
How to get started hacking NetBSD

Taylor R Campbell
riastradh@NetBSD.org

BSDCan 2024
Ottawa, Canada
June 1, 2024

How to get started hacking NetBSD

https://www.NetBSD.org/gallery/presentations/

riastradh/bsdcan2024/getstarted.pdf

https://www.NetBSD.org/gallery/presentations/riastradh/bsdcan2024/getstarted.pdf
https://www.NetBSD.org/gallery/presentations/riastradh/bsdcan2024/getstarted.pdf
https://www.NetBSD.org/gallery/presentations/riastradh/bsdcan2024/getstarted.pdf

How to get started hacking NetBSD

cvs -d anoncvs@anoncvs.NetBSD.org:/cvsroot co -P src

Alternatively, with Git or Mercurial:

▶ git clone https://github.com/NetBSD/src

▶ hg clone https://anonhg.NetBSD.org/src

cd src

./build.sh -O ../obj -U -u -m alpha -N1 -j4 release

How I got started hacking NetBSD

▶ Lived in the Apple world through ~2008

▶ Apple blocked running iTunes under gdb

▶ Offended by denial of autonomy

▶ Shopped around for something better

▶ . . . something that would respect my autonomy

▶ . . . and would run on my PowerBook G4

How I got started hacking NetBSD

▶ Lived in the Apple world through ~2008
▶ Apple blocked running iTunes under gdb

▶ Offended by denial of autonomy

▶ Shopped around for something better

▶ . . . something that would respect my autonomy

▶ . . . and would run on my PowerBook G4

How I got started hacking NetBSD

▶ Lived in the Apple world through ~2008
▶ Apple blocked running iTunes under gdb

▶ Offended by denial of autonomy

▶ Shopped around for something better

▶ . . . something that would respect my autonomy

▶ . . . and would run on my PowerBook G4

How I got started hacking NetBSD

▶ Lived in the Apple world through ~2008
▶ Apple blocked running iTunes under gdb

▶ Offended by denial of autonomy in my own computer

▶ Shopped around for something better

▶ . . . something that would respect my autonomy

▶ . . . and would run on my PowerBook G4

How I got started hacking NetBSD

▶ Lived in the Apple world through ~2008
▶ Apple blocked running iTunes under gdb

▶ Offended by denial of autonomy in my own computer

▶ Shopped around for something better

▶ . . . something that would respect my autonomy

▶ . . . and would run on my PowerBook G4

How I got started hacking NetBSD

▶ Lived in the Apple world through ~2008
▶ Apple blocked running iTunes under gdb

▶ Offended by denial of autonomy in my own computer

▶ Shopped around for something better

▶ . . . something that would respect my autonomy

▶ . . . and would run on my PowerBook G4

How I got started hacking NetBSD

▶ Lived in the Apple world through ~2008
▶ Apple blocked running iTunes under gdb

▶ Offended by denial of autonomy in my own computer

▶ Shopped around for something better

▶ . . . something that would respect my autonomy

▶ . . . and would run on my PowerBook G4

How I got started hacking NetBSD

▶ Read kernel code for the first time

▶ Just C code, guessed how syscalls are implemented

▶ Found bug in cmsg(3) API for fd passing

▶ Proposed fix, committed by christos@

▶ . . . not quite fixed until later; fd passing is hard

How I got started hacking NetBSD

▶ Read kernel code for the first time

▶ Just C code, guessed how syscalls are implemented

▶ Found bug in cmsg(3) API for fd passing

▶ Proposed fix, committed by christos@

▶ . . . not quite fixed until later; fd passing is hard

How I got started hacking NetBSD device drivers

▶ Spent July and August porting bwi(4) from
OpenBSD/DragonflyBSD

▶ Got it working on my PowerBook G4 Airport Extreme by
September

▶ . . . didn’t do a great job, not a wifi expert

How I got started hacking NetBSD device drivers

▶ Spent July and August porting bwi(4) from
OpenBSD/DragonflyBSD

▶ Got it working on my PowerBook G4 Airport Extreme by
September

▶ . . . didn’t do a great job, not a wifi expert

How to get started hacking NetBSD

Check out source tree (a few gigabytes):

▶ cvs -d anoncvs@anoncvs.NetBSD.org:/cvsroot co -P src

▶ git clone https://github.com/NetBSD/src

▶ hg clone https://anonhg.NetBSD.org/src

How to get started hacking NetBSD

Build a release:

./build.sh -O ../obj -U -u -m alpha -N1 -j4 release

-O ../obj build products go here

-U unprivileged build (traditionally privileged in /usr/src)

-u update build, don’t clean

-m alpha build for DEC Alpha architecture
(use ./build.sh list-arch to see all options)

-N1 verbosity level 1

-j4 4-way parallel build

release build NetBSD release—kernel, userland, sets, images
(use ./build.sh help to see all operations)

How to get started hacking NetBSD

Build a release:

./build.sh -O ../obj -U -u -m alpha -N1 -j4 release

-O ../obj build products go here

-U unprivileged build (traditionally privileged in /usr/src)

-u update build, don’t clean

-m alpha build for DEC Alpha architecture
(use ./build.sh list-arch to see all options)

-N1 verbosity level 1

-j4 4-way parallel build

release build NetBSD release—kernel, userland, sets, images
(use ./build.sh help to see all operations)

How to get started hacking NetBSD

Build a release:

./build.sh -O ../obj -U -u -m alpha -N1 -j4 release

-O ../obj build products go here

-U unprivileged build (traditionally privileged in /usr/src)

-u update build, don’t clean

-m alpha build for DEC Alpha architecture
(use ./build.sh list-arch to see all options)

-N1 verbosity level 1

-j4 4-way parallel build

release build NetBSD release—kernel, userland, sets, images
(use ./build.sh help to see all operations)

How to get started hacking NetBSD

Build a release:

./build.sh -O ../obj -U -u -m alpha -N1 -j4 release

-O ../obj build products go here

-U unprivileged build (traditionally privileged in /usr/src)

-u update build, don’t clean

-m alpha build for DEC Alpha architecture
(use ./build.sh list-arch to see all options)

-N1 verbosity level 1

-j4 4-way parallel build

release build NetBSD release—kernel, userland, sets, images
(use ./build.sh help to see all operations)

How to get started hacking NetBSD

Build a release:

./build.sh -O ../obj -U -u -m alpha -N1 -j4 release

-O ../obj build products go here

-U unprivileged build (traditionally privileged in /usr/src)

-u update build, don’t clean

-m alpha build for DEC Alpha architecture
(use ./build.sh list-arch to see all options)

-N1 verbosity level 1

-j4 4-way parallel build

release build NetBSD release—kernel, userland, sets, images
(use ./build.sh help to see all operations)

How to get started hacking NetBSD

Build a release:

./build.sh -O ../obj -U -u -m alpha -N1 -j4 release

-O ../obj build products go here

-U unprivileged build (traditionally privileged in /usr/src)

-u update build, don’t clean

-m alpha build for DEC Alpha architecture
(use ./build.sh list-arch to see all options)

-N1 verbosity level 1

-j4 4-way parallel build

release build NetBSD release—kernel, userland, sets, images
(use ./build.sh help to see all operations)

How to get started hacking NetBSD

Build a release:

./build.sh -O ../obj -U -u -m alpha -N1 -j4 release

-O ../obj build products go here

-U unprivileged build (traditionally privileged in /usr/src)

-u update build, don’t clean

-m alpha build for DEC Alpha architecture
(use ./build.sh list-arch to see all options)

-N1 verbosity level 1

-j4 4-way parallel build

release build NetBSD release—kernel, userland, sets, images
(use ./build.sh help to see all operations)

How to get started hacking NetBSD

Build a release:

./build.sh -O ../obj -U -u -m alpha -N1 -j4 release

-O ../obj build products go here

-U unprivileged build (traditionally privileged in /usr/src)

-u update build, don’t clean

-m alpha build for DEC Alpha architecture
(use ./build.sh list-arch to see all options)

-N1 verbosity level 1

-j4 4-way parallel build

release build NetBSD release—kernel, userland, sets, images
(use ./build.sh help to see all operations)

What’s in your NetBSD release build

../obj/tooldir.NetBSD-9.3-amd64

cross-compiler toolchain

../obj/releasedir/${MACHINE ARCH}
release products, including distribution sets, kernels,
and install/live media

../obj/destdir.${MACHINE}
staged NetBSD installation

../obj/usr.bin/find

build tree for find(1) from src/usr.bin/find

../obj/sys/arch/${MACHINE}/compile/GENERIC
build tree for GENERIC kernel, including netbsd

kernel image (may vary on some ports)

Other useful build.sh targets

./build.sh help

./build.sh list-arch

./build.sh tools

build just cross-compiler toolchain

./build.sh distribution

build just (tools and) userland but not kernels or
release

./build.sh sets

build just distribution sets

./build.sh modules

build just kernel modules

Build a kernel

1. ./build.sh [. . .] tools

2. ./build.sh [. . .] kernel=GENERIC
▶ Note: For 64-bit Arm and 64-bit RISC-V, use

kernel=GENERIC64, not kernel=GENERIC
▶ Some ports have various special-purpose kernels, not

GENERIC, such as evbppc TWRP1025

Custom kernel config

▶ Local custom changes to GENERIC in
sys/arch/. . . /conf/GENERIC.local (or
sys/arch/. . . /conf/GENERIC64.local)

▶ Custom kernel config in sys/arch/. . . /conf/MYKERNEL

Example sys/arch/amd64/conf/DEBUG:

include "arch/amd64/conf/GENERIC"

options DEBUG

options KERNHIST

options LOCKDEBUG

options UVMHIST

Boot aarch64 in qemu

Create a disk image

mkdir ~/vm

cd ~/obj/releasedir/evbarm-aarch64/binary/gzimg

gunzip -c <arm64.img.gz >~/vm/disk.img

Make it a sparse 10 GB image

cd ~/vm

dd if=/dev/zero of=disk.img oseek=10g bs=1 count=1

Make a symlink to the kernel

KERNDIR=~/obj/sys/arch/evbarm/compile/GENERIC64

ln -sfn $KERNDIR/netbsd.img .

Start qemu-system-aarch64

qemu-system-aarch64 \

-kernel netbsd.img \

-append "root=dk1" \

-M virt \

-cpu cortex-a53 \

-smp 2 \

-m 1g \

-drive if=none,file=disk.img,id=disk,format=raw \

-device virtio-blk-device,drive=disk \

-device virtio-rng-device \

-nic user,model=virtio-net-pci \

-nographic

If qemu -kernel doesn’t work

▶ qemu -kernel works on some ports: alpha, arm (32-bit and
64-bit aarch64), riscv, virt68k
▶ Not yet on x86 (but almost ready!)

▶ If not:
▶ Use vnd(4) and/or rump ffs(4) to mount disk.img on the host

to update the kernel
▶ Serve the kernel from the host with httpd(8) and download it

on the guest with ftp(1)

gdb on live kernel under qemu

▶ $ qemu-system-aarch64 [. . .] -s [. . .]

▶ $ gdb netbsd.gdb

(gdb) target remote localhost:1234

▶ qemu -s is short for -gdb tcp:1234

gdb on live kernel under qemu

▶ $ qemu-system-aarch64 [. . .] -s [. . .]

▶ $ gdb netbsd.gdb

(gdb) target remote localhost:1234

▶ qemu -s is short for -gdb tcp:1234

gdb on live running kernel

gdb netbsd.gdb

(gdb) target kvm /dev/mem

gdb and crash(8) on system core dumps

gdb netbsd.gdb

(gdb) target kvm /var/crash/netbsd.n.core

crash -M /var/crash/netbsd.n \

-N /var/crash/netbsd.n.core

crash> bt

crash> ps

(see ddb(4) for more commands)

dmesg -M /var/crash/netbsd.n \

-N /var/crash/netbsd.n.core

Verify system core dumps work!

Force the system to crash:

sysctl -w debug.crashme_enable=1

sysctl -w debug.crashme.panic=1

Verify system core dumps work!

Many other crashme nodes:

▶ simulate panic

▶ enter ddb directly

▶ recursively lock mutex(9)

▶ enter infinite loop with interrupts blocked

▶ launch golang, a well-known alternative test suite for NetBSD

Verify system core dumps work!

Many other crashme nodes:

▶ simulate panic

▶ enter ddb directly

▶ recursively lock mutex(9)

▶ enter infinite loop with interrupts blocked

▶ launch golang, a well-known alternative test suite for NetBSD

Verify system core dumps work!

Many other crashme nodes:

▶ simulate panic

▶ enter ddb directly

▶ recursively lock mutex(9)

▶ enter infinite loop with interrupts blocked

▶ launch golang, a well-known alternative test suite for NetBSD

Verify system core dumps work!

Many other crashme nodes:

▶ simulate panic

▶ enter ddb directly

▶ recursively lock mutex(9)

▶ enter infinite loop with interrupts blocked

▶ launch golang, a well-known alternative test suite for NetBSD

Verify system core dumps work!

Many other crashme nodes:

▶ simulate panic

▶ enter ddb directly

▶ recursively lock mutex(9)

▶ enter infinite loop with interrupts blocked

▶ launch golang, a well-known alternative test suite for NetBSD

Run ATF tests

cd /usr/tests

atf-run | atf-report

Run ATF tests unprivileged

$ cd /usr/tests

$ atf-run | atf-report

▶ Not all ATF tests can run unprivileged

▶ Those that can avoid changing system configuration

Run ATF tests and save output

cd /usr/tests

atf-run | tee /var/tmp/atf-run.out | \

atf-report | tee /var/tmp/atf-report.out

Run ATF tests in a chroot

chroot ~/obj/destdir.amd64

chroot# cd /dev && sh MAKEDEV all

chroot# mount -t ptyfs ptyfs /dev/pts

chroot# mount -t tmpfs tmpfs /tmp

chroot# cd /usr/tests

chroot# atf-run | atf-report

Requires kernel at least as new as the chroot userland.
Very handy for testing pullups to release branches!

Developing one program/library at a time

$ cd ~/src/usr.bin/find

$ $TOOLDIR/bin/nbmake-$MACHINE_ARCH -j4 dependall

$ $TOOLDIR/bin/nbmake-$MACHINE_ARCH -j4 install

▶ Test again straight from the chroot!

▶ (For libraries: works only for dynamic libraries; static libraries
require rebuilding downstream users too)

▶ One makefile per program/library, usually short

▶ See src/share/mk/bsd.README for more information

Changing an include file

$ cd ~/src/include

$ edit stdio.h

$ $TOOLDIR/bin/nbmake-$MACHINE_ARCH -j4 includes

Then rebuild programs and libraries that #include <stdio.h>

Device drivers

▶ Autoconf drivers: represent hardware devices NetBSD can
detect and handle

▶ devsw entries: /dev interfaces between userland and kernel

▶ Sometimes correspond

Device drivers

▶ Autoconf drivers: represent hardware devices NetBSD can
detect and handle

▶ devsw entries: /dev interfaces between userland and kernel

▶ Sometimes correspond

Anatomy of an autoconf driver

Driver for hardware that can be detected by bus enumeration

struct foodev_softc {

device_t sc_self;

kmutex_t sc_lock;

...

};

CFATTACH_DECL2_NEW(foodev, sizeof(struct foodev_softc),

foodev_match, foodev_attach, foodev_detach,

NULL, NULL, NULL);

(Some day we’ll switch to C99 designated initializers!)

Anatomy of an autoconf driver

static int

foo_match(device_t self, cfmatch_t match, void *aux)

{

const struct pci_attach_args *pa = aux;

...

}

static int

foo_attach(device_t parent, device_t self, void *aux)

{ ... }

static int

foo_detach(device_t self, int flags)

{ ... }

Anatomy of an autoconf driver

foo match Can this driver handle this device? If so, with what
priority versus other drivers that can?

foo attach ▶ Allocate resources for the device’s driver state
▶ Expose the device to any other kernel interfaces
▶ Scan for children if any

foo detach Device has been removed. Disconnect any users in
other kernel interfaces and free resources.

See https://www.NetBSD.org/gallery/presentations/riastradh/

eurobsdcon2022/opendetach.pdf for more on tricky issues with detach!

https://www.NetBSD.org/gallery/presentations/riastradh/eurobsdcon2022/opendetach.pdf
https://www.NetBSD.org/gallery/presentations/riastradh/eurobsdcon2022/opendetach.pdf
https://www.NetBSD.org/gallery/presentations/riastradh/eurobsdcon2022/opendetach.pdf

Anatomy of a /dev character special

Interface between userland and kernel identified by major and
minor number stored in character special on disk

const struct cdevsw foo_cdevsw = {

.d_open = foo_open,

.d_close = foo_close,

.d_read = foo_read,

.d_write = foo_write,

...

.d_cfdriver = &foodev_cd,

.d_devtounit = dev_minor_unit,

...

};

(Don’t forget to add to src/sys/conf/majors, or the appropriate
machine-dependent majors list, and etc/MAKEDEV!)

Cloning devices

▶ Traditional /dev nodes correspond to a single hardware device
with per-device state:
▶ /dev/wd0 corresponds to first ATA hard drive
▶ /dev/sd0 corresponds to first SCSI hard drive
▶ /dev/ttyU0 corresponds to first USB serial port

▶ Cloning devices have per-open state:
▶ /dev/audio virtual mixed-audio interface
▶ /dev/dri/card0 graphics rendering interface
▶ /dev/vhci USB virtual host controller interface

Cloning devices

const struct cdevsw foo_cdevsw = {

.d_open = foo_open,

.d_close = noclose,

.d_read = noread,

.d_write = nowrite,

...

};

static const struct fileops foo_fileops = {

.fo_name = "foo",

.fo_read = foo_read,

.fo_write = foo_write,

...

};

Cloning devices

static int

foo_open(dev_t d, int flags, int fmt, struct lwp *l)

{

struct file *fp;

int fd;

int error;

error = fd_allocfile(&fp, &fd);

if (error)

return error;

...

error = fd_clone(fp, fd, flags,

&foo_fileops, privatedata);

KASSERT(error == EMOVEFD);

return error;

}

Access to device registers: bus space(9)

bus_space_tag_t bst;

bus_space_handle_t bsh;

uint32_t ctl;

int error;

bst = args->bst;

error = bus_space_map(bst, args->addr, args->size, 0,

&bsh);

if (error)

goto fail;

ctl = bus_space_read_4(bst, bsh, FOO_CTL);

if (ctl & FOO_BROKEN)

goto broken;

ctl |= FOO_ENABLED;

bus_space_write_4(bst, bsh, FOO_CTL, foo);

Handy macros for device register fields

#include <sys/cdefs.h>

#define RK_V1CRYPTO_TRNG_CTRL 0x0200 /* TRNG Control */

#define RK_V1CRYPTO_TRNG_CTRL_OSC_ENABLE __BIT(16)

#define RK_V1CRYPTO_TRNG_CTRL_CYCLES __BITS(15,0)

...

ctrl = RK_V1CRYPTO_TRNG_CTRL_OSC_ENABLE;

ctrl |= __SHIFTIN(100, RK_V1CRYPTO_TRNG_CTRL_CYCLES);

RKC_WRITE(sc, RK_V1CRYPTO_TRNG_CTRL, ctrl);

Exposing memory to devices: bus dma(9)

DMA: Direct memory access

▶ Allocate buffers at addresses that are safe for DMA
▶ Map buffers to bus addresses with IOMMU

▶ E.g., map user buffer from write(2) so ethernet device can
copy it out to the network

▶ Handle bouncing if buffers can’t be mapped directly

Testing kernel components with Rump

▶ Rump runs unmodified kernel components and device drivers
in userland processes, by setting up state just like a kernel

▶ NetBSD test suite uses Rump extensively to test kernel
components, such as file systems

▶ Edit, compile, test kernel components from userland:
▶ run nbmake-$MACHINE dependall/install from src/sys/rump

(or selective subdirectories)
▶ redo atf-run/report from chroot

Now get hacking NetBSD!

Questions?

