Mercurial > ~dholland > hg > ag > index.cgi
comparison tests/agcl/parsifal/good/eeloop.c @ 0:13d2b8934445
Import AnaGram (near-)release tree into Mercurial.
author | David A. Holland |
---|---|
date | Sat, 22 Dec 2007 17:52:45 -0500 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:13d2b8934445 |
---|---|
1 | |
2 /* | |
3 * AnaGram, A System for Syntax Directed Programming | |
4 * File generated by: ... | |
5 * | |
6 * AnaGram Parsing Engine | |
7 * Copyright 1993-2002 Parsifal Software. All Rights Reserved. | |
8 * | |
9 * This software is provided 'as-is', without any express or implied | |
10 * warranty. In no event will the authors be held liable for any damages | |
11 * arising from the use of this software. | |
12 * | |
13 * Permission is granted to anyone to use this software for any purpose, | |
14 * including commercial applications, and to alter it and redistribute it | |
15 * freely, subject to the following restrictions: | |
16 * | |
17 * 1. The origin of this software must not be misrepresented; you must not | |
18 * claim that you wrote the original software. If you use this software | |
19 * in a product, an acknowledgment in the product documentation would be | |
20 * appreciated but is not required. | |
21 * 2. Altered source versions must be plainly marked as such, and must not be | |
22 * misrepresented as being the original software. | |
23 * 3. This notice may not be removed or altered from any source distribution. | |
24 */ | |
25 | |
26 #ifndef EELOOP_H | |
27 #include "eeloop.h" | |
28 #endif | |
29 | |
30 #ifndef EELOOP_H | |
31 #error Mismatched header file | |
32 #endif | |
33 | |
34 #include <ctype.h> | |
35 #include <stdio.h> | |
36 | |
37 #define RULE_CONTEXT (&((PCB).cs[(PCB).ssx])) | |
38 #define ERROR_CONTEXT ((PCB).cs[(PCB).error_frame_ssx]) | |
39 #define CONTEXT ((PCB).cs[(PCB).ssx]) | |
40 | |
41 | |
42 | |
43 eeloop_pcb_type eeloop_pcb; | |
44 #define PCB eeloop_pcb | |
45 #define INPUT_VALUE(type) *(type *) &(PCB).input_value | |
46 | |
47 #ifndef CONVERT_CASE | |
48 #define CONVERT_CASE(c) (c) | |
49 #endif | |
50 #ifndef TAB_SPACING | |
51 #define TAB_SPACING 8 | |
52 #endif | |
53 | |
54 | |
55 #ifndef AG_TRACE_FILE_NAME | |
56 #define AG_TRACE_FILE_NAME "eeloop.etr" | |
57 #endif | |
58 | |
59 static void ag_trace_error(void) { | |
60 FILE *ag_file = fopen(AG_TRACE_FILE_NAME, "w"); | |
61 int i; | |
62 if (ag_file == NULL) return; | |
63 fprintf(ag_file, "%d\n", (PCB).ssx); | |
64 for (i = 0; i < (PCB).ssx; i++) fprintf(ag_file, "%d\n", (PCB).ss[i]); | |
65 fprintf(ag_file, "%d\n", (PCB).sn); | |
66 fprintf(ag_file, "%d\n", (PCB).token_number); | |
67 fclose(ag_file); | |
68 } | |
69 | |
70 | |
71 #define READ_COUNTS | |
72 #define WRITE_COUNTS | |
73 #undef V | |
74 #define V(i,t) (*t (&(PCB).vs[(PCB).ssx + i])) | |
75 #undef VS | |
76 #define VS(i) (PCB).vs[(PCB).ssx + i] | |
77 | |
78 #ifndef GET_CONTEXT | |
79 #define GET_CONTEXT CONTEXT = (PCB).input_context | |
80 #endif | |
81 | |
82 typedef enum { | |
83 ag_action_1, | |
84 ag_action_2, | |
85 ag_action_3, | |
86 ag_action_4, | |
87 ag_action_5, | |
88 ag_action_6, | |
89 ag_action_7, | |
90 ag_action_8, | |
91 ag_action_9, | |
92 ag_action_10, | |
93 ag_action_11, | |
94 ag_action_12 | |
95 } ag_parser_action; | |
96 | |
97 | |
98 #ifndef NULL_VALUE_INITIALIZER | |
99 #define NULL_VALUE_INITIALIZER = 0 | |
100 #endif | |
101 | |
102 static int const ag_null_value NULL_VALUE_INITIALIZER; | |
103 | |
104 static const unsigned char ag_rpx[] = { | |
105 0 | |
106 }; | |
107 #define AG_TCV(x) (((x) > 0 && (x) <= 3) ? (x) : 0) | |
108 #ifndef SYNTAX_ERROR | |
109 #define SYNTAX_ERROR fprintf(stderr,"%s, line %d, column %d\n", \ | |
110 (PCB).error_message, (PCB).line, (PCB).column) | |
111 #endif | |
112 | |
113 #ifndef FIRST_LINE | |
114 #define FIRST_LINE 1 | |
115 #endif | |
116 | |
117 #ifndef FIRST_COLUMN | |
118 #define FIRST_COLUMN 1 | |
119 #endif | |
120 | |
121 #ifndef PARSER_STACK_OVERFLOW | |
122 #define PARSER_STACK_OVERFLOW {fprintf(stderr, \ | |
123 "\nParser stack overflow, line %d, column %d\n",\ | |
124 (PCB).line, (PCB).column);} | |
125 #endif | |
126 | |
127 #ifndef REDUCTION_TOKEN_ERROR | |
128 #define REDUCTION_TOKEN_ERROR {fprintf(stderr, \ | |
129 "\nReduction token error, line %d, column %d\n", \ | |
130 (PCB).line, (PCB).column);} | |
131 #endif | |
132 | |
133 | |
134 #ifndef AG_NEWLINE | |
135 #define AG_NEWLINE 10 | |
136 #endif | |
137 | |
138 #ifndef AG_RETURN | |
139 #define AG_RETURN 13 | |
140 #endif | |
141 | |
142 #ifndef AG_FORMFEED | |
143 #define AG_FORMFEED 12 | |
144 #endif | |
145 | |
146 #ifndef AG_TABCHAR | |
147 #define AG_TABCHAR 9 | |
148 #endif | |
149 | |
150 static void ag_track(void) { | |
151 switch ((PCB).input_code) { | |
152 case AG_NEWLINE: | |
153 (PCB).column = 1, (PCB).line++; | |
154 case AG_RETURN: | |
155 case AG_FORMFEED: | |
156 break; | |
157 case AG_TABCHAR: | |
158 (PCB).column += (TAB_SPACING) - ((PCB).column - 1) % (TAB_SPACING); | |
159 break; | |
160 default: | |
161 (PCB).column++; | |
162 } | |
163 (PCB).read_flag = 1; | |
164 } | |
165 | |
166 | |
167 static void ag_prot(void) { | |
168 int ag_k; | |
169 ag_k = 128 - ++(PCB).btsx; | |
170 if (ag_k <= (PCB).ssx) { | |
171 ag_trace_error(); | |
172 (PCB).exit_flag = AG_STACK_ERROR_CODE; | |
173 PARSER_STACK_OVERFLOW; | |
174 return; | |
175 } | |
176 (PCB).bts[(PCB).btsx] = (PCB).sn; | |
177 (PCB).bts[ag_k] = (PCB).ssx; | |
178 (PCB).vs[ag_k] = (PCB).vs[(PCB).ssx]; | |
179 (PCB).ss[ag_k] = (PCB).ss[(PCB).ssx]; | |
180 } | |
181 | |
182 static void ag_undo(void) { | |
183 if ((PCB).drt == -1) return; | |
184 while ((PCB).btsx) { | |
185 int ag_k = 128 - (PCB).btsx; | |
186 (PCB).sn = (PCB).bts[(PCB).btsx--]; | |
187 (PCB).ssx = (PCB).bts[ag_k]; | |
188 (PCB).vs[(PCB).ssx] = (PCB).vs[ag_k]; | |
189 (PCB).ss[(PCB).ssx] = (PCB).ss[ag_k]; | |
190 } | |
191 (PCB).token_number = (eeloop_token_type) (PCB).drt; | |
192 (PCB).ssx = (PCB).dssx; | |
193 (PCB).sn = (PCB).dsn; | |
194 (PCB).drt = -1; | |
195 } | |
196 | |
197 | |
198 static const unsigned char ag_tstt[] = { | |
199 0,2,3, | |
200 1,0, | |
201 0 | |
202 }; | |
203 | |
204 | |
205 static unsigned const char ag_astt[6] = { | |
206 7,0,1,3,5,11 | |
207 }; | |
208 | |
209 | |
210 static const unsigned char ag_pstt[] = { | |
211 0,0,1, | |
212 1,2, | |
213 0 | |
214 }; | |
215 | |
216 | |
217 static const unsigned char ag_sbt[] = { | |
218 0, 3, 5 | |
219 }; | |
220 | |
221 | |
222 static const unsigned char ag_sbe[] = { | |
223 0, 4, 5 | |
224 }; | |
225 | |
226 | |
227 static const unsigned char ag_fl[] = { | |
228 1,2,1 | |
229 }; | |
230 | |
231 static const unsigned char ag_ptt[] = { | |
232 0, 2, 3 | |
233 }; | |
234 | |
235 | |
236 static void ag_ra(void) | |
237 { | |
238 } | |
239 | |
240 #define TOKEN_NAMES eeloop_token_names | |
241 const char *const eeloop_token_names[4] = { | |
242 "grammar", | |
243 "eof", | |
244 "grammar", | |
245 "Identifier", | |
246 | |
247 }; | |
248 | |
249 | |
250 static const unsigned char ag_ctn[] = { | |
251 0,0, 0,0 | |
252 }; | |
253 | |
254 #ifndef MISSING_FORMAT | |
255 #define MISSING_FORMAT "Missing %s" | |
256 #endif | |
257 #ifndef UNEXPECTED_FORMAT | |
258 #define UNEXPECTED_FORMAT "Unexpected %s" | |
259 #endif | |
260 #ifndef UNNAMED_TOKEN | |
261 #define UNNAMED_TOKEN "input" | |
262 #endif | |
263 | |
264 | |
265 static void ag_diagnose(void) { | |
266 int ag_snd = (PCB).sn; | |
267 const char *ag_p; | |
268 int ag_k = ag_sbt[ag_snd]; | |
269 | |
270 if (*(ag_p = TOKEN_NAMES[ag_tstt[ag_k++]]) != 0 && | |
271 ag_astt[ag_k] == ag_action_8) { | |
272 sprintf((PCB).ag_msg, MISSING_FORMAT, ag_p); | |
273 } | |
274 else if ((ag_k = (int) ag_sbe[(PCB).sn] + 1) == (int) ag_sbt[(PCB).sn+1] - 1 | |
275 && *TOKEN_NAMES[ag_tstt[ag_k]]) { | |
276 sprintf((PCB).ag_msg, MISSING_FORMAT, TOKEN_NAMES[ag_tstt[ag_k]]); | |
277 } | |
278 else { | |
279 ag_p = TOKEN_NAMES[(PCB).token_number]; | |
280 if ((PCB).token_number == 0 || *ag_p == 0) ag_p = UNNAMED_TOKEN; | |
281 sprintf((PCB).ag_msg, UNEXPECTED_FORMAT, ag_p); | |
282 | |
283 } | |
284 (PCB).error_message = (PCB).ag_msg; | |
285 | |
286 | |
287 { | |
288 int ag_sx, ag_t; | |
289 | |
290 ag_sx = (PCB).ssx; | |
291 (PCB).ss[ag_sx] = (PCB).sn; | |
292 do { | |
293 while (ag_sx && ag_ctn[2*(ag_snd = (PCB).ss[ag_sx])] == 0) ag_sx--; | |
294 if (ag_sx) { | |
295 ag_t = ag_ctn[2*ag_snd]; | |
296 ag_sx -= ag_ctn[2*ag_snd +1]; | |
297 ag_snd = (PCB).ss[ag_sx]; | |
298 } | |
299 else { | |
300 ag_snd = 0; | |
301 ag_t = ag_ptt[0]; | |
302 } | |
303 } while (ag_sx && *TOKEN_NAMES[ag_t]==0); | |
304 if (*TOKEN_NAMES[ag_t] == 0) ag_t = 0; | |
305 (PCB).error_frame_ssx = ag_sx; | |
306 (PCB).error_frame_token = (eeloop_token_type) ag_t; | |
307 } | |
308 | |
309 | |
310 } | |
311 static int ag_action_1_r_proc(void); | |
312 static int ag_action_2_r_proc(void); | |
313 static int ag_action_3_r_proc(void); | |
314 static int ag_action_4_r_proc(void); | |
315 static int ag_action_1_s_proc(void); | |
316 static int ag_action_3_s_proc(void); | |
317 static int ag_action_1_proc(void); | |
318 static int ag_action_2_proc(void); | |
319 static int ag_action_3_proc(void); | |
320 static int ag_action_4_proc(void); | |
321 static int ag_action_5_proc(void); | |
322 static int ag_action_6_proc(void); | |
323 static int ag_action_7_proc(void); | |
324 static int ag_action_8_proc(void); | |
325 static int ag_action_9_proc(void); | |
326 static int ag_action_10_proc(void); | |
327 static int ag_action_11_proc(void); | |
328 static int ag_action_8_proc(void); | |
329 | |
330 | |
331 static int (*const ag_r_procs_scan[])(void) = { | |
332 ag_action_1_r_proc, | |
333 ag_action_2_r_proc, | |
334 ag_action_3_r_proc, | |
335 ag_action_4_r_proc | |
336 }; | |
337 | |
338 static int (*const ag_s_procs_scan[])(void) = { | |
339 ag_action_1_s_proc, | |
340 ag_action_2_r_proc, | |
341 ag_action_3_s_proc, | |
342 ag_action_4_r_proc | |
343 }; | |
344 | |
345 static int (*const ag_gt_procs_scan[])(void) = { | |
346 ag_action_1_proc, | |
347 ag_action_2_proc, | |
348 ag_action_3_proc, | |
349 ag_action_4_proc, | |
350 ag_action_5_proc, | |
351 ag_action_6_proc, | |
352 ag_action_7_proc, | |
353 ag_action_8_proc, | |
354 ag_action_9_proc, | |
355 ag_action_10_proc, | |
356 ag_action_11_proc, | |
357 ag_action_8_proc | |
358 }; | |
359 | |
360 | |
361 static int ag_action_10_proc(void) { | |
362 (PCB).btsx = 0, (PCB).drt = -1; | |
363 ag_track(); | |
364 return 0; | |
365 } | |
366 | |
367 static int ag_action_11_proc(void) { | |
368 (PCB).btsx = 0, (PCB).drt = -1; | |
369 (PCB).vs[(PCB).ssx] = (PCB).input_value; | |
370 (PCB).ssx--; | |
371 ag_ra(); | |
372 (PCB).ssx++; | |
373 ag_track(); | |
374 return 0; | |
375 } | |
376 | |
377 static int ag_action_3_r_proc(void) { | |
378 int ag_sd = ag_fl[(PCB).ag_ap] - 1; | |
379 if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; | |
380 (PCB).btsx = 0, (PCB).drt = -1; | |
381 (PCB).reduction_token = (eeloop_token_type) ag_ptt[(PCB).ag_ap]; | |
382 ag_ra(); | |
383 return (PCB).exit_flag == AG_RUNNING_CODE; | |
384 } | |
385 | |
386 static int ag_action_3_s_proc(void) { | |
387 int ag_sd = ag_fl[(PCB).ag_ap] - 1; | |
388 if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; | |
389 (PCB).btsx = 0, (PCB).drt = -1; | |
390 (PCB).reduction_token = (eeloop_token_type) ag_ptt[(PCB).ag_ap]; | |
391 ag_ra(); | |
392 return (PCB).exit_flag == AG_RUNNING_CODE; | |
393 } | |
394 | |
395 static int ag_action_4_r_proc(void) { | |
396 int ag_sd = ag_fl[(PCB).ag_ap] - 1; | |
397 if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; | |
398 (PCB).reduction_token = (eeloop_token_type) ag_ptt[(PCB).ag_ap]; | |
399 return 1; | |
400 } | |
401 | |
402 static int ag_action_2_proc(void) { | |
403 (PCB).btsx = 0, (PCB).drt = -1; | |
404 if ((PCB).ssx >= 128) { | |
405 ag_trace_error(); | |
406 (PCB).exit_flag = AG_STACK_ERROR_CODE; | |
407 PARSER_STACK_OVERFLOW; | |
408 } | |
409 (PCB).vs[(PCB).ssx] = (PCB).input_value; | |
410 (PCB).ss[(PCB).ssx] = (PCB).sn; | |
411 (PCB).ssx++; | |
412 (PCB).sn = (PCB).ag_ap; | |
413 ag_track(); | |
414 return 0; | |
415 } | |
416 | |
417 static int ag_action_9_proc(void) { | |
418 if ((PCB).drt == -1) { | |
419 (PCB).drt=(PCB).token_number; | |
420 (PCB).dssx=(PCB).ssx; | |
421 (PCB).dsn=(PCB).sn; | |
422 } | |
423 ag_prot(); | |
424 (PCB).ss[(PCB).ssx] = (PCB).sn; | |
425 (PCB).ssx++; | |
426 (PCB).sn = (PCB).ag_ap; | |
427 return (PCB).exit_flag == AG_RUNNING_CODE; | |
428 } | |
429 | |
430 static int ag_action_2_r_proc(void) { | |
431 (PCB).ssx++; | |
432 (PCB).sn = (PCB).ag_ap; | |
433 return 0; | |
434 } | |
435 | |
436 static int ag_action_7_proc(void) { | |
437 --(PCB).ssx; | |
438 (PCB).exit_flag = AG_SUCCESS_CODE; | |
439 return 0; | |
440 } | |
441 | |
442 static int ag_action_1_proc(void) { | |
443 (PCB).exit_flag = AG_SUCCESS_CODE; | |
444 ag_track(); | |
445 return 0; | |
446 } | |
447 | |
448 static int ag_action_1_r_proc(void) { | |
449 (PCB).exit_flag = AG_SUCCESS_CODE; | |
450 return 0; | |
451 } | |
452 | |
453 static int ag_action_1_s_proc(void) { | |
454 (PCB).exit_flag = AG_SUCCESS_CODE; | |
455 return 0; | |
456 } | |
457 | |
458 static int ag_action_4_proc(void) { | |
459 int ag_sd = ag_fl[(PCB).ag_ap] - 1; | |
460 (PCB).reduction_token = (eeloop_token_type) ag_ptt[(PCB).ag_ap]; | |
461 (PCB).btsx = 0, (PCB).drt = -1; | |
462 (PCB).vs[(PCB).ssx] = (PCB).input_value; | |
463 if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; | |
464 else (PCB).ss[(PCB).ssx] = (PCB).sn; | |
465 ag_track(); | |
466 while ((PCB).exit_flag == AG_RUNNING_CODE) { | |
467 unsigned ag_t1 = ag_sbe[(PCB).sn] + 1; | |
468 unsigned ag_t2 = ag_sbt[(PCB).sn+1] - 1; | |
469 do { | |
470 unsigned ag_tx = (ag_t1 + ag_t2)/2; | |
471 if (ag_tstt[ag_tx] < (unsigned char)(PCB).reduction_token) ag_t1 = ag_tx + 1; | |
472 else ag_t2 = ag_tx; | |
473 } while (ag_t1 < ag_t2); | |
474 (PCB).ag_ap = ag_pstt[ag_t1]; | |
475 if ((ag_s_procs_scan[ag_astt[ag_t1]])() == 0) break; | |
476 } | |
477 return 0; | |
478 } | |
479 | |
480 static int ag_action_3_proc(void) { | |
481 int ag_sd = ag_fl[(PCB).ag_ap] - 1; | |
482 (PCB).btsx = 0, (PCB).drt = -1; | |
483 (PCB).vs[(PCB).ssx] = (PCB).input_value; | |
484 if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; | |
485 else (PCB).ss[(PCB).ssx] = (PCB).sn; | |
486 ag_track(); | |
487 (PCB).reduction_token = (eeloop_token_type) ag_ptt[(PCB).ag_ap]; | |
488 ag_ra(); | |
489 while ((PCB).exit_flag == AG_RUNNING_CODE) { | |
490 unsigned ag_t1 = ag_sbe[(PCB).sn] + 1; | |
491 unsigned ag_t2 = ag_sbt[(PCB).sn+1] - 1; | |
492 do { | |
493 unsigned ag_tx = (ag_t1 + ag_t2)/2; | |
494 if (ag_tstt[ag_tx] < (unsigned char)(PCB).reduction_token) ag_t1 = ag_tx + 1; | |
495 else ag_t2 = ag_tx; | |
496 } while (ag_t1 < ag_t2); | |
497 (PCB).ag_ap = ag_pstt[ag_t1]; | |
498 if ((ag_s_procs_scan[ag_astt[ag_t1]])() == 0) break; | |
499 } | |
500 return 0; | |
501 } | |
502 | |
503 static int ag_action_8_proc(void) { | |
504 ag_undo(); | |
505 ag_trace_error(); | |
506 (PCB).exit_flag = AG_SYNTAX_ERROR_CODE; | |
507 ag_diagnose(); | |
508 SYNTAX_ERROR; | |
509 ag_track(); | |
510 return (PCB).exit_flag == AG_RUNNING_CODE; | |
511 } | |
512 | |
513 static int ag_action_5_proc(void) { | |
514 int ag_sd = ag_fl[(PCB).ag_ap]; | |
515 (PCB).btsx = 0, (PCB).drt = -1; | |
516 if (ag_sd) (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; | |
517 else { | |
518 (PCB).ss[(PCB).ssx] = (PCB).sn; | |
519 } | |
520 (PCB).reduction_token = (eeloop_token_type) ag_ptt[(PCB).ag_ap]; | |
521 ag_ra(); | |
522 while ((PCB).exit_flag == AG_RUNNING_CODE) { | |
523 unsigned ag_t1 = ag_sbe[(PCB).sn] + 1; | |
524 unsigned ag_t2 = ag_sbt[(PCB).sn+1] - 1; | |
525 do { | |
526 unsigned ag_tx = (ag_t1 + ag_t2)/2; | |
527 if (ag_tstt[ag_tx] < (unsigned char)(PCB).reduction_token) ag_t1 = ag_tx + 1; | |
528 else ag_t2 = ag_tx; | |
529 } while (ag_t1 < ag_t2); | |
530 (PCB).ag_ap = ag_pstt[ag_t1]; | |
531 if ((ag_r_procs_scan[ag_astt[ag_t1]])() == 0) break; | |
532 } | |
533 return (PCB).exit_flag == AG_RUNNING_CODE; | |
534 } | |
535 | |
536 static int ag_action_6_proc(void) { | |
537 int ag_sd = ag_fl[(PCB).ag_ap]; | |
538 (PCB).reduction_token = (eeloop_token_type) ag_ptt[(PCB).ag_ap]; | |
539 if ((PCB).drt == -1) { | |
540 (PCB).drt=(PCB).token_number; | |
541 (PCB).dssx=(PCB).ssx; | |
542 (PCB).dsn=(PCB).sn; | |
543 } | |
544 if (ag_sd) { | |
545 (PCB).sn = (PCB).ss[(PCB).ssx -= ag_sd]; | |
546 } | |
547 else { | |
548 ag_prot(); | |
549 (PCB).vs[(PCB).ssx] = ag_null_value; | |
550 (PCB).ss[(PCB).ssx] = (PCB).sn; | |
551 } | |
552 while ((PCB).exit_flag == AG_RUNNING_CODE) { | |
553 unsigned ag_t1 = ag_sbe[(PCB).sn] + 1; | |
554 unsigned ag_t2 = ag_sbt[(PCB).sn+1] - 1; | |
555 do { | |
556 unsigned ag_tx = (ag_t1 + ag_t2)/2; | |
557 if (ag_tstt[ag_tx] < (unsigned char)(PCB).reduction_token) ag_t1 = ag_tx + 1; | |
558 else ag_t2 = ag_tx; | |
559 } while (ag_t1 < ag_t2); | |
560 (PCB).ag_ap = ag_pstt[ag_t1]; | |
561 if ((ag_r_procs_scan[ag_astt[ag_t1]])() == 0) break; | |
562 } | |
563 return (PCB).exit_flag == AG_RUNNING_CODE; | |
564 } | |
565 | |
566 | |
567 void init_eeloop(void) { | |
568 unsigned ag_t1; | |
569 ag_t1 = 0; | |
570 (PCB).ss[0] = (PCB).sn = (PCB).ssx = 0; | |
571 (PCB).exit_flag = AG_RUNNING_CODE; | |
572 (PCB).line = FIRST_LINE; | |
573 (PCB).column = FIRST_COLUMN; | |
574 (PCB).btsx = 0, (PCB).drt = -1; | |
575 while (ag_tstt[ag_t1] == 0) { | |
576 (PCB).ag_ap = ag_pstt[ag_t1]; | |
577 (ag_gt_procs_scan[ag_astt[ag_t1]])(); | |
578 ag_t1 = ag_sbt[(PCB).sn]; | |
579 } | |
580 } | |
581 | |
582 void eeloop(void) { | |
583 (PCB).token_number = (eeloop_token_type) AG_TCV((PCB).input_code); | |
584 while (1) { | |
585 unsigned ag_t1 = ag_sbt[(PCB).sn]; | |
586 unsigned ag_t2 = ag_sbe[(PCB).sn] - 1; | |
587 do { | |
588 unsigned ag_tx = (ag_t1 + ag_t2)/2; | |
589 if (ag_tstt[ag_tx] > (unsigned char)(PCB).token_number) | |
590 ag_t1 = ag_tx + 1; | |
591 else ag_t2 = ag_tx; | |
592 } while (ag_t1 < ag_t2); | |
593 if (ag_tstt[ag_t1] != (unsigned char)(PCB).token_number) | |
594 ag_t1 = ag_sbe[(PCB).sn]; | |
595 (PCB).ag_ap = ag_pstt[ag_t1]; | |
596 if ((ag_gt_procs_scan[ag_astt[ag_t1]])() == 0) break; | |
597 } | |
598 } | |
599 | |
600 |