { int ag_sd = ag_fl[(PCB).ag_ap] - 1; AG_CLEAR_BACK AG_GET_VALUE if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; else AG_STACK AG_TRK_PTR AG_REDUCE AG_NSR_SR return 0; } STATIC#int NEAR#QUAL#ag_error_proc(THISARG) { AG_UNDO AG_TRACE_ERROR AG_RST_PTR AG_RESYNCH return (PCB).exit_flag == AG_RUNNING_CODE; } STATIC#int NEAR#QUAL#ag_reduce_proc(THISARG) { int ag_sd = ag_fl[(PCB).ag_ap]; AG_CLEAR_BACK if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; else { AG_STACK } AG_RST_PTR AG_REDUCE AG_NSR_RD return (PCB).exit_flag == AG_RUNNING_CODE; } STATIC#int NEAR#QUAL#ag_simple_reduce_proc(THISARG) { int ag_sd = ag_fl[(PCB).ag_ap]; AG_SIMPLE_REDUCE AG_SET_BACK if (ag_sd) { (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; } else { AG_PROTX AG_NULL AG_STACK } AG_RST_PTR AG_NSR_RD return (PCB).exit_flag == AG_RUNNING_CODE; } ## chain error token parse procs STATIC#int NEAR#QUAL#ag_er_go_to_proc(THISARG) { AG_CLEAR_BACK AG_GET_VALUE (PCB).ssx++; (PCB).sn = (PCB).ag_ap; return 0; } STATIC#int NEAR#QUAL#ag_er_shift_accept_proc(THISARG) { AG_CLEAR_BACK (PCB).exit_flag = AG_SUCCESS_CODE; AG_COUNT_RULE_Z return 0; } STATIC#int NEAR#QUAL#ag_er_simple_shift_reduce_proc(THISARG) { int ag_sd = ag_fl[(PCB).ag_ap] - 1; AG_CLEAR_BACK AG_SIMPLE_REDUCE if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; else (PCB).ss[(PCB).ssx] = (PCB).sn; AG_NSR_SR return 0; } STATIC#int NEAR#QUAL#ag_er_shift_reduce_proc(THISARG) { int ag_sd = ag_fl[(PCB).ag_ap] - 1; AG_CLEAR_BACK if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; else (PCB).ss[(PCB).ssx] = (PCB).sn; AG_REDUCE AG_NSR_SR return 0; } ## chain parse engine AG_INIT_PARSE { unsigned ag_t1; ag_t1 = 0; AG_INIT_PTR AG_INIT_ERROR_MESSAGE AG_INIT_RESYNCH (PCB).ss[0] = (PCB).sn = (PCB).ssx = 0; (PCB).exit_flag = AG_RUNNING_CODE; AG_INIT_TRK AG_CLEAR_BACK while (ag_tstt[ag_t1] == 0) { (PCB).ag_ap = ag_pstt[ag_t1]; (AG_GT[ag_astt[ag_t1]])(PCB_TYPE_CAST#PCBARG); ag_t1 = ag_sbt[(PCB).sn]; } } AG_PARSE { (PCB).token_number = (AG_TOKEN_TYPE) AG_TCV((PCB).input_code); while (1) { unsigned ag_t1 = ag_sbt[(PCB).sn]; unsigned ag_t2 = ag_sbe[(PCB).sn] - 1; do { unsigned ag_tx = (ag_t1 + ag_t2)/2; if (ag_tstt[ag_tx] > (AG_TSTT_CAST)(PCB).token_number) ag_t1 = ag_tx + 1; else ag_t2 = ag_tx; } while (ag_t1 < ag_t2); if (ag_tstt[ag_t1] != (AG_TSTT_CAST)(PCB).token_number) ag_t1 = ag_sbe[(PCB).sn]; (PCB).ag_ap = ag_pstt[ag_t1]; if ((AG_GT[ag_astt[ag_t1]])(PCB_TYPE_CAST#PCBARG) == 0) break; } } ## chain key parse engine AG_INIT_PARSE { unsigned ag_t1; ag_t1 = 0; AG_INIT_PTR AG_INIT_ERROR_MESSAGE AG_INIT_RESYNCH (PCB).ss[0] = (PCB).sn = (PCB).ssx = 0; (PCB).exit_flag = AG_RUNNING_CODE; (PCB).key_sp = NULL; (PCB).key_state = 0; AG_INIT_TRK AG_CLEAR_BACK while (ag_tstt[ag_t1] == 0) { (PCB).ag_ap = ag_pstt[ag_t1]; (AG_GT[ag_astt[ag_t1]])(PCB_TYPE_CAST#PCBARG); ag_t1 = ag_sbt[(PCB).sn]; } } AG_PARSE { (PCB).lab[(PCB).fx++] = (PCB).input_code; while ((PCB).exit_flag == AG_RUNNING_CODE) { while (1) { CONST unsigned char *ag_p; int ag_ch; if ((PCB).rx >= (PCB).fx) return; ag_ch = CONVERT_CASE((PCB).lab[(PCB).rx++]); if ((PCB).key_sp) { if (ag_ch != *(PCB).key_sp++) { (PCB).rx = (PCB).save_index; (PCB).key_sp = NULL; (PCB).key_state = 0; break; } else if (*(PCB).key_sp) continue; if (ag_key_act[(PCB).key_state] == ag_cf_end_key) { int ag_k1; int ag_k2; if ((PCB).rx >= (PCB).fx) { (PCB).rx--; (PCB).key_sp--; return; } (PCB).key_sp = NULL; ag_k1 = ag_key_parm[(PCB).key_state]; ag_k2 = ag_key_pt[ag_k1]; if (ag_key_itt[ag_k2 + CONVERT_CASE((PCB).lab[(PCB).rx])]) (PCB).rx = (PCB).save_index; else { (PCB).token_number = (AG_TOKEN_TYPE) ag_key_pt[ag_k1+1]; (PCB).key_state = 0; } break; } else { (PCB).token_number = (AG_TOKEN_TYPE) ag_key_parm[(PCB).key_state]; (PCB).key_state = 0; (PCB).key_sp = NULL; } break; } if ((PCB).key_state == 0) { (PCB).token_number = (AG_TOKEN_TYPE) AG_TCV(ag_ch); if (((PCB).key_state = ag_key_index[(PCB).sn]) == 0) break; (PCB).save_index = 1; } ag_p = &ag_key_ch[(PCB).key_state]; if (ag_ch <= 255) while (*ag_p < ag_ch) ag_p++; if (*ag_p == ag_ch) { (PCB).key_state = (int)(ag_p - ag_key_ch); switch (ag_key_act[(PCB).key_state]) { case ag_cf_set_key: { int ag_k1; int ag_k2; if ((PCB).rx >= (PCB).fx) { (PCB).rx--; return; } ag_k1 = ag_key_parm[(PCB).key_state]; ag_k2 = ag_key_pt[ag_k1]; (PCB).key_state = ag_key_jmp[(PCB).key_state]; if (ag_key_itt[ag_k2 + CONVERT_CASE((PCB).lab[(PCB).rx])]) continue; (PCB).save_index = (PCB).rx; (PCB).token_number = (AG_TOKEN_TYPE) ag_key_pt[ag_k1+1]; continue; } case ag_set_key: (PCB).save_index = (PCB).rx; (PCB).token_number = (AG_TOKEN_TYPE) ag_key_parm[(PCB).key_state]; case ag_jmp_key: (PCB).key_state = ag_key_jmp[(PCB).key_state]; continue; case ag_cf_end_key: case ag_end_key: (PCB).key_sp = ag_key_ends + ag_key_jmp[(PCB).key_state]; continue; case ag_accept_key: (PCB).token_number = (AG_TOKEN_TYPE) ag_key_parm[(PCB).key_state]; (PCB).key_state = 0; break; case ag_cf_accept_key: { int ag_k1; int ag_k2; if ((PCB).rx >= (PCB).fx) { (PCB).rx--; return; } ag_k1 = ag_key_parm[(PCB).key_state]; ag_k2 = ag_key_pt[ag_k1]; if (ag_key_itt[ag_k2 + CONVERT_CASE((PCB).lab[(PCB).rx])]) (PCB).rx = (PCB).save_index; else { (PCB).token_number = (AG_TOKEN_TYPE) ag_key_pt[ag_k1+1]; (PCB).key_state = 0; } break; } } break; } else { (PCB).rx = (PCB).save_index; (PCB).key_state = 0; break; } } { unsigned ag_t1 = ag_sbt[(PCB).sn]; unsigned ag_t2 = ag_sbe[(PCB).sn] - 1; do { unsigned ag_tx = (ag_t1 + ag_t2)/2; if (ag_tstt[ag_tx] > (AG_TSTT_CAST)(PCB).token_number) ag_t1 = ag_tx + 1; else ag_t2 = ag_tx; } while (ag_t1 < ag_t2); if (ag_tstt[ag_t1] != (PCB).token_number) ag_t1 = ag_sbe[(PCB).sn]; (PCB).ag_ap = ag_pstt[ag_t1]; (AG_GT[ag_astt[ag_t1]])(PCB_TYPE_CAST#PCBARG); } } } ## c plus plus definitions STATIC#int NEAR#QUAL#ag_accept_proc(THISARG); STATIC#int NEAR#QUAL#AG_ATX; STATIC#VOID NEAR#QUAL#ag_auto_resynch(THISARG); STATIC#VOID NEAR#QUAL#AG_CHECK_DEPTH; STATIC#VOID NEAR#QUAL#AG_DEFAULT; STATIC#VOID NEAR#QUAL#ag_diagnose(THISARG); STATIC#int NEAR#QUAL#ag_error_proc(THISARG); STATIC#VOID NEAR#QUAL#ag_error_resynch(THISARG); STATIC#VOID NEAR#QUAL#AG_GET_KEY_WORD; STATIC#int NEAR#QUAL#ag_go_to_error_proc(THISARG); STATIC#int NEAR#QUAL#ag_go_to_proc(THISARG); STATIC#int NEAR#QUAL#AG_JNS; STATIC#int NEAR#QUAL#ag_look_ahead(THISARG); STATIC#int NEAR#QUAL#ag_null_go_to_proc(THISARG); STATIC#VOID NEAR#QUAL#ag_prot(THISARG); STATIC#int NEAR#QUAL#ag_recover_proc(THISARG); STATIC#int NEAR#QUAL#ag_reduce_proc(THISARG); STATIC#int NEAR#QUAL#AG_RNS; STATIC#int NEAR#QUAL#ag_r_go_to_proc(THISARG); STATIC#int NEAR#QUAL#ag_r_shift_accept_proc(THISARG); STATIC#int NEAR#QUAL#ag_r_shift_reduce_proc(THISARG); STATIC#int NEAR#QUAL#ag_r_simple_shift_reduce_error_proc(THISARG); STATIC#int NEAR#QUAL#ag_r_simple_shift_reduce_proc(THISARG); STATIC#VOID NEAR#QUAL#ag_set_error_procs(THISARG); STATIC#int NEAR#QUAL#ag_shift_accept_proc(THISARG); STATIC#int NEAR#QUAL#ag_shift_reduce_proc(THISARG); STATIC#int NEAR#QUAL#ag_simple_reduce_error_proc(THISARG); STATIC#int NEAR#QUAL#ag_simple_reduce_proc(THISARG); STATIC#int NEAR#QUAL#ag_simple_shift_reduce_error_proc(THISARG); STATIC#int NEAR#QUAL#ag_simple_shift_reduce_proc(THISARG); STATIC#int NEAR#QUAL#ag_skip_proc(THISARG); STATIC#int NEAR#QUAL#ag_skip_reduce_error_proc(THISARG); STATIC#int NEAR#QUAL#ag_skip_reduce_proc(THISARG); STATIC#int NEAR#QUAL#ag_s_shift_accept_proc(THISARG); STATIC#int NEAR#QUAL#ag_s_shift_reduce_proc(THISARG); STATIC#VOID NEAR#QUAL#ag_trace_error(THISARG); STATIC#VOID NEAR#QUAL#ag_track(THISARG); STATIC#int NEAR#QUAL#ag_tst_tkn(THISARG); STATIC#VOID NEAR#QUAL#ag_undo(THISARG); STATIC#int (NEAR#*QUAL#ag_r_procs_error[])(THISARG); STATIC#int (NEAR#*QUAL#ag_s_procs_error[])(THISARG); STATIC#int (NEAR#*QUAL#ag_gt_procs_error[])(THISARG); STATIC#AG_TSTT_TYPE LOCUS *QUAL#AG_VALID; ## value proc %s %s_value(%s) { %s returnValue; returnValue = %s; return returnValue; } ## fin ##