The pkgsrc guide

Documentation on the NetBSD packages
system

(2021/01/02)

Alistair Crooks
agc@NetBSD.org

Hubert Feyrer
hubertf@NetBSD.org

The pkgsrc Developers



The pkgsrc guide: Documentation on the NetBSD packages system
by Alistair Crooks, Hubert Feyrer, The pkgsrc Developers

Published 2021/01/02 08:32:15
Copyright © 1994-2021 The NetBSD Foundation, Inc

pkgsrc is a centralized package management system for Unix-like operating systems. This guide provides
information for users and developers of pkgsrc. It covers installation of binary and source packages, creation of
binary and source packages and a high-level overview about the infrastructure.



Table of Contents

1. What is pkgsrc? 1
L1 INEPOAUCTION ..ttt st s s b et ene e s 1
Lo1.1. WY PRESICT .ttt sttt sbe et s sbe e 1

1.1.2. Supported PIAtfOTMS ...coouvieiieiieriieeieeeert ettt ettt ettt e steeb e e beesabesbeenbeesenesnseenseenes 2

L2 OVEIVIEW ..ttt sttt s sb et 3
1.3, TEIMINOLOZY ...veeuvieiieeiiieieeeie ettt ettt ettt sat e st e bt e satesebe e beesbeesabeenbeesseessseenseenseesasesnsaenseeseesn 4
1.3.1. Roles INVOIVEd IN PKESTC....eeeuviriieiieeieeiieriteeteeit ettt ettt sttt et e sate st e saaesaaesanes 4

L4 TYPOZTAPNY .ottt ettt ettt ettt st et estte st e e e e bt e satesabeesaeesatesnbeensaesabesnbeenseenseenn 5
I. The pkgsrc user’s guide 1
2. GING NEIP ..ottt ettt ettt et e b e s at e st e e bt e bt e s at e st e e bt e satesabeebeenaee s 2
3. Where to get pkgsrc and how to keep it up-to-date..........cccecereeiienerieniinieieneeeneneereeeee e 3
3.1. Getting pkgsrc for the first tIMe.........cccevuiriiiiirieiienieceeee e 3
30110 AS 1Ar QTCRIVE ..ottt et 3

3.1.2. Via anonymous CVS ...t 4

3.2. Keeping pKESrc Up-to-date...........cceririiriiniiiiiieierie ettt 4
32,1 VIA AL fILES ettt ettt st 5

322, VIACVS ettt ettt et 5

3.2.2.1. Switching between different pkgsrc branches..........c.ccoccovevieiiniennnnne 5

3.2.2.2. What happens to my changes when updating?...........ccocceverieneninnencnne. 5

4. Using pkgsrc on systems other than NetBSD ..........ccoooiiiiiiiiiiiiiie e 6
4.1, Binary diStriDUION ......coouiitiiiiiietieieeie ettt sttt sttt et be st sbeene 6

4.2. BOOLSITAPPING PRESIC ..cuventiiiieniieiietieie ettt ettt ettt st et b et sb et esbe et e be st tesbeens 6

5. USINE PRESIC ottt ettt ettt b et b e ea et bt et e s bt e st e b e e bt et e sb e e st e sbe e st e besbeentenbens 7
5.1. USING DINATY PACKAZES ...c..eeuteiiriieieitieieteeiteteete ettt ettt sttt see e 7
5.1.1. Finding binary PaCKages ........ccceererueerierierieniinieene sttt sttt 7

5.1.2. Installing binary PaCKages.........ccocereerieriirieniinienienieeteniesiteieeteete et sieeae 7

5.1.3. Deinstalling PACKAZES .....cecververieririiiieniieiteieeitete sttt sttt sieeas 8

5.1.4. Getting information about installed packages..........cccccoerieriereriinennincnienenene 8

5.1.5. Checking for security vulnerabilities in installed packages.........ccccceeererveruennene 8

5.1.6. Finding if newer versions of your installed packages are in pkgsrc.........cccuen.e.. 9

5.1.7. Other administrative funCtioNS..........ccceivuiviiiieiiiiiiiiniicceee e 10

5.2. Building packages frOm SOUICE ........cueevueriiieniierieeiienite st et eieesite st sbe et esaeesbeesaeenaee e 10
5.2.1. REQUITEIMENLS ...u.vieutieniieriieiieeiteniee st eieesttesiteeteeteesiteebessbeesbaessbessseenseesasesnsesnses 10

5.2.2. Fetching diStles .....cco.eiriiiiiiiieie ettt s 10

5.2.3. How to build and install ............ccccccoiniiiiiniiiiiiiiiice 11

6. CONTIGUITING PKESTC.cnvviitientieriieeit ettt ettt ettt st e bt et e sate e bt e bt e sateeabeebeesbbesabeenbeenbeesabesaseenses 13
6.1. General CONfIGUIALION .......cevviiiiiiiieiieeieeie ettt st e st sbe e st sabeesbeesaee e 13

6.2. Variables affecting the build ProCeSS ........ceevierieriieiiierieiieeitesteste et 13

6.3. Variables affecting the installation ProCess .........c..ceceeeverievieniieeereneenreneneereeeeeeseeennes 14

6.4. Selecting and configuring the COMPILET ........c..ccceeririeiiiniiiiniic e 15
6.4.1. Selecting the COMPIIET..........cccecuiiiiiiiiiiiiieeeeee e 15

6.4.2. Additional flags to the compiler (CELAGS) ....cooeririenierieiieieeeneeeeeseeeeeeeeaee 16

6.4.3. Additional flags to the linker (LDFLAGS)..cccutrruerreerienienieeniteeieeieeniee st eeeennes 16

6.5. Developer/advanced SELHIES ..........cocuecuiiiiiiiiiiiieieieeee et 16

6.6. Selecting Build OPtionsS........cc.ceoueiuieiieiiiriieiese ettt sttt eae e e eneas 17

iii



7. Creating binary PACKAZES .....cccueevuieriierieeiieiieriteete ettt ettt ettt e st e bt et e sbtesabeebeesbaesabesnseenses 18

7.1. Building a single binary package ..........ccceceerieriieniienienieeieesteete ettt 18
7.2. Settings for creation of binary packages .........cceceereerierieriiienienieeeeeesee et 18
8. Creating binary packages for everything in pkgsrc (bulk builds) .........cccecerveenieniieriienienienen. 19
8. L. PrEPATALIONS «...eouvieiiieiieeieeite ettt ettt st ettt st et e bt e s bt st e e beesbeesabeeateenbes 19
8.2. Running a bulk build ........c..cocoeiiiiiiiiiiiiiiiic e 19
8.2.1. CONfIGUIALION ....ouiiniieiieieeieeteteeeete ettt 19
8.3. Requirements of a full bulk build............ccccooiiiiiiiiiii e 21
8.4. BULK DUILA VATIANLS . ..c..eeeitiiiiiriieeieeieereteete ettt sttt ettt et s 21
8.4.1. Detect unknown configure OPtions .........c.ccoceeevereeieriieieneneeeeneeeere e eenes 21
8.4.2. Detect classes of bugs by forcing compiler warnings............ccccccceeveeerieccnenne. 21
8.4.3. Force compiler options only in the build phase ..........ccceevreeieienieiieneeeee, 22
8.4.4. Use CUSLOM AITECLOTICS ....cuveverueetieiietietierie et ete sttt et etee e s ee st s et eaeeneeseeeneas 23
8.4.5. Turn Warnings iNtO EITOTS . .......c.erueeeertiruierterteetenteettenteeteenteseeeeesresseensesseeneeseeeneas 23
8.4.6. Reject packages for which pkglint reports errors ..........ceeeveeeeererieneneeneeneennen 24
8.4.7. Reject packages that contain forbidden Strings..........ccecevereerenerienenceneneenee. 24
8.4.8. Reject packages whose self-test fails.........cooeevvererierinieneniieeeeeee, 24
8.4.9. Reject packages that use undefined shell variables............ccccocererieninienenennee. 24
8.4.10. Turn off Verbose l0ZZING......cc.cvueriiriiriiiiiiiienieeeeecee e 25
8.5. Creating a multiple CD-ROM packages COlleCtion ............cooereerienerienienieneneeienenens 25
8.5.1. Example of CAPACK......ccceeviiiiiiiiiieiiee e 25
9. Directory layout of the installed flles.......c..cecuiviriiiiiiiiiniteee e 27
9.1. File system layout in $ { LOCALBASE } c.cecveutruiruirienieieieiieiesiesteieneteneeseesessesaenesneeenesaens 27
9.2. File system 1ayout in $ { VARBASE } touveecueerteeriierrerieenieesresseeseesseessesssessseesseesssesssassseesns 29
10. Frequently Asked QUESLIONS ......cccveeruieriieriieriieniiesieeieenieesteeteesteesieessseeseessresssesseesseesssesssesnses 30
10.1. Are there any mailing lists for pkg-related discussion? .........ccccceeevervieeneeneeniieeneeneenne 30
10.2. Utilities for package management (PKZLOOLS)......c.eerveeruieriirrieenienieeieeneenee e eieeniee e 30
10.3. HOW t0 US€ PKESTC AS NON-TOOL ...eevvieiieriiieiieniieniteeteenieesiteeteesseesseesseenseesseessesssessseenes 31
10.4. How to resume transfers when fetching distfiles?.........ccccovvieviiniiiiiienienicnieeeeeee 32
10.5. How can I install/use modular X.org from pKgSrc?.......coevivvienieniennieeneenienieeieenieene 32
10.6. How to fetch files from behind a firewall ..........c..coccoceniniiininiininiinnceeceeceeen 32
10.7. How to fetch files from HTTPS Sites.......ccccovirvieririenieniinieiineeeneeieneeeere e 32
10.8. How do I tell make fetch to do passive FTP?........c.ccooeieiiniecieiceeeeeee e 33
10.9. How to fetch all diStfiles at ONCE ..........coceecueriieieriinieieneeeeeeeeeeeee e 33
10.10. What does “Don’t know how to make /usr/share/tmac/tmac.andoc” mean?............... 33
10.11. What does “Could not find bsd.own.mk” mean?...........cccceeveereeriieenienieensieeneeneennenn 34
10.12. Using ’sudo’ With PKESTC......cocuiriiiiiiiiiiieiieieie et 34
10.13. How do I change the location of configuration files?............c.ccccoeveiiniiiininnienene. 34
10.14. Automated security CheckS..........oociiiiiiiiiiiiiieee e 35
10.15. Why do some packages ign01e My CELAGS? ...covueirieruirrieenieenienieenieesieesteenseesaeesaeens 35
10.16. A package does not build. What shall T do? ........ccccooiiiiiiiiiiiiieeeeee 36
10.17. What does “Makefile appears to contain unresolved cvs/rcs/??? merge conflicts”
TTICANT .ttt ettt ettt ettt e e bt et e e bt e st e b e bt et e eh e et e ehe e et e bt eh e et e e bt et e eae e st e beententeebeenes 36



II. The pkgsrc developer’s guide 37

L1, GEUNZ NEIP ..ttt sttt st ettt e st st e b e e bt e sabeeabeenbeesabesaneenbes 38
12. Package components - files, directories and CONLENLS ...........eecueerveerieerierrieenienieeieeneesreeeeennes 39
L2, 1. MAKEE L L tteiiiiieniieeie ettt ettt ettt st e bt e s ttesat e e bt e s bt e sat e sabe e bt e bt e sabe e bt enbtesateebeenbee e 39
122, A S AN O ettt ettt et ettt et b e s a e st e bt e s at e s bt enbeesatesate s 41
L B B T el s 1=y = PSR 41
12.3.1. Structure of a single patch file ..........cccccoieiiiiiiiiiinieeceen 41
12.3.2. Creating patch files ..........ccooiiiiiiiiic e 42
12.3.3. Sources where the patch files come from ...........ccccooeniiiiiniiiiiie. 42
12.3.4. Patching GUIdEIINES ........cocueeviiiiiiiniieiiiieenieeeeeeteeeeee et 42
12.3.5. Feedback to the author .......ccccoiiiiiiiiiiiiiiiieeieeeeeeeeeee e 43

12.4. Other Mandatory fIlES ........c.erieierieiee ettt sttt 43
12.5. OPtioNal fIIES .....eeviieieieitieieie ettt ettt st ettt ae e 44
12.5.1. Files affecting the binary package .........ccoceieeieiiniiiineieeeeeeecee e 44
12.5.2. Files affecting the build process. ........c.ceveevereriesienieiieneneeesieee e 45
12.5.3. Files affecting nothing at all ..........c.ccooeiiiiiiiniiiiieeeeeeeeecee e 45

1200, WOTKH teruieeuiieiiesiieeie et e te et eete e teeetteesbe e beessbeesbaesseessaessseansaeseaassesnseensaenssesnseenseenseesnsenn 46
12,7 FA LS/ H teerteesieeeie et ettt et e ettt e et e ettt e st e et e et e taeeabe e be e tteenbeen b e enttenateenbeesaennaennten 46
13. The DUILA PIOCESS ..vevieniiiieiiiieeitete ettt ettt ettt et et st b e b et b et e saeeneen 47
131, INEFOAUCLION ...ttt s st 47
13.2. Program 10CALION ......cooueiuieiiriieieieeiceiesieetee ettt ettt sttt st s 47
13.3. Directories used during the build process..........ccoeeeerererrienenienieneeneneeeeneseeeseenee 48
13.4. RUNNING @ PRASE «..eeiiiniiiiieiiiiieteece ettt ettt 48
13.5. THE fECH PRASE ....ceveeeieiieeteett ettt ettt ettt sttt e st e st e e bt e satesebeebaenaaesasean 48
13.5.1. What to fetch and where to get it from .......coceeciieiieniieniiiiieeeeeeeeee e 49
13.5.2. How are the files fetched?...........cccccevinininiiniiiiniiiicccee, 50

13.6. The CRECKSUIN PRASE ...cc.veeveieeiiieiieiieete ettt sttt et st e bt e bt e sabeeseenaee e 50
13.7. TR @XIFACE PRASE....ccueeeiiieiieeieeiteteete ettt ettt st sttt et e st e be e bt e sabeenbeenbee e 51
13.8. The Parch PRASE .....cooeiiiiiiieeieeeeteete ettt ettt sttt e sbe e st ebeesbee e 51
13.9. TRE 100LS PRASE .....veeeuiiiiieiieeieett ettt ettt sttt ettt sttt e bt e sateebeenbee e 51
13.10. The WrapPer PRASE .......cooueriiiiiiiieeieeit ettt ettt ettt st e sbe bt e sateebeesbee e 51
13.11. The CORfigUTE PRASE......coveeruiiiiieiieieeit ettt ettt sttt ettt sttt st eebeenaee e 52
13.12. The DUild PRASE........ccuevuieiiiieiiiieteeeeee ettt 53
13.13. The 1St PRASE «...c..eveeiiiiieieiee ettt s 53
13.14. The install PRASE......c..coeeciiriieieiieieeeeee ettt 53
13.15. The package PRase...........c.cooeiiiiiiiiiiiecee e 55
13.16. CIEANING UP...ceeiniiiiieieiieieieeee ettt ettt ettt e st en e e eene e 55
13.17. Other helpful tarZELS .....cecverueeierieeieree ettt ettt ettt be et e e ene s 55
14. Creating a new pkgsrc package from SCratCh..........coeeoieririeiiinieiee e 61
14.1. Common types Of PACKAZES .......uerueruierieriieieiteeiieie ettt sttt ettt ettt ene s 62
14.1.1. Perl MOAUIES........oiuiiiiiiitieieiee ettt 63
14.1.2. Python modules and programs..........cccceeeeierenienieniesienie st eeees 63
14.1.3. R PACKAZES ..ottt sttt 63
14.1.4. TeX1ive PACKAZES ...ccuveruiiuieieiieiienie ettt ettt see e 64

14.2. EXAMPILS ..ottt ettt ettt st et b ettt bt et be bt e e ebe e 64
14.2.1. How the www/nvu package came into pKgSsrc.......coeeveerereerienienienienceneeneennes 64
14.2.1.1. The initial PACKAZE .....coveevuireieieieriieieiieetc et 64

14.2.1.2. Fixing all kinds of problems to make the package work...................... 65



14.2.1.3. Installing the paCKaZe........ccevieriiirieirienie ettt 68

15. Programming i MaKe £ i 1eS. it uiinierierieerieeniiesteeteenteesteeseesteesisesssesnseesseesnsesseesseesssesnsesnses 69
LS. 1. CAVEALS. ...ttt e 69
15.2. Makefile Variables ..o 69
15.2.1. NamMiNg CONVENLIONS. ....eeruterreiitieriieeieesitesiteesteeieestteessesteesseesasessseesseesssesnsesnses 70
15.3. COdE SIIPPELS....eeenrirmieieriieieniieeerte ettt ettt et et aesae e sreeane s s esnesneene 70
15.3.1. Adding things t0 @ TiSt.......cceviiiiiriiriiienecieeeeeee et 70
15.3.2. Echoing a String eXactly aS-1S ........c.cceeeririieniinieiinieeene et 70
15.3.3. Passing CFLAGS to GNU configure SCripts.........ccccoeevverereecienineeniieeeeeneenes 71
15.3.4. Handling possibly empty variables............ccccoecieiiniiiininiiiiniicicccceeen 71
16. Options handIing .........cc.couiiiiiiiiiiiiiiiceeeee et et 73
16.1. Global default OPtIONS ......cc.evuieieriieieie ettt ettt et e e ene s 73
16.2. Converting packages to USe bsd. OPL10NS . MK wevueeeierieriirrierieeiienieeieeree st eee et eeeens 73
16.3. OPLION NAIMIES ....ceuviiieieitieiett ettt ettt ettt ettt ettt e stesbe e tesbeeseetesbeeneeseeemsenbeeseenseeneenes 75
16.4. Determining the options Of dEPENdEnCies ..........ccceeeererierieririerireee st 76
17. Tools needed for building OF TUNNING .....c..ccviitirieriirieiee ettt 77
17.1. Tools for pKESIC BUILAS ....cceeiiiiieiiiiee e 77
17.2. Tools needed DY PACKAZES ......eeveruirieriiniieienieeiteie ettt sttt 77
17.3. Tools provided by platfOrms..........ceceererieerieriinieieeeeeseee et 77
18. Buildlink methOdOIOZY .....cceeviiriiriiiiiieiiiteteetee sttt ettt sttt 79
18.1. Converting packages to use buildlink3...........cccooiriiiiniiiininiieeeeeeee 79
18.2. Writing buildlink3 .mk fllES ..ccoiriiimiriiiiiinieiieescee e 80
18.2.1. Anatomy of a buildlink3.mK file .......cccccoeriininiiiiniiienircececceen 80
18.2.2. Updating BUILDLINK_API_DEPENDS.pkg and
BUILDLINK_ABI_DEPENDS.pkginbuildlink3.mk fileS.......cccooiiriiinnnnnnnns 82
18.3. Writing bui 1£in .mK fIlES .eeviieiieiieiieeiieiteree sttt ettt ettt et 83
18.3.1. Anatomy of a builtin.mk fil€...ccociriiiiiiniiniiiiieeee e 83
18.3.2. Global preferences for native or pkgsrc SOftWare ..........ccceveerveeerieenieniienceeenne. 84
LO. PLIST ISSUES ...uviiiiiiiiiitciciete ettt s bbb e 86
LOL RCS ID et 86
19.2. Semi-automatic PLIST ZENETALION ...ecueeruvietieriieriteeiienteesiteeteesieesstesteesseesseesaseenseenseesns 86
19.3. Tweaking output of make print-PLIST ...............ccooiiiiiinie e 86
19.4. Variable substitution in PLIST .........cccccociiiiiiiiiiiiics 86
19.5. Man page COMPIESSION ........ccutereruirierrerieetenteeieeteeneenesaeesressesaeessesseessesseennessessnensesseenns 88
19.6. Changing PLIST source With PLIST_SRC ..c..cccuevuirieruereeienieniiereneeeresreeeesreeeeennesneenns 88
19.7. Platform-specific and differing PLISTS.......c..cccccoiiiiiiniiiiiicececeeceee 88
19.8. Build-specific PLISTS ......ccooiiiiiiiieiieeee et 88
19.9. Sharing directories between packages.........c..cccveeuieieriniiieriinieieneee e 88
20. The pkginstall frameEWOTK ..........ccocooiiiiiiiiiiiiie e 90
20.1. Files and directories outside the installation PrefiX .........coeeeeeriereeinienieneneneeneeninennens 90
20.1.1. Directory Manipulation ..........cc.ccveeeeerinrenenienieineneneenteteeeeere et resseeeneenesnenee 90
20.1.2. File Manipulation ........c.ccccocereeieieirininteneieeeeeese ettt 91
20.2. Configuration fIIES ........ccceveiriririirterieieteiteese ettt sttt ettt saea 91
20.2.1. HOW PKG_SYSCONEDIR 1S SEL ...cuvouiuiiiiiiiiiiiiiiiciiiiciieceeeesecec s 92
20.2.2. Telling the software where configuration files are............cocceceveerenerieniennenne. 92
20.2.3. Patching inStallations ...........ceoererierienieniineeseeteeeee e 93
20.2.4. Disabling handling of configuration files.........c..ccccevevieiiniieniniinrenenieenene 93
20.3. SYSLEM SLAITUP SCIIPES -.euveeuterterrieterttetenteeitenteeitertestt et e st ettenteeueentesbeesbesbesbtentesbeeneesbeenees 93

Vi



20.3.1. Disabling handling of system Startup SCIIPLS .......cevverveerrieerieriieriieeneeseeseeennes 94

20.4. System USErS ANd SIOUPS .e..veeverrueerierieeiieertiestesteesteestesteesseesseesstesseesseesseesseessessseesas 94
20.5. SYSLEM SNELLS ....veeiiieiieiierteeee ettt st ettt sttt st beenaee e 94
20.5.1. Disabling shell 1€ZiStration ...........c.eeveerieriiirieiiienieeeeieeste et 95

20.6. FONLS ..ot 95
20.6.1. Disabling automatic update of the fonts databases...........c..cccccoveevenenienincnne. 95

21. Making your package WOTK..........ccccovveriirieiiniinieiirc ettt st s 96
21.1. General OPEIAtION ........coeevuiruieieiieiieieete ettt sttt et st e eae e s ennes 96
21.1.1. How to pull in user-settable variables from mk . conf ......cccccceoieiencniecicnnenne. 96
21.1.2. USET INLETACHION ....eeuveentieenieeieenteesite et etee st ete et e sbteebesbeesbeesateeaneenbeesnnesaneennes 96
21.1.3. Handling lICENSES .......cceiiiriiiiiiiiiieiieiceee e 97
21.1.3.1. Adding a package with a new liCense ........cccceeeeererereneniennecncnnennen 97

21.1.3.2. Change to the lICENSE......c.eeververieieieiriiriieieeeeeteese et 98

21.1.4. Restricted PACKAZES. ......coerviriirreieieitriieteteteeeiteie ettt ettt 98
21.1.5. Handling dependencies ..........cccoueeriruinrenienieieinenieneenteeeeeneenessessesseeeneenesnenee 99
21.1.6. Handling conflicts with other packages ..........ccccovveevierenieneniieienieeee e 100
21.1.7. Packages that cannot or should not be built...........cccceoverieieninieniineniienene 101
21.1.8. Packages which should not be deleted, once installed............cccccecereererenne. 101
21.1.9. Handling packages with security problems ...........cccccocereevieninvienerieenenennne 102
21.1.10. How to handle incrementing versions when fixing an existing package ...... 102
21.1.11. Substituting variable text in the package files (the SUBST framework) ...... 103
21.1.11.1. Choosing the time where the substitutions happen ............cc.cc.cce..c. 103

21.1.11.2. Choosing the files where the substitutions happen..........c..cccccoeenee. 105

21.1.11.3. Choosing what to SUDSHIULE .......cceeeuereeniireeninieienieneereeceree e 105

21.1.11.4. Other SUBST variables..........c.ccocevueeieiiininiiiicicicinenceieee 106

21.2. TRE fErCH PRASE ......veeveeiiecieeeie ettt ettt sttt ettt et et e sabeebe e beesabeenseenbeas 106
21.2.1. Packages whose distfiles aren’t available for plain downloading................... 106
21.2.2. How to handle modified distfiles with the *old’ name.........c..ccccceuereencrcnnne. 106
21.2.3. Packages hosted on github.COM ......ccceeviiiriiriiiiiiiieeicceeeeee e 107
21.2.3.1. Fetch based on a tagged release .......c..ccovverveeerieenieeriiensieeienieeieeeen 107

21.2.3.2. Fetch based on a specific commit before the first release................... 107

21.2.3.3. Fetch based on a specific commit after a release ...........cccceevveeeennnen. 108

21.2.3.4. Fetch based on 1elease...........cooviviniiiiiiiiiniiiiiciicccc 108

21.3. The configure PRASE.........c..cocvevieriieiiriieieeeteesectet ettt ettt st 108
21.3.1. Shared libraries - lIDtOOL.........cccueriieiieiiiiniieieeeeeeeeeee e 108
21.3.2. Using libtool on GNU packages that already support libtool.......................... 110
21.3.3. GNU Autoconf/AUtomake ..........cocueevueriieniiniienieeniienieeieeeesiee st 110

21.4. Programming languUages ..........cocueereerieriiieniienienieeteesiee sttt et st e bt e st rees 111
21.4.1. C, CH4, and FOITIaN ....coovviviieeeeee et e e e e e e eeaaaaes 111
2142, JAV ettt ettt 111
21.4.3. Packages containing pPerl SCIIPLS ......c.evvereerieruieriineeieriesiteie sttt 112
21.4.4. Packages containing Shell SCIIPLS.......ccceeveriirieriireeieiereeei e 112
21.4.5. Other programming languages...........c.ccecveruieierieneenieneniee st 112

21.5. The DUild PRASE......c.eoeueeieiieieieet ettt ettt et s e e b enans 112
21.5.1. Compiling C and C++ code conditionally .........ccccceeeererienieniniienenieneneeene 112
21.5.1.1. C preprocessor macros to identify the operating system.................... 113

21.5.1.2. C preprocessor macros to identify the hardware architecture............. 113

21.5.1.3. C preprocessor macros to identify the compiler.........c.cccccceceenenennnee 113

Vii



21.5.2. How to handle cOmpPiler BUZS .........ccceeriieriiniieriieiieeieeieeieeste st 113

21.5.3. NO SUCh fil€ OF AITECLOTY ...eeeuviiiiiriiieiieieeriteeie ettt st 114
21.5.3.1. Headers from other packages ..........cceeceeveerieinieenienienieeieenieeeeeen 114

21.5.3.2. Headers generated during the build...........cccceeveeviiniinnennienieniennen. 115

21.5.3.3. SYMINKS ..ot 115

21.5.3.4. Stale working dir€CtOIies. ......ccevueererrireeniirieiereerenie et 115

21.5.3.5. Other posSible IEASONS.......ccceerueruieciiniieieniieietereereste et 115

21.5.4. Undefined reference t0 ... .....ciiiiiriiiiienieeieeeeteeee ettt 116
21.5.4.1. Special issue: The SunPro compiler.............cccoovieeininiininiencnnenns 116

21.5.5. Running out 0f MEMOTY .......cccceiiiiiiiiiiiiiiiiieieiese et 117

21.6. The inSIALL PRASE......cceeiiieiieeieeieet ettt ettt sttt et et aees 117
21.6.1. Creating needed dir€CtOTIES. ... ccuevueeueriieieiietiete sttt see e 117
21.6.2. Where to install dOCUMENtALION .........ccueeiieriiriieiinieeierie et 117
21.6.3. Installing highSCOre files .........oviriiriiririeieeee et 117
21.6.4. Adding DESTDIR support t0 packages..........cccceveeiererienieniieieneeeee e 118
21.6.5. Packages with hardcoded paths to other interpreters..........ccoceeveevercenencennene 118
21.6.6. Packages installing perl modules..........ccceoevieiiininiiininiieneeccee e, 119
21.6.7. Packages installing info files..........cooceririiniiniiiiinineeneeceee e 119
21.6.8. Packages installing man Pages.........cccoeeeerienieerieneeieneniieienieeeenieseeeneesieeneens 120
21.6.9. Packages installing GConf data files.........cc.ceceevereriinenieneninieneeec e 120
21.6.10. Packages installing scrollkeeper/rarian data files........c..cccceeeeveencrcencncnnene 121
21.6.11. Packages installing X11 fOnts.......ccccoceeieviinirniininienenieieneeesc e 121
21.6.12. Packages installing GTK2 modules ...........cocevererriinenienieninieneneencneenns 121
21.6.13. Packages installing SGML or XML data.........ccccecuevemeeniinennencnennieneneenn. 122
21.6.14. Packages installing extensions to the MIME database ..........cc.cccccveevueenennee. 122
21.6.15. Packages using intltoO] .......cccueeruierieriiieniienienie ettt st 122
21.6.16. Packages installing Startup SCTIPLS ....ccveerveerrerversieereeneesreenieeneeseeeseenseenens 123
21.6.17. Packages installing TeX modules .........cccccoecuerriienieniiiniienienienieeieeseeeiens 123
21.6.18. Packages supporting running binaries in emulation ..........c..cccceeerveencreennen. 123
21.6.19. Packages installing hicolor theme 1CONS ..........ccceveervierieenienieniieieeseesaens 124
21.6.20. Packages installing desktop files...........covverierriiinieniieniiiiienieseceieeeeeeee 124

21.7. Marking packages as having problems.............ccecuervieerienieiieenienie e 124
22. GNOME packaging and POTTING ........ccecverrueerieenierieeieeiee et eieesite et st e bt e satesateesbeesaeesaneens 125
22.1. Meta PACKAZES ...c..eeuviiieiieiiriteieeieetete ettt ettt s 125
22.2. Packaging a GNOME appliCation ...........ccccoceevieriieieniieieniinceieneereseeeeee e e 126
22.3. Updating GNOME t0 @ NEWET VEISION .......coeevueriieureiieiiereeneenenieeneneeeeneeneenesaeennens 127
22.4. Patching GUIAEINES .......ccceouiiiiiiiiiiiiiiiece ettt s e 128
23. Submitting and COMMULEINEZ .........coeeviiiiiriiiiieiere ettt s s 129
23.1. Submitting binary packages ..........ccccecieviriiiiiiiiiiiicce e 129
23.2. Submitting source packages (for non-NetBSD-developers)........c.cccceevererenveveenncnn 129
23.3. General notes when adding, updating, or removing packages ........c.cecceververveveennnn 129
23.4. COMMUL MESSAZES ...eeuveeueeeeruieientieiienteetenteeeeestesbeentesteeseenteeaeesaesbeessenbeeseentesneeneesreennens 130
23.5. Committing: Adding a package to CVS . ..o 130
23.6. Updating a package to @ NEWET VEISION ......ce.eeruertirienteeiienieeeeereesteetenteeseeneesseeneeseeennens 131
23.7. Renaming a package i PKESIC ..c..ceueruirieriirieieniieienteeite ettt ettt sbe e 131
23.8. Moving a package in PKESIC ......coueiiiriiriiiiiieiesteeeiee ettt 132
24. Frequently Asked QUESTIONS .....c..evuerieriertieiintieiesit ettt ete st site st sttt et eat et saeeaesbeennens 134

viii



ITI. The pkgsrc infrastructure internals

25. Design of the pKgsrc iNfTaStrUCTUIE .........evvieriieriiiiiieieeiee ettt ettt sttt eas
25.1. The meaning of variable definitions ...........cccevvieriiiiieenienieeieeeee e
25.2. Avoiding problems before they arise.........occeevieriiirieeiiienieeieeeeee e
25.3. Variable eValUation ..........c.cceevueriieiniinienieeieesteste ettt ettt sttt et st et ebees

25.
25.

RO BN B Lo T Ta 151 o1 =TS
R N A 41 1115 1 ' (=N

25.4. How can variables be Specified?...........ccccoirieiiniiiiniieiiiieecierecreeeeeee e
25.5. Designing interfaces for Makefile fragments .............cccccoiviiiiiiniiiiiniiniicceeens

25.
25.

5.1. Procedures With parameters .........cc.ueecueerierieriieenieenienie ettt
5.2. Actions taken on behalf of parameters.............ccccoeeevererieneniereseeeseeene.

25.6. The order in which files are 10aded ............cooovveiiiiiiiiiiiiiieieeceeeeeeeeeee e

25.
25.

6.1. The order in bsd . Prefs MK coviiiceee e e et eetee et e et e et e e aeeeeaaee s
6.2. The Order iN DS . PRG . TIK cuveeeerie et eeiee ettt e et e et e e eteeeereeeeveeeeaneean

20. REGIESSION TESES ....uveeueeutietieieettete st ettt et e et e e ste et e beebe et e s beeat e beeatebesbeemsenbeeseenseeseenaesbeennans
26.1. RUNNING the re€ZIeSSION tESLS ..couvetieiiiriieiietiiieie ettt ettt et et st ete st et e st s eneesbeenaens
26.2. Adding @ NEW IEZIESSION LEST.....euieuieriieuieiirieeierteetenteette et eteestesbeestesbesseentesaeeneesbeenaens

26.
26.

2.1. Overridable fUNCHIONS. .......c.eieeiiieeiie ettt et ete e e e e reeeeaae s
2.2. Helper fUNCHONS  ..ccvertiiieieriieieeteeitee sttt

27. POTTING PKESIC ..ttt sttt ettt ettt ettt et ettt s bt et sb e et e bt eat et sbeenaesbeennens
27.1. Porting pkgsrc to @ NEW OPErating SYStEIM .....cccuerueererierieruereenienieetenieseeneeseeneesieennens

A. A simple example package: bison

A.1.4. Checking a package with pKEINt..........ccceeviiriiiiiiiniinieeeeee e
A.2. Steps for building, installing, packaging...........ccoceeviirierieniiiirienieeieeeete et

B. Build logs

B.1. BUILAING fIIET.cutiiiiiiiiiiiieeeeeete ettt ettt e sb e st st e be e saa e s ea
B.2. Packa@ing fIZlet ........coouiiiiiiiiiiieeeeetet ettt et st

C. Directory layout

of the pkgsrc FTP server

C.1. distfiles: The distributed SOUICE fIles ........cceririiiiiiieieieeee e
C.2. misc: Miscellaneous things .........cccceiirieiiinieiese ettt
C.3. packages: Binary packages ........ccooeiuirieiiiiieiese ettt

C.4. reports:

C.5. current,

BUlk BUild F@POILS ...ttt s
stable, pkgsrc—20xxQy: SOUICE PACKAZES ...cevvviruririiiiiinieiieeieeieenece e

D. Help topics

E. Editing guidelines for the pkgsrc guide

B 1. MAKE TAIZELS...c..eeutiiieiieieiitetestteet ettt ettt ettt et sb et b e bt et e bt e b e sbe et e b e ebeetesbeenees

E.2. Procedure

136

137
137
137
138
138
138
138
139
139
139
139
140
140
141
141
141
141
142
143
143

144

144
144
144
144
145
145

148
148
149
151
151
151
151
152
152
153
165
165
165



List of Tables

1-1. Platforms SUppOrted DY PKESIC ...cveeuteriiriieiiniieiieieeitete sttt ettt ettt sttt ettt st esbesbeebenbeeas 2
12-1. PatChing EXAMPIES ......ooueeuiiiiriieiieieeiere ettt ettt ettt b et sttt e be bt e b b eb s et ebeenaesaeenaen 43
22-1. PLIST handling for GNOME PaCKAZES ......ccceeruerieriiniiniiniinitenienieeteniesitestesieete e eite e 126



Chapter 1.
What is pkgsrc?

1.1. Introduction

There is a lot of software freely available for Unix-based systems, which is usually available in form of
the source code. Before such software can be used, it needs to be configured to the local system,
compiled and installed, and this is exactly what The NetBSD Packages Collection (pkgsrc) does. pkgsrc
also has some basic commands to handle binary packages, so that not every user has to build the
packages for himself, which is a time-costly task.

pkegsrc currently contains several thousand packages, including:

+ www/apache24 - The Apache web server

+ www/firefox - The Firefox web browser

+ meta-pkgs/gnome - The GNOME Desktop Environment
« meta-pkgs/kde4 - The K Desktop Environment

... just to name a few.

pkgsrc has built-in support for handling varying dependencies, such as pthreads and X11, and extended
features such as IPv6 support on a range of platforms.

1.1.1. Why pkgsrc?

pkgsrc provides the following key features:

+ Easy building of software from source as well as the creation and installation of binary packages. The
source and latest patches are retrieved from a master or mirror download site, checksum verified, then
built on your system. Support for binary-only distributions is available for both native platforms and
NetBSD emulated platforms.

« All packages are installed in a consistent directory tree, including binaries, libraries, man pages and
other documentation.

» Tracking of package dependencies automatically, including when performing updates, to ensure
required packages are installed. The configuration files of various packages are handled automatically
during updates, so local changes are preserved.

« Like NetBSD, pkgsrc is designed with portability in mind and consists of highly portable code. This
allows the greatest speed of development when porting to a new platform. This portability also ensures
that pkgsrc is consistent across all platforms.



Chapter 1. What is pkgsrc?

« The installation prefix, acceptable software licenses, international encryption requirements and
build-time options for a large number of packages are all set in a simple, central configuration file.

« The entire source (not including the distribution files) is freely available under a BSD license, so you
may extend and adapt pkgsrc to your needs. Support for local packages and patches is available right
out of the box, so you can configure it specifically for your environment.

The following principles are basic to pkgsrc:

« “It should only work if it’s right.” — That means, if a package contains bugs, it’s better to find them
and to complain about them rather than to just install the package and hope that it works. There are
numerous checks in pkgsrc that try to find such bugs: static analysis tools (pkgtools/pkglint),
build-time checks (portability of shell scripts), and post-installation checks (installed files, references
to shared libraries, script interpreters).

« “If it works, it should work everywhere” — Like NetBSD has been ported to many hardware
architectures, pkgsrc has been ported to many operating systems. Care is taken that packages behave

the same on all platforms.

1.1.2. Supported platforms

pkgsrc consists of both a source distribution and a binary distribution for these operating systems. After
retrieving the required source or binaries, you can be up and running with pkgsrc in just minutes!

pkgsrc was derived from FreeBSD’s ports system, and initially developed for NetBSD only. Since then,

pkgsrc has grown a lot, and now supports the following platforms:

Table 1-1. Platforms supported by pkgsrc

rc/current/pkgsrc/

rc/current/pkgsrc/

rc/current/pkgsrc/

rc/current/pkgsrc/

(https://www.openbsd.org/)

Platform Date Support Added Notes

NetBSD Aug 1997

(https://www.NetBSD.org/)

Solaris Mar 1999 README.Solaris

(http://wwws.sun.com/software/solaris/) (https://cdn.NetBSD.org/pub/pkgs

Linux (https://www.kernel.org/) Jun 1999 README .Linux
(https://cdn.NetBSD.org/pub/pkgs

Darwin / Mac OS X/ OS X/ Oct 2001 README.macOS

macOS (https://cdn.NetBSD.org/pub/pkgs

(https://developer.apple.com/macqs/)

FreeBSD Nov 2002 README.FreeBSD

(https://www.freebsd.org/) (https://cdn.NetBSD.org/pub/pkgs

OpenBSD Nov 2002 README.OpenBSD

(https://cdn.NetBSD.org/pub/pkgs

rc/current/pkgsrc/




Chapter 1. What is pkgsrc?

Platform

Date Support Added

Notes

IRIX
(https://www.sgi.com/software/iriy

Dec 2002
x/)

README.IRIX
(https://cdn.NetBSD.org/pub/pkgs
README.IRIX5.3

rc/current/pkgsrc/

rc/current/pkgsrc/

rc/current/pkgsrc/

rc/current/pkgsrc/

rc/current/pkgsrc/

rc/current/pkgsrc/

rc/current/pkgsrc/

rc/current/pkgsrc/

rc/current/pkgsrc/

rc/current/pkgsrc/

(https://cdn.NetBSD.org/pub/pkgs
BSD/OS Dec 2003
AIX (https://www- Dec 2003 README.AIX
1.ibm.com/servers/aix/) (https://cdn.NetBSD.org/pub/pkgs
Interix Mar 2004 README .Interix
(https://www.microsoft.com/windows/sfu/) (https://cdn.NetBSD.org/pub/pkgs
(Microsoft Windows Services for
Unix)
DragonFlyBSD Oct 2004
(https://www.dragonflybsd.org/)
OSF/1 (http://www.tru64.org/) Nov 2004 README.OSF1
(https://cdn.NetBSD.org/pub/pkgs
HP-UX Apr 2007 README.HPUX
(https://www.hp.com/products1/unix/) (https://cdn.NetBSD.org/pub/pkgs
Haiku Sep 2010 README.Haiku
(https://www.haiku-os.org/) (https://cdn.NetBSD.org/pub/pkgs
MirBSD Jan 2011
(https://www.mirbsd.org/)
Minix3 Nov 2011 README.Minix3
(https://www.minix3.org/) (https://cdn.NetBSD.org/pub/pkgs
Cygwin (https://cygwin.com/) Mar 2013 README.Cygwin
(https://cdn.NetBSD.org/pub/pkgs
GNU/kFreeBSD Jul 2013 README.GNUkFreeBSD
(https://www.debian.org/ports/kfreebsd- (https://cdn.NetBSD.org/pub/pkgs
gnu/)
Bitrig (https://www.bitrig.org/) Jun 2014 README .Bitrig

(https://cdn.NetBSD.org/pub/pkgs

rc/current/pkgsrc/

1.2. Overview

This document is divided into three parts. The first, The pkgsrc user’s guide, describes how one can use



Chapter 1. What is pkgsrc?

one of the packages in the Package Collection, either by installing a precompiled binary package, or by
building one’s own copy using the NetBSD package system. The second part, The pkgsrc developer’s
guide, explains how to prepare a package so it can be easily built by other NetBSD users without
knowing about the package’s building details. The third part, The pkgsrc infrastructure internals is
intended for those who want to understand how pkgsrc is implemented.

This document is available in various formats: HTML (index.html), PDF (pkgsrc.pdf), PS (pkgsrc.ps),
TXT (pkgsrc.txt).

1.3. Terminology

LLIY3

There has been a lot of talk about “ports”, “packages”, etc. so far. Here is a description of all the
terminology used within this document.

Package

A set of files and building instructions that describe what’s necessary to build a certain piece of
software using pkgsrc. Packages are traditionally stored under /usr/pkgsrc, but may be stored in
any location, referred to as PKGSRCDIR.

The NetBSD package system

This is the former name of “pkgsrc”. It is part of the NetBSD operating system and can be
bootstrapped to run on non-NetBSD operating systems as well. It handles building (compiling),
installing, and removing of packages.

Distfile

This term describes the file or files that are provided by the author of the piece of software to
distribute his work. All the changes necessary to build on NetBSD are reflected in the
corresponding package. Usually the distfile is in the form of a compressed tar-archive, but other
types are possible, too. Distfiles are usually stored below /usr/pkgsrc/distfiles.

Port
This is the term used by FreeBSD and OpenBSD people for what we call a package. In NetBSD
terminology, “port” refers to a different architecture.

Precompiled/binary package

A set of binaries built with pkgsrc from a distfile and stuffed together in a single . tgz file so it can
be installed on machines of the same machine architecture without the need to recompile. Packages
are usually generated in /usr/pkgsrc/packages; there is also an archive on ftp.NetBSD.org
(ftp://ftp.NetBSD.org/pub/pkgsrc/packages/).

Sometimes, this is referred to by the term “package” too, especially in the context of precompiled
packages.
Program

The piece of software to be installed which will be constructed from all the files in the distfile by the
actions defined in the corresponding package.



Chapter 1. What is pkgsrc?

1.3.1. Roles involved in pkgsrc

pkgsrc users

The pkgsrc users are people who use the packages provided by pkgsrc. Typically they are system
administrators. The people using the software that is inside the packages (maybe called “end users”)
are not covered by the pkgsrc guide.

There are two kinds of pkgsrc users: Some only want to install pre-built binary packages. Others
build the pkgsrc packages from source, either for installing them directly or for building binary
packages themselves. For pkgsrc users Part I in The pkgsrc guide should provide all necessary
documentation.

package maintainers

A package maintainer creates packages as described in Part II in The pkgsrc guide.

infrastructure developers

These people are involved in all those files that live in the mk/ directory and below. Only these
people should need to read through Part III in The pkgsrc guide, though others might be curious, too.

1.4. Typography

When giving examples for commands, shell prompts are used to show if the command should/can be
issued as root, or if “normal” user privileges are sufficient. We use a # for root’s shell prompt, a % for
users’ shell prompt, assuming they use the C-shell or tcsh and a $ for bourne shell and derivatives.



l. The pkgsrc user’s guide



Chapter 2.
Getting help

To get help when using pkgsrc, the definitive source is this document, the pkgsrc guide. If you don’t find
anything here, there are alternatives:

« The built-in pkgsrc help, which is available after bootstrapping pkgsrc. Run bmake help topic=... to
get help for any topic, such as a variable name like BUTLD_DEFS, a make target like do-build, a
missing C or C++ function like strcasecmp or any other topic.

The available help topics are listed in Appendix D.
+ To see the value of a single variable, run bmake show-var VARNAME=x.

« To see the values of the most common variables, run bmake show-all. These variables are grouped by
topic. To see the variables for a single topic, run bmake show-all-topic, for example bmake
show-all-fetch.

« The pkgsrc-users mailing list, to which you can subscribe
(https://www.NetBSD.org/mailinglists/#pkgsrc-users) and then ask your questions
(mailto:pkgsrc-users @ NetBSD.org).

« The #pkgsrc IRC channel, which is accessible via a web browser (https://webchat.freenode.net/) or by
using a specialized chat program such as XChat (http://xchat.org/). Pick any user name and join the
channel #pkgsrc.



Chapter 3.
Where to get pkgsrc and how to
keep it up-to-date

Before you download and extract the files, you need to decide where you want to extract them. When
using pkgsrc as root user, pkgsrc is usually installed in /usr/pkgsrc. You are though free to install the
sources and binary packages wherever you want in your filesystem, provided that the pathname does not
contain white-space or other characters that are interpreted specially by the shell and some other
programs. A safe bet is to use only letters, digits, underscores and dashes.

3.1. Getting pkgsrc for the first time

Before you download any pkgsrc files, you should decide whether you want the current branch or the
stable branch. The latter is forked on a quarterly basis from the current branch and only gets modified for
security updates. The names of the stable branches are built from the year and the quarter, for example
20210Q1.

The second step is to decide how you want to download pkgsrc. You can get it as a tar file or via CVS.
Both ways are described here.

Note that tar archive contains CVS working copy. Thus you can switch to using CVS at any later time.

3.1.1. As tar archive

The primary download location for all pkgsrc files is https://cdn.NetBSD.org/pub/pkgsrc/ or
ftp://ftp.NetBSD.org/pub/pkgsrc/ (it points to the same location). There are a number of subdirectories
for different purposes, which are described in detail in Appendix C.

The tar archive for the current branch is in the directory current and is called pkgsrc.tar.gz
(https://cdn.NetBSD.org/pub/pkgsrc/current/pkgsrc.tar.gz). It is autogenerated weekly.

To save download time we provide bzip2- and xz-compressed archives which are published at
pkgsrc.tar.bz2 (https://cdn.NetBSD.org/pub/pkgsrc/current/pkgsre.tar.bz2) and pkgsrc.tar.xz
(https://cdn.NetBSD.org/pub/pkgsrc/current/pkgsrc.tar.xz) respectively.

You can fetch the same files using FTP.

The tar file for the stable branch 2021Q1 is in the directory pkgsrc-20210Q1 and is also called
pkgsrc.tar.gz (https://cdn.NetBSD.org/pub/pkgsrc/pkgsrc-2021Q1/pkgsrc.tar.gz).

To download the latest pkgsrc stable tarball, run:
$ ftp ftp://ftp.NetBSD.org/pub/pkgsrc/pkgsrc-2021Q1/pkgsrc.tar.gz

If you prefer, you can also fetch it using "wget", "curl", or your web browser.



Chapter 3. Where to get pkgsrc and how to keep it up-to-date

Then, extract it with:

$ tar -xzf pkgsrc.tar.gz -C /usr

This will create the directory pkgsrc/ in /usr/ and all the package source will be stored under
/usr/pkgsrc/.

To download pkgsrc-current, run:

$ ftp ftp://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrc.tar.gz

3.1.2. Via anonymous CVS

To fetch a specific pkgsrc stable branch, run:
$ ed /usr && cvs —-q -z2 -d anoncvs@anoncvs.NetBSD.org:/cvsroot checkout -r pkgsrc-2021Q1 -P pkgsrc

This will create the directory pkgsrc/ in your /usr/ directory and all the package source will be stored
under /usr/pkgsrc/.

To fetch the pkgsrc current branch, run:
$ ed /usr && cvs —q -z2 —-d anoncvs@anoncvs.NetBSD.org:/cvsroot checkout -P pkgsrc

Refer to the list of available mirrors (https://www.NetBSD.org/mirrors/#anoncvs) to choose a faster CVS
mirror, if needed.

If you get error messages from rsh, you need to set CVS_RSH variable. E.g.:
$ cd /usr && env CVS_RSH=ssh cvs —-q -z2 —-d anoncvs@anoncvs.NetBSD.org:/cvsroot checkout -P pkgsrc

Refer to documentation on your command shell how to set CVS_RSH=ssh permanently. For Bourne
shells, you can set it in your .profile or better globally in /etc/profile:

# set CVS remote shell command
CVS_RSH=ssh
export CVS_RSH

By default, CVS doesn’t do things like most people would expect it to do. But there is a way to convince
CVS, by creating a file called . cvsrc in your home directory and saving the following lines to it. This
file will save you lots of headache and some bug reports, so we strongly recommend it. You can find an
explanation of this file in the CVS documentation.

# recommended CVS configuration file from the pkgsrc guide
cvs —q

checkout -P

update -dP

diff -upN

rdiff -u

release —-d



Chapter 3. Where to get pkgsrc and how to keep it up-to-date

3.2. Keeping pkgsrc up-to-date

The preferred way to keep pkgsrc up-to-date is via CVS (which also works if you have first installed it
via a tar file). It saves bandwidth and hard disk activity, compared to downloading the tar file again.

3.2.1. Via tar files

Warning

When updating from a tar file, you first need to completely remove the old pkgsrc
directory. Otherwise those files that have been removed from pkgsrc in the mean
time will not be removed on your local disk, resulting in inconsistencies. When
removing the old files, any changes that you have done to the pkgsrc files will be
lost after updating. Therefore updating via CVS is strongly recommended.

Note that by default the distfiles and the binary packages are saved in the pkgsrc tree, so don’t forget to
rescue them before updating. You can also configure pkgsrc to store distfiles and packages in directories
outside the pkgsrc tree by setting the DISTDIR and PACKAGES variables. See Chapter 6 for the details.

To update pkgsrc from a tar file, download the tar file as explained above. Then, make sure that you have
not made any changes to the files in the pkgsrc directory. Remove the pkgsrc directory and extract the
new tar file. Done.

3.2.2. Via CVS

To update pkgsrc via CVS, change to the pkgsrc directory and run cvs:
$ ed /usr/pkgsrc && cvs update -dP
If you get error messages from rsh, you need to set CVS_RSH variable as described above. E.g.:

$ cd /usr/pkgsrc && env CVS_RSH=ssh cvs up -dP

3.2.2.1. Switching between different pkgsrc branches

When updating pkgsrc, the CVS program keeps track of the branch you selected. But if you, for
whatever reason, want to switch from the stable branch to the current one, you can do it by adding the
option “-A” after the “update” keyword. To switch from the current branch back to the stable branch, add
the “-rpkgsrc-2021Q1” option.

3.2.2.2. What happens to my changes when updating?

When you update pkgsrc, the CVS program will only touch those files that are registered in the CVS
repository. That means that any packages that you created on your own will stay unmodified. If you
change files that are managed by CVS, later updates will try to merge your changes with those that have
been done by others. See the CVS manual, chapter “update” for details.



Chapter 4.

Using pkgsrc on systems other
than NetBSD

4.1. Binary distribution

See Section 5.1.

4.2. Bootstrapping pkgsrc

pkgsrc can be bootstrapped for use in two different modes: privileged and unprivileged one. In
unprivileged mode in contrast to privileged one all programs are installed under one particular user and
cannot utilise privileged operations (packages don’t create special users and all special file permissions
like setuid are ignored).

Installing the bootstrap kit from source should be as simple as:

# env CVS_RSH=ssh cvs -d anoncvs@anoncvs.NetBSD.org:/cvsroot checkout -P pkgsrc
# cd pkgsrc/bootstrap
# ./bootstrap

To bootstrap in unprivileged mode pass “--unprivileged” flag to bootstrap

By default, in privileged mode pkgsrc uses /usr/pkg for prefix where programs will be installed in, and
/usr/pkg/pkgdb for the package database directory where pkgsrc will do its internal bookkeeping,
/var is used as varbase, where packages install their persistent data. In unprivileged mode pkgsrc uses
~/pkg for prefix, ~/pkg/pkgdb for the package database, and ~/pkg/var for varbase.

You can change default layout using command-line arguments. Run “./bootstrap --help” to get details.

Note: The bootstrap installs a bmake tool. Use this bmake when building via pkgsrc. For examples
in this guide, use bmake instead of “make”.

Note: It is possible to bootstrap multiple instances of pkgsrc using non-intersecting directories. Use
bmake corresponding to the installation you're working with to build and install packages.



Chapter 5.
Using pkgsrc

Basically, there are two ways of using pkgsrc. The first is to only install the package tools and to use
binary packages that someone else has prepared. This is the “pkg” in pkgsrc. The second way is to install
the “src” of pkgsrc, too. Then you are able to build your own packages, and you can still use binary
packages from someone else.

5.1. Using binary packages

On the cdn.NetBSD.org (http://cdn.NetBSD.org/) site and mirrors, there are collections of binary
packages, ready to be installed. These binary packages have been built using the default settings for the
directories, that is:

/usr/pkg for LOCALBASE, where most of the files are installed,
+ /usr/pkg/etc for configuration files,
« /var for VARBASE, where those files are installed that may change after installation.

If you cannot use these directories for whatever reasons (maybe because you’re not root), you cannot use
these binary packages, but have to build the packages yourself, which is explained in Section 4.2.

5.1.1. Finding binary packages

To install binary packages, you first need to know from where to get them. The first place where you
should look is on the main pkgsrc FTP server in the directory /pub/pkgsrc/packages
(http://cdn.NetBSD.org/pub/pkgsrc/packages/).

This directory contains binary packages for multiple platforms. First, select your operating system.
(Ignore the directories with version numbers attached to it, they just exist for legacy reasons.) Then,
select your hardware architecture, and in the third step, the OS version and the “version” of pkgsrc.

In this directory, you often find a file called bootstrap.tar.gz which contains the package
management tools. If the file is missing, it is likely that your operating system already provides those
tools. Download the file and extract it in the / directory. It will create the directories /usr/pkg
(containing the tools for managing binary packages and the database of installed packages).

5.1.2. Installing binary packages

In the directory from the last section, there is a subdirectory called A11/, which contains all the binary
packages that are available for the platform, excluding those that may not be distributed via FTP or
CDROM (depending on which medium you are using).



Chapter 5. Using pkgsrc

To install packages directly from an FTP or HTTP server, run the following commands in a
Bourne-compatible shell (be sure to su to root first):

# PATH="/usr/pkg/sbin:$PATH"

# PKG_PATH="http://cdn.NetBSD.org/pub/pkgsrc/packages"
# PKG_PATH="$PKG_PATH/OPSYS/ARCH/VERSIONS/All/"
# export PATH PKG_PATH

Instead of URLSs, you can also use local paths, for example if you are installing from a set of CDROMs,
DVDs or an NFS-mounted repository. If you want to install packages from multiple sources, you can
separate them by a semicolon in PKG_PATH.

After these preparations, installing a package is very easy:

# pkg_add libreoffice
# pkg_add ap24-php71-*

Note that any prerequisite packages needed to run the package in question will be installed, too,
assuming they are present where you install from.

Adding packages might install vulnerable packages. Thus you should run pkg_admin audit regularly,
especially after installing new packages, and verify that the vulnerabilities are acceptable for your
configuration.

After you’ve installed packages, be sure to have /usr/pkg/bin and /usr/pkg/sbin in your PATH s0O
you can actually start the just installed program.

5.1.3. Deinstalling packages

To deinstall a package, it does not matter whether it was installed from source code or from a binary
package. The pkg_delete command does not know it anyway. To delete a package, you can just run
pkg_delete package—name. The package name can be given with or without version number. Wildcards
can also be used to deinstall a set of packages, for example remacs+. Be sure to include them in quotes,
so that the shell does not expand them before pkg_delete sees them.

The —r option is very powerful: it removes all the packages that require the package in question and then
removes the package itself. For example:

# pkg_delete -r jpeg

will remove jpeg and all the packages that used it; this allows upgrading the jpeg package.

5.1.4. Getting information about installed packages

The pkg_info shows information about installed packages or binary package files.



Chapter 5. Using pkgsrc

5.1.5. Checking for security vulnerabilities in installed packages

The pkgsrc Security Team and Packages Groups maintain a list of known security vulnerabilities to
packages which are (or have been) included in pkgsrc. The list is available from the NetBSD FTP site at
http://ftp.NetBSD.org/pub/NetBSD/packages/vulns/pkg-vulnerabilities.

Through pkg_admin fetch-pkg-vulnerabilities, this list can be downloaded automatically, and a
security audit of all packages installed on a system can take place.

There are two components to auditing. The first step, pkg_admin fetch-pkg-vulnerabilities, is for
downloading the list of vulnerabilities from the NetBSD FTP site. The second step, pkg_admin audit,
checks to see if any of your installed packages are vulnerable. If a package is vulnerable, you will see
output similar to the following:

Package samba-2.0.9 has a local-root-shell vulnerability, see
https://www.samba.org/samba/whatsnew/macroexploit.html

You may wish to have the vulnerabilities (http://ftp.NetBSD.org/pub/pkgsrc/distfiles/vulnerabilities) file
downloaded daily so that it remains current. This may be done by adding an appropriate entry to the root
users crontab(5) entry. For example the entry

# Download vulnerabilities file

0 3 x » x /usr/pkg/sbin/pkg_admin fetch-pkg-vulnerabilities >/dev/null 2>&1l

# Audit the installed packages and email results to root

9 3 x * x /usr/pkg/sbin/pkg_admin audit |mail -s "Installed package audit result" \
root >/dev/null 2>&l

will update the vulnerability list every day at 3AM, followed by an audit at 3:09AM. The result of the
audit are then emailed to root. On NetBSD this may be accomplished instead by adding the following
line to /etc/daily.conf:

fetch_pkg_vulnerabilities=YES

to fetch the vulnerability list from the daily security script. The system is set to audit the packages by
default but can be set explicitly, if desired (not required), by adding the following line to

/etc/security.conf:

check_pkg_vulnerabilities=YES

see daily.conf(5) and security.conf(5) for more details.

5.1.6. Finding if newer versions of your installed packages are in pkgsrc

@ 9

Install pkgtools/lintpkgsrc and run lintpkgsre with the “-i” argument to check if your packages are
up-to-date, e.g.

% lintpkgsrc -i

Version mismatch: "tcsh’ 6.09.00 vs 6.10.00



Chapter 5. Using pkgsrc

You can then use make update to update the package on your system and rebuild any dependencies.

5.1.7. Other administrative functions

The pkg_admin executes various administrative functions on the package system.

5.2. Building packages from source

After obtaining pkgsrc, the pkgsrc directory now contains a set of packages, organized into categories.
You can browse the online index of packages, or run make readme from the pkgsrc directory to build
local README . html files for all packages, viewable with any web browser such as www/1ynx or

www/firefox.

The default prefix for installed packages is /usr/pkg. If you wish to change this, you should do so by
setting LOCALBASE in mk . conf. You should not try to use multiple different LOCALBASE definitions on
the same system (inside a chroot is an exception).

The rest of this chapter assumes that the package is already in pkgsrc. If it is not, see Part Il in The pkgsrc
guide for instructions how to create your own packages.

5.2.1. Requirements

To build packages from source, you need a working C compiler. On NetBSD, you need to install the
“comp” and the “text” distribution sets. If you want to build X11-related packages, the “xbase” and
“xcomp” distribution sets are required, too.

5.2.2. Fetching distfiles

The first step for building a package is downloading the distfiles (i.e. the unmodified source). If they have
not yet been downloaded, pkgsrc will fetch them automatically.

If you have all files that you need in the dist files directory, you don’t need to connect. If the distfiles
are on CD-ROM, you can mount the CD-ROM on /cdrom and add:

DISTDIR=/cdrom/pkgsrc/distfiles

to your mk . conf.

By default a list of distribution sites will be randomly intermixed to prevent huge load on servers which
holding popular packages (for example, SourceForge.net mirrors). Thus, every time when you need to
fetch yet another distfile all the mirrors will be tried in new (random) order. You can turn this feature off
by setting MASTER_SORT_RANDOM=NO (for PKG_DEVELOPERS it’s already disabled).

You can overwrite some of the major distribution sites to fit to sites that are close to your own. By setting
one or two variables you can modify the order in which the master sites are accessed. MASTER_SORT
contains a whitespace delimited list of domain suffixes. MASTER_SORT_REGEX is even more flexible, it
contains a whitespace delimited list of regular expressions. It has higher priority than MASTER _SORT.

10



Chapter 5. Using pkgsrc
Have a look at pkgsrc/mk/defaults/mk.conf to find some examples. This may save some of your
bandwidth and time.

You can change these settings either in your shell’s environment, or, if you want to keep the settings, by
editing the mk . conf£ file, and adding the definitions there.

If a package depends on many other packages (such as meta-pkgs/kde4), the build process may
alternate between periods of downloading source, and compiling. To ensure you have all the source
downloaded initially you can run the command:

% make fetch-list | sh

which will output and run a set of shell commands to fetch the necessary files into the distfiles
directory. You can also choose to download the files manually.

5.2.3. How to build and install

Once the software has downloaded, any patches will be applied, then it will be compiled for you. This
may take some time depending on your computer, and how many other packages the software depends
on and their compile time.

Note: If using bootstrap or pkgsrc on a non-NetBSD system, use the pkgsrc bmake command
instead of “make” in the examples in this guide.

For example, type

% cd misc/figlet
% make

at the shell prompt to build the various components of the package.

The next stage is to actually install the newly compiled program onto your system. Do this by entering:

% make install

while you are still in the directory for whatever package you are installing.

Installing the package on your system may require you to be root. However, pkgsrc has a just-in-time-su
feature, which allows you to only become root for the actual installation step.

That’s it, the software should now be installed and setup for use. You can now enter:

o

% make clean

to remove the compiled files in the work directory, as you shouldn’t need them any more. If other
packages were also added to your system (dependencies) to allow your program to compile, you can tidy
these up also with the command:

% make clean-depends

11



Chapter 5. Using pkgsrc

Taking the figlet utility as an example, we can install it on our system by building as shown in Appendix
B.

The program is installed under the default root of the packages tree - /usr/pkg. Should this not
conform to your tastes, set the LOCALBASE variable in your environment, and it will use that value as the
root of your packages tree. So, to use /usr/local, set LOCALBASE=/usr/local in your environment.
Please note that you should use a directory which is dedicated to packages and not shared with other
programs (i.e., do not try and use LOCALBASE=/usr). Also, you should not try to add any of your own
files or directories (such as src/, obj/, or pkgsrc/) below the LOCALBASE tree. This is to prevent
possible conflicts between programs and other files installed by the package system and whatever else
may have been installed there.

Some packages look in mk . conf to alter some configuration options at build time. Have a look at
pkgsrc/mk/defaults/mk.conf to get an overview of what will be set there by default. Environment
variables such as LOCALBASE can be set in mk . conf to save having to remember to set them each time
you want to use pkgsrc.

Occasionally, people want to “look under the covers” to see what is going on when a package is building
or being installed. This may be for debugging purposes, or out of simple curiosity. A number of utility
values have been added to help with this.

1. If you invoke the make(1) command with PKG_DEBUG_LEVEL=2, then a huge amount of
information will be displayed. For example,

make patch PKG_DEBUG_LEVEL=2
will show all the commands that are invoked, up to and including the “patch” stage.

2. If you want to know the value of a certain make(1) definition, then the VARNAME definition should be
used, in conjunction with the show-var target. e.g. to show the expansion of the make(1) variable
LOCALBASE:

% make show-var VARNAME=LOCALBASE
/usr/pkg

3
S

If you want to install a binary package that you’ve either created yourself (see next section), that you put
into pkgsrc/packages manually or that is located on a remote FTP server, you can use the "bin-install”
target. This target will install a binary package - if available - via pkg_add(1), else do a make package.
The list of remote FTP sites searched is kept in the variable BINPKG_SITES, which defaults to
ftp.NetBSD.org. Any flags that should be added to pkg_add(1) can be put into BIN_INSTALL_ FLAGS.
See pkgsrc/mk/defaults/mk.conf for more details.

A final word of warning: If you set up a system that has a non-standard setting for LOCALBASE, be sure
to set that before any packages are installed, as you cannot use several directories for the same purpose.
Doing so will result in pkgsrc not being able to properly detect your installed packages, and fail
miserably. Note also that precompiled binary packages are usually built with the default LOCALBASE of
/usr/pkg, and that you should not install any if you use a non-standard LOCALBASE.

12



Chapter 6.
Configuring pkgsrc

The whole pkgsrc system is configured in a single file, usually called mk . con£. In which directory
pkgsrc looks for that file depends on the installation. On NetBSD, when you use make(1) from the base
system, it is in the directory /etc/. In all other cases the default location is $ {PREFIX}/etc/,
depending on where you told the bootstrap program to install the binary packages.

The format of the configuration file is that of the usual BSD-style Make files. The whole pkgsrc
configuration is done by setting variables in this file. Note that you can define all kinds of variables, and
no special error checking (for example for spelling mistakes) takes place.

6.1. General configuration

The following variables apply to all pkgsrc packages. A complete list of the variables that can be
configured by the user is available in mk /defaults/mk.conf, together with some comments that
describe each variable’s intent.

+ LOoCALBASE: Where packages will be installed. The default is /usr/pkg. Do not mix binary packages
with different LOCALBASES!

+ CROSSBASE: Where “cross” category packages will be installed. The default is
S{LOCALBASE}/cross.

« x11BASE: Where X11 is installed on the system. The default is /usr/x11R7.

+ DISTDIR: Where to store the downloaded copies of the original source distributions used for building
pkgsrc packages. The default is $ {PKGSRCDIR} /distfiles.

+ PKG_DBDIR: Where the database about installed packages is stored. The default is /usr/pkg/pkgdb.
+ MASTER_SITE_OVERRIDE: If set, override the packages’ MASTER_SITES with this value.

+ MASTER_SITE_BACKUP: Backup location(s) for distribution files and patch files if not found locally or
in ${MASTER_SITES} or ${PATCH_SITES} respectively. The defaults is
ftp://ftp.NetBSD.org/pub/pkgsrc/distfiles/${DIST_SUBDIR}/.

+ BINPKG_SITES: List of sites carrying binary pkgs. rel and arch are replaced with OS release (“2.0”,
etc.) and architecture (“mipsel”, etc.).

+ ACCEPTABLE_LICENSES: List of acceptable licenses. License names are case-sensitive. Whenever
you try to build a package whose license is not in this list, you will get an error message. If the license
condition is simple enough, the error message will include specific instructions on how to change this
variable.

13



Chapter 6. Configuring pkgsrc

6.2. Variables affecting the build process

+ PACKAGES: The top level directory for the binary packages. The default is
${PKGSRCDIR} /packages.

+ WRKOBJDIR: The top level directory where, if defined, the separate working directories will get
created, and symbolically linked to from ${WRKDIR} (see below). This is useful for building packages
on several architectures, then $ {PKGSRCDIR} can be NFS-mounted while $ {WRKOBJDIR} is local to
every architecture. (It should be noted that PKGSRCDIR should not be set by the user — it is an internal
definition which refers to the root of the pkgsrc tree. It is possible to have many pkgsrc tree instances.)

« LOCALPATCHES: Directory for local patches that aren’t part of pkgsrc. See Section 12.3 for more
information.

+ PKGMAKECONF: Location of the mk . conf£ file used by a package’s BSD-style Makefile. If this is not
set, MAKECONF is set to /dev/null to avoid picking up settings used by builds in /usr/src.

6.3. Variables affecting the installation process

+ PKGSRC_KEEP_BIN_PKGS: By default, binary packages of built packages are preserved in
${PACKAGES}/All. Setting this variable to "no" prevents this.

Packages have to support installation into a subdirectory of WRKDIR. This allows a package to be built,
before the actual filesystem is touched. DESTDIR support exists in two variations:

« Basic DESTDIR support means that the package installation and packaging is still run as root.

+ Full DESTDIR support can run the complete build, installation and packaging as normal user. Root
privileges are only needed to add packages.

With basic DESTDIR support, make clean needs to be run as root.

Considering the foo/bar package, DESTDIR full support can be tested using the following commands
$ id

uid=1000 (myusername) gid=100 (users) groups=100 (users), 0 (wheel)

$ mkdir SHOME/packages

$ cd $PKGSRCDIR/foo/bar

Verify DESTDIR full support, no root privileges should be needed

$ make stage-install

Create a package without root privileges

$ make PACKAGES=S$HOME/packages package

For the following command, you must be able to gain root privileges using su(1)

14



Chapter 6. Configuring pkgsrc

$ make PACKAGES=$HOME/packages install

Then, as a simple user

$ make clean

6.4. Selecting and configuring the compiler

6.4.1. Selecting the compiler

By default, pkgsrc will use GCC to build packages. This may be overridden by setting the following
variables in /etc/mk.conf:

PKGSRC_COMPILER:

This is a list of values specifying the chain of compilers to invoke when building packages. Valid
values are:

ccc: Compaq C Compilers (Tru64)

ccache: compiler cache (chainable)

clang: Clang C and Objective-C compiler

distcc: distributed C/C++ (chainable)

£2c: Fortran 77 to C compiler (chainable)

icc: Intel C++ Compiler (Linux)

ido: SGI IRIS Development Option cc (IRIX 5)

gcc: GNU C/C++ Compiler

hp: HP-UX C/aC++ compilers

mipspro: Silicon Graphics, Inc. MIPSpro (n32/n64)
mipspro-ucode: Silicon Graphics, Inc. MIPSpro (032)
sunpro: Sun Microsystems, Inc. WorkShip/Forte/Sun ONE Studio
x1c: IBM’s XL C/C++ compiler suite

The default is “gcc”. You can use ccache and/or distcc with an appropriate PKGSRC_COMPILER
setting, e.g. “ccache gcc”. This variable should always be terminated with a value for a real
compiler. Note that only one real compiler should be listed (e.g. “sunpro gcc” is not allowed).

GCC_REQD:

This specifies the minimum version of GCC to use when building packages. If the system GCC
doesn’t satisfy this requirement, then pkgsrc will build and install one of the GCC packages to use
instead.

15



Chapter 6. Configuring pkgsrc

PYTHON_VERSION_DEFAULT:

Specifies which version of python to use when several options are available.

PKGSRC_FORTRAN:

Specifies the Fortran compiler to use. The default is gfortran.

GEFORTRAN_VERSION:

If PKGSRC_FORTRAN= gfortran is used, this option specifies which version to use.

6.4.2. Additional flags to the compiler (crLaGs)

If you wish to set the CFLAGS variable, please make sure to use the += operator instead of the = operator:
CFLAGS+= —-your -flags

Using CFLAGS= (i.e. without the “+”) may lead to problems with packages that need to add their own
flags. You may want to take a look at the devel/cpuflags package if you're interested in optimization
specifically for the current CPU.

6.4.3. Additional flags to the linker (LDFLAGS)

If you want to pass flags to the linker, both in the configure step and the build step, you can do this in two
ways. Either set LDFLAGS or LIBS. The difference between the two is that LIBS will be appended to the
command line, while LDFLAGS come earlier. LDFLAGS is pre-loaded with rpath settings for ELF
machines depending on the setting of USE_IMAKE or the inclusion of mk/x11.buildlink3.mk. As
with CFLAGS, if you do not wish to override these settings, use the += operator:

LDFLAGS+= -your -linkerflags

6.5. Developer/advanced settings

+ PKG_DEVELOPER: Run some sanity checks that package developers want:

- make sure patches apply with zero fuzz

- run check-shlibs to see that all binaries will find their shared libs.

« PKG_DEBUG_LEVEL: The level of debugging output which is displayed whilst making and installing
the package. The default value for this is 0, which will not display the commands as they are executed
(normal, default, quiet operation); the value 1 will display all shell commands before their invocation,
and the value 2 will display both the shell commands before their invocation, as well as their actual
execution progress with set -x.

16



Chapter 6. Configuring pkgsrc

6.6. Selecting Build Options

Some packages have build time options, usually to select between different dependencies, enable
optional support for big dependencies or enable experimental features.

To see which options, if any, a package supports, and which options are mutually exclusive, run make
show-options, for example:

The following options are supported by this package:
ssl Enable SSL support.

Exactly one of the following gecko options is required:
firefox Use firefox as gecko rendering engine.
mozilla Use mozilla as gecko rendering engine.

At most one of the following database options may be selected:
mysqgl Enable support for MySQL database.
pgsqgl Enable support for PostgreSQL database.

These options are enabled by default: firefox
These options are currently enabled: mozilla ssl

The following variables can be defined in mk . con £ to select which options to enable for a package:
PKG_DEFAULT_OPTIONS, which can be used to select or disable options for all packages that support
them, and PKG_OPTIONS. pkgbase, Which can be used to select or disable options specifically for
package pkgbase. Options listed in these variables are selected, options preceded by “-” are disabled. A
few examples:

$ grep "PKG.*OPTION" mk.conf

PKG_DEFAULT_OPTIONS= —arts —-dvdread —-esound
PKG_OPTIONS.kdebase= debug -sasl
PKG_OPTIONS. apache= suexec

It is important to note that options that were specifically suggested by the package maintainer must be
explicitly removed if you do not wish to include the option. If you are unsure you can view the current
state with make show-options.

The following settings are consulted in the order given, and the last setting that selects or disables an
option is used:

1. the default options as suggested by the package maintainer

2. the options implied by the settings of legacy variables (see below)
3. PKG_DEFAULT_OPTIONS

4. PKG_OPTIONS. pkgbase

For groups of mutually exclusive options, the last option selected is used, all others are automatically
disabled. If an option of the group is explicitly disabled, the previously selected option, if any, is used. It
is an error if no option from a required group of options is selected, and building the package will fail.

Before the options framework was introduced, build options were selected by setting a variable (often
named USE_F00) in mk . conf for each option. To ease transition to the options framework for the user,
these legacy variables are converted to the appropriate options setting (PKG_OPTIONS . pkgbase)
automatically. A warning is issued to prompt the user to update mk . conf to use the options framework
directly. Support for the legacy variables will be removed eventually.

17



Chapter 7.
Creating binary packages

7.1. Building a single binary package

Once you have built and installed a package, you can create a binary package which can be installed on
another system with pkg_add(1). This saves having to build the same package on a group of hosts and
wasting CPU time. It also provides a simple means for others to install your package, should you
distribute it.

To create a binary package, change into the appropriate directory in pkgsrc, and run make package:

$ cd misc/figlet
$ make package

This will build and install your package (if not already done), and then build a binary package from what
was installed. You can then use the pkg_* tools to manipulate it. Binary packages are created by default
in /usr/pkgsrc/packages, in the form of a gzipped tar file. See Section B.2 for a continuation of the
above misc/figlet example.

See Chapter 23 for information on how to submit such a binary package.

7.2. Settings for creation of binary packages

See Section 13.17.

18



Chapter 8.

Creating binary packages for
everything in pkgsrc (bulk
builds)

For a number of reasons, you may want to build binary packages for a large selected set of packages in
pkgsrc, or even for all pkgsrc packages. For instance, when you have multiple machines that should run
the same software, it is wasted time if they all build their packages themselves from source. Or you may
want to build a list of packages you want and check them before deploying onto production systems.
There is a way of getting a set of binary packages: the bulk build system, or pbulk ("p" stands for
"parallel"). This chapter describes how to set it up.

8.1. Preparations

First of all, you have to decide whether you build all packages or a limited set of them. Full bulk builds
usually consume a lot more resources, both space and time, than builds for some practical sets of
packages. A number of particularly heavy packages exist that are not actually interesting to a wide
audience. (The approximate resource consumption for a full bulk build is given in section Section 8.3.)
For limited bulk builds you need to make a list of packages you want to build. Note that all their
dependencies will be built, so you don’t need to track them manually.

During bulk builds various packages are installed and deinstalled in /usr/pkg (or whatever LOCALBASE
is), so make sure that you don’t need any package during the builds. Essentially, you should provide a
fresh system, either a chroot environment or something even more restrictive, depending on what the
operating system provides, or dedicate the whole physical machine. As a useful side effect this makes
sure that bulk builds cannot break anything in your system. There have been numerous cases where
certain packages tried to install files outside the LOCALBASE or wanted to edit some files in /etc.

8.2. Running a bulk build

Running a bulk build works roughly as follows:

« First, build the pbulk infrastructure in a fresh pkgsrc location.

 Then, build each of the packages from a clean installation directory using the infrastructure.

19



Chapter 8. Creating binary packages for everything in pkgsrc (bulk builds)

8.2.1. Configuration
To simplify configuration, we provide the helper script mk /pbulk/pbulk. sh.

In order to use it, prepare a clear system (real one, chroot environment, jail, zone, virtual machine).
Configure network access to fetch distribution files. Create a user with name "pbulk”.

Fetch and extract pkgsrc. Use a command like one of these:

# (ed /usr && ftp -o - https://cdn.NetBSD.org/pub/pkgsrc/current/pkgsrc.tar.gz | tar -zxf-)
# (cd /usr && fetch —-o - https://cdn.NetBSD.org/pub/pkgsrc/current/pkgsrc.tar.gz | tar -zxf-)

# (cd /usr && cvs —Q -z3 -d anoncvs@anoncvs.NetBSD.org:/cvsroot get —-P pkgsrc)

Or any other way that fits (e.g., curl, wget).
Deploy and configure pbulk tools, e.g.:
# sh pbulk.sh -n # use native make, no bootstrap kit needed (for use on NetBSD)

# sh pbulk.sh -n -c mk.conf.frag # native, apply settings from given mk.conf fragment
# sh pbulk.sh -nlc mk.conf.frag # native, apply settings, configure for limited build

Note: mk.conf. frag is a fragment of mk . conf that contains settings you want to apply to packages
you build. For instance,

PKG_DEVELOPER= yes # perform more checks
X11_TYPE= modular # use pkgsrc X11
SKIP_LICENSE_CHECK= yes # accept all licences (useful

# when building all packages)

If configured for limited list, replace the list in /usr/pbulk/etc/pbulk.list with your list of
packages, one per line without empty lines or comments. E.g.:

www/firefox
mail/thunderbird
misc/libreofficed

At this point you can also review configuration in /usr/pbulk/etc and make final amendments, if
wanted.

Start it:
# /usr/pbulk/bin/bulkbuild

After it finishes, you’ll have /mnt filled with distribution files, binary packages, and reports, plain text
summary in /mnt /bulklog/meta/report.txt

Note: The pbulk.sh script does not cover all possible use cases. While being ready to run, it serves
as a good starting point to understand and build more complex setups. The script is kept small
enough for better understanding.

20



Chapter 8. Creating binary packages for everything in pkgsrc (bulk builds)

Note: The pbulk.sh script supports running unprivileged bulk build and helps configuring distributed
bulk builds.

8.3. Requirements of a full bulk build

A complete bulk build requires lots of disk space. Some of the disk space can be read-only, some other
must be writable. Some can be on remote filesystems (such as NFS) and some should be local. Some can
be temporary filesystems, others must survive a sudden reboot.

+ 40 GB for the distfiles (read-write, remote, temporary)
» 30 GB for the binary packages (read-write, remote, permanent)
1 GB for the pkgsrc tree (read-only, remote, permanent)

+ 5 GB for LOCALBASE (read-write, local, temporary)

10 GB for the log files (read-write, remote, permanent)

5 GB for temporary files (read-write, local, temporary)

8.4. Bulk build variants

To ensure that pkgsrc packages work in different configurations, it makes sense to run non-default bulk
builds from time to time. This section lists some ideas for bulk builds that intentionally let packages fail
if they don’t follow the pkgsrc style.

8.4.1. Detect unknown configure options

Add the following line to mk . conf£.

GNU_CONFIGURE_STRICT= yes

When a package fails this additional check, the most common cause is that the configure option was
valid for an older version of the package but does not apply anymore. In that case, just remove it.

8.4.2. Detect classes of bugs by forcing compiler warnings

The job of a compiler is not restricted to producing executable code, most compilers also detect typical
programming mistakes. The pkgsrc compiler wrappers make it easy to force compiler options when the
package is built. This can be used to find typical bugs across all packages that are in pkgsrc. By reporting
these bugs upstream, the packages will be more reliable with the next updates.

Add some of the following lines to mk . conf:

CFLAGS+= —-Werror=char-subscripts
CFLAGS+= ~Werror=implicit-function-declaration

21



Chapter 8. Creating binary packages for everything in pkgsrc (bulk builds)

When a package fails to build using these stricter compiler options, document the circumstances in
which the compiler produced the error message. This includes:

The platform (MACHINE_PLATFORM)

+ The source file

+ An excerpt of the code. GCC and Clang already do this as part of the diagnostic.

+ The exact error message from the compiler.

If a package produces these error messages, but the package is fine, record this in your local mk . conf,

like this, to skip this check in the next builds:

.1f S${PKGPATH} == category/package
# Version ${VERSION} failed on ${MACHINE_PLATFORM} :
# error message

# code

# Reason why the code does not need to be fixed.
BUILDLINK_TRANSFORM+= rm:-Werror=char-subscripts
.endif

If the error messages from the compiler are valid and the code needs to be fixed, prepare a local patch
(see LOCALPATCHES) and report the bug to the upstream authors of the package, providing them with the
information you collected above.

Patches that are not essential for the package to work should only be reported upstream but not
committed to pkgsrc, to make future updates easier.

8.4.3. Force compiler options only in the build phase

When adding custom compiler flags via CFLAGS, these apply to all phases of the package build process.
Especially in the configure phase, adding -werror leads to wrong decisions. The GNU configure scripts
feed many small test programs to the C compiler to see whether certain headers are available, functions
are defined in a library and programs can be run. In many cases these programs would not survive a strict
compiler run with -Wall -Wextra -Werror.

The pkgsrc infrastructure is flexible enough to support compiler options being added between the
configure and build phases. It’s a little more complicated than the other examples in this section but
still easy enough.

The basic idea is to use the pkgsrc compiler wrapper to inject the desired compiler options. The compiler
wrapper’s original task is to hide unwanted directories of include files and to normalize compiler options.
It does this by wrapping the compiler command and rewriting the command line. To see this in action,
run bmake patch in a package directory and examine the work/.cwrappers/config directory. It
contains individual configurations for the C compiler and the related tools. The plan is to find a hook
between the configure and build phases, and to modify these configuration files at that point.

To find this hook, have a look at mk /build/build.mk, which contains among others the
pre-build-checks-hook. The word checks doesn’t quite fit, but the pre-build-hook sounds good
enough.

The code to be included in mk . conf is:

22



Chapter 8. Creating binary packages for everything in pkgsrc (bulk builds)

# Just a few example options.
BUILD_ONLY_CFLAGS= -Wall -Werror -02 -DTEMPDIR='"/tmp"’

.if ${BUILD_ONLY_CFLAGS:U:Mx}
pre-build-checks-hook: add-build-only-cflags

add-build-only-cflags: .PHONY
$S{RUN} cd ${CWRAPPERS_CONFIG_DIR};
S{TEST} ! -f ${.TARGET} || exit 0;
for flag in ${BUILD_ONLY_CFLAGS}; do
${ECHO} "append=$$flag" >> cc;

s

done;
> ${.TARGET}
.endif

(When editing the mk . conf, make sure that the commands of the add-build-only-cflags target are
indented with a tab, not with spaces.)

The condition in the . i f statement contains the : U modifier to prevent parse errors if the variable should
be undefined, possibly because it is only defined for a subset of the packages. The :M» modifier ensures
that there is at least one compiler option, to prevent a syntax error in the shell parser.

The code around the ${.TARGET} variable ensures that the additional compiler options are only
appended once, even if bmake build is run multiple times. To do this, it creates a marker file.

To verify that this setup works, run bmake configure in a package directory. Up to now, everything
works as usual. Examine the directory work/.cwrappers/config to see that the compiler options
from BUILD_ONLY_CFLAGS are not yet added to the file cc. Examine the tail of the work/.work.log
file to see that the normal compiler options are used.

Now run bmake build. This will append the options to the file cc and will create the marker file in the
same directory. After that, the build starts as usual, but with the added compiler options. Examine the tail
of the file work/.work. log to see that the lines starting with [+] don’t contain the compiler options,
but the corresponding lines starting with <.> do end with these options.

Building packages using this setup variant and fixing the resulting bugs is the same as in Section 8.4.2.

8.4.4. Use custom directories

Some directories like PREFIX, VARBASE, PKG_SYSCONFDIR, PKGMANDIR, PKG_INFODIR can be
configured in pkgsrc. Set these to arbitrary paths during bootstrap or afterwards in mk . conf.

PREFIX= /a-random-uuid
PKG_SYSCONFDIR= /a-random-uuid
VARBASE= /a-random-uuid

PKGMANDIR= a-random-uuid
PKG_INFODIR= a-random-uuid

8.4.5. Turn warnings into errors

When building a package, warnings are typically ignored since they just flow by and do not cause the
build to fail immediately. To find these warnings, redefine them to errors in mk . conf.

23



Chapter 8. Creating binary packages for everything in pkgsrc (bulk builds)

DELAYED WARNING_MSG= ${DELAYED_ERROR_MSG} " (was warning)"
WARNING_MSG= ${FAIL_MSG} " (was warning)"

(There are many more classes of warnings in pkgsrc, and most of them can be redefined with a simple
definition like above.

If a package suggests to add USE_TOOLS+=per1l to the package Makefile, research whether the package
actually needs Perl. If it does, add USE_TOOLS+=per1 to the package Makefile, and if it doesn’t, add
TOOLS_BROKEN+=perl.

8.4.6. Reject packages for which pkglint reports errors

Using pkglint as part of the regular build process is mostly a waste of time. If you want to fix some of the
warnings, just run pkglint recursively on the whole pkgsrc tree. This will take a few minutes (up to 10),
which is much faster than a complete bulk build.

8.4.7. Reject packages that contain forbidden strings

To ensure that the binary packages don’t contain references to the build directory, there is already
CHECK_WRKREF. If that variable includes the item extra, it is possible to define additional patterns that
must not appear in any installed file. This is specified in mk . con£.

CHECK_WRKREF= extra
CHECK_WRKREF_EXTRA_DIRS+= /usr/local
CHECK_WRKREF_EXTRA_DIRS+= /usr/pkg

CHECK_WRKREF_EXTRA_DIRS+= Q[A-Z] [A-Z]*@

The above patterns will probably generate many false positives, therefore the results need to be taken
with a grain of salt.

8.4.8. Reject packages whose self-test fails

To run the test suites that come with each package, add this line to mk . conf.
PKGSRC_RUN_TEST= yes

Be prepared that even the most basic packages fail this test. When doing a bulk build with this, it will
often abort in the early phase where the packages are scanned for their dependencies since there are
cyclic dependencies. There is still a lot to do in this area.

8.4.9. Reject packages that use undefined shell variables

To catch typos in the shell snippets from the Makefile fragments, add the —u flag to most of the
commands by adding this line to mk . conf.

RUN= @set -eu;

24



Chapter 8. Creating binary packages for everything in pkgsrc (bulk builds)

After that, ensure that none of the bulk build log files (even those for successfully built packages)
contains the string parameter not set or whatever error message the command sh -ceu *$undefined’
outputs.

See mk/misc/common.mk for the existing definition.

8.4.10. Turn off verbose logging

The build logs of a package are often quite long. This allows error messages or other interesting details
to hide between the noise. To make the actual error message stand out more, add these lines to mk . conf.

GNU_CONFIGURE_QUIET= yes
MAKE_FLAGS+= -s

The -s option works for both GNU Make and BSD Make. On exotic platforms with their own make, it
may be a little different.

8.5. Creating a multiple CD-ROM packages collection

After your pkgsrc bulk-build has completed, you may wish to create a CD-ROM set of the resulting
binary packages to assist in installing packages on other machines. The pkgtools/cdpack package
provides a simple tool for creating the ISO 9660 images. cdpack arranges the packages on the
CD-ROMs in a way that keeps all the dependencies for a given package on the same CD as that package.

8.5.1. Example of cdpack

Complete documentation for cdpack is found in the cdpack(1) man page. The following short example
assumes that the binary packages are left in /usr/pkgsrc/packages/All and that sufficient disk
space exists in /u2 to hold the ISO 9660 images.

# mkdir /u2/images
# pkg_add /usr/pkgsrc/packages/All/cdpack
# cdpack /usr/pkgsrc/packages/All /u2/images

If you wish to include a common set of files (COPYRIGHT, README, etc.) on each CD in the collection,
then you need to create a directory which contains these files, e.g.:

mkdir /tmp/common

echo "This is a README" > /tmp/common/README

echo "Another file" > /tmp/common/COPYING

mkdir /tmp/common/bin

echo "#!/bin/sh" > /tmp/common/bin/myscript

echo "echo Hello world" >> /tmp/common/bin/myscript

HH= H H H I FH H

chmod 755 /tmp/common/bin/myscript

Now create the images:

25



Chapter 8. Creating binary packages for everything in pkgsrc (bulk builds)
# cdpack -x /tmp/common /usr/pkgsrc/packages/All /u2/images

Each image will contain README, COPYING, and bin/myscript in their root directories.

26



Chapter 9.
Directory layout of the installed
files

The files that are installed by pkgsrc are organized in a way that is similar to what you find in the /usr
directory of the base system. But some details are different. This is because pkgsrc initially came from
FreeBSD and had adopted its file system hierarchy. Later it was largely influenced by NetBSD. But no
matter which operating system you are using pkgsrc with, you can expect the same layout for pkgsrc.

There are mainly four root directories for pkgsrc, which are all configurable in the
bootstrap/bootstrap script. When pkgsrc has been installed as root, the default locations are:

LOCALBASE= /usr/pkg
PKG_SYSCONFBASE= /usr/pkg/etc
VARBASE= /var
PKG_DBDIR= /usr/pkg/pkgdb

In unprivileged mode (when pkgsrc has been installed as any other user), the default locations are:

LOCALBASE= $ {HOME } /pkg
PKG_SYSCONFBASE= S{HOME} /pkg/etc
VARBASE= ${HOME} /pkg/var
PKG_DBDIR= ${HOME} /pkg/pkgdb

What these four directories are for, and what they look like is explained below.

« LOCALBASE corresponds to the /usr directory in the base system. It is the “main” directory where the
files are installed and contains the well-known subdirectories like bin, include, 1ib, share and

sbin.

+ VARBASE corresponds to /var in the base system. Some programs (especially games, network
daemons) need write access to it during normal operation.

+ PKG_SYSCONFDIR corresponds to /etc in the base system. It contains configuration files of the
packages, as well as pkgsrc’s mk . conf itself.

9.1. File system layout in $ {LOCALBASE}

The following directories exist in a typical pkgsrc installation in $ { LOCALBASE}.

bin

Contains executable programs that are intended to be directly used by the end user.

27



Chapter 9. Directory layout of the installed files

emul

Contains files for the emulation layers of various other operating systems, especially for NetBSD.

etc (the usual location of $ {PKG_SYSCONFDIR})

Contains the configuration files.

include

Contains headers for the C and C++ programming languages.
info

Contains GNU info files of various packages.
1lib

Contains shared and static libraries.

libdata

Contains data files that don’t change after installation. Other data files belong into $ { VARBASE }.

libexec
Contains programs that are not intended to be used by end users, such as helper programs or
network daemons.

libexec/cgi-bin

Contains programs that are intended to be executed as CGI scripts by a web server.

man (the usual value of $ {PKGMANDIR})
Contains brief documentation in form of manual pages.
sbin
Contains programs that are intended to be used only by the super-user.

share

Contains platform-independent data files that don’t change after installation.

share/doc

Contains documentation files provided by the packages.

share/examples

Contains example files provided by the packages. Among others, the original configuration files are
saved here and copied to $ {PKG_SYSCONFDIR} during installation.

share/examples/rc.d

Contains the original files for rc.d scripts.

28



Chapter 9. Directory layout of the installed files

var (the usual location of $ {VARBASE})

Contains files that may be modified after installation.

9.2. File system layout in $ {VARBASE}

db/pkg (the usual location of $ {PKG_DBDIR})

Contains information about the currently installed packages.

games

Contains highscore files.

log

Contains log files.

run

Contains informational files about daemons that are currently running.

29



Chapter 10.
Frequently Asked Questions

This section contains hints, tips & tricks on special things in pkgsrc that we didn’t find a better place for
in the previous chapters, and it contains items for both pkgsrc users and developers.

10.1. Are there any mailing lists for pkg-related discussion?

The following mailing lists may be of interest to pkgsrc users:

« pkgsrc-users (http://www.NetBSD.org/mailinglists/index.html#pkgsrc-users): This is a general
purpose list for most issues regarding pkgsrc, regardless of platform, e.g. soliciting user help for
pkgsrc configuration, unexpected build failures, using particular packages, upgrading pkgsrc
installations, questions regarding the pkgsrc release branches, etc. General announcements or
proposals for changes that impact the pkgsrc user community, e.g. major infrastructure changes, new
features, package removals, etc., may also be posted.

+ pkgsrc-bulk (https://www.NetBSD.org/mailinglists/index.html#pkgsrc-bulk): A list where the results
of pkgsrc bulk builds are sent and discussed.

» pkgsrc-changes (https://www.NetBSD.org/mailinglists/index.html#pkgsrc-changes): This list is for
those who are interested in getting a commit message for every change committed to pkgsrc. It is also
available in digest form, meaning one daily message containing all commit messages for changes to
the package source tree in that 24 hour period.

To subscribe, do:
% echo subscribe listname | mail majordomo@NetBSD.org

Archives for all these mailing lists are available from https://mail-index.NetBSD.org/.

10.2. Utilities for package management (pkgtools)

The directory pkgsrc/pkgtools contains a number of useful utilities for both users and developers of
pkgsrc. This section attempts only to make the reader aware of some of the utilities and when they might
be useful, and not to duplicate the documentation that comes with each package.

Utilities used by pkgsrc (automatically installed when needed):

+ pkgtools/x11-1links: Symlinks for use by buildlink.

OS tool augmentation (automatically installed when needed):

+ pkgtools/digest: Calculates various kinds of checksums (including SHA3).

30



Chapter 10. Frequently Asked Questions

+ pkgtools/libnbcompat: Compatibility library for pkgsrc tools.
» pkgtools/mtree: Installed on non-BSD systems due to lack of native mtree.

* pkgtools/pkg_install: Up-to-date replacement for /usr/sbin/pkg_install, or for use on
operating systems where pkg_install is not present.

Utilities used by pkgsrc (not automatically installed):

+ pkgtools/pkg_tarup: Create a binary package from an already-installed package. Used by make
replace to save the old package.

+ pkgtools/dfdisk: Adds extra functionality to pkgsrc, allowing it to fetch distfiles from multiple
locations. It currently supports the following methods: multiple CD-ROMs and network FTP/HTTP
connections.

« devel/cpuflags: Determine the best compiler flags to optimise code for your current CPU and
compiler.

Utilities for keeping track of installed packages, being up to date, etc:

+ pkgtools/pkgin: A package update tool similar to apt(1). Download, install, and upgrade binary
packages easily.

« pkgtools/pkg_chk: Reports on packages whose installed versions do not match the latest pkgsrc
entries.

+ pkgtools/pkgdep: Makes dependency graphs of packages, to aid in choosing a strategy for
updating.

» pkgtools/pkgdepgraph: Makes graphs from the output of pkgtools/pkgdep (uses graphviz).
« pkgtools/pkglint: The pkglint(1) program checks a pkgsrc entry for errors.

+ pkgtools/lintpkgsrc: The lintpkgsrc(1) program does various checks on the complete pkgsrc
system.

+ pkgtools/pkgsurvey: Report what packages you have installed.

Utilities for people maintaining or creating individual packages:

+ pkgtools/pkgdiff: Automate making and maintaining patches for a package (includes pkgdiff,
pkgvi, mkpatches, etc.).

+ pkgtools/url2pkg: Aids in converting to pkgsrc.

Utilities for people maintaining pkgsrc (or: more obscure pkg utilities)

+ pkgtools/pkg_comp: Build packages in a chrooted area.

+ pkgtools/libkver: Spoof kernel version for chrooted cross builds.

10.3. How to use pkgsrc as non-root

To install packages from source as a non-root user, download pkgsrc as described in Chapter 3, cd into
that directory and run the command ./bootstrap/bootstrap --unprivileged.

31



Chapter 10. Frequently Asked Questions
This will install the binary part of pkgsrc to ~/pkg and put the pkgsrc configuration mk . conf into
~/pkg/etc.

For more details, see mk /unprivileged.mk.

10.4. How to resume transfers when fetching distfiles?

By default, resuming transfers in pkgsrc is disabled, but you can enable this feature by adding the option
PKG_RESUME_TRANSFERS=YES into mk . conf. If, during a fetch step, an incomplete distfile is found,
pkgsrc will try to resume it.

You can also use a different program than the platform default program by changing the FETCH_USING
variable. You can specify the program by using of ftp, fetch, wget or curl. Alternatively, fetching can be
disabled by using the value manual. A value of custom disables the system defaults and dependency
tracking for the fetch program. In that case you have to provide FETCH_CMD, FETCH_BEFORE_ARGS,
FETCH_RESUME_ARGS, FETCH_OUTPUT_ARGS, FETCH_AFTER_ARGS.

For example, if you want to use wget to download, you’ll have to use something like:

FETCH_USING= wget

10.5. How can | install/use modular X.org from pkgsrc?

If you want to use modular X.org from pkgsrc instead of your system’s own X11 (/usr/X11R6,
/usr/openwin, ...) you will have to add the following line into mk . conf:

X11_TYPE=modular

10.6. How to fetch files from behind a firewall

If you are sitting behind a firewall which does not allow direct connections to Internet hosts (i.e.
non-NAT), you may specify the relevant proxy hosts. This is done using an environment variable in the
form of a URL, e.g. in Amdahl, the machine “orpheus.amdahl.com” is one of the firewalls, and it uses
port 80 as the proxy port number. So the proxy environment variables are:

ftp_proxy=ftp://orpheus.amdahl.com:80/
http_proxy=http://orpheus.amdahl.com:80/

10.7. How to fetch files from HTTPS sites

Some fetch tools are not prepared to support HTTPS by default (for example, the one in NetBSD 6.0), or
the one installed by the pkgsrc bootstrap (to avoid an openssl dependency that low in the dependency

graph).

Usually you won’t notice, because distribution files are mirrored weekly to “ftp.NetBSD.org”, but that
might not be often enough if you are following pkgsrc-current. In that case, set FETCH_USING in your

32



Chapter 10. Frequently Asked Questions

mk . conf file to “curl” or “wget”, which are both compiled with HTTPS support by default. Of course,
these tools need to be installed before you can use them this way.

10.8. How do | tell make fetch to do passive FTP?

This depends on which utility is used to retrieve distfiles. From bsd.pkg.mk, FETCH_CMD is assigned
the first available command from the following list:

 ${LOCALBASE}/bin/ftp
e /usr/bin/ftp

On a default NetBSD installation, this will be /usr/bin/ftp, which automatically tries passive
connections first, and falls back to active connections if the server refuses to do passive. For the other
tools, add the following to your mk . conf file: PASSIVE_FETCH=1.

Having that option present will prevent /usr/bin/ftp from falling back to active transfers.

10.9. How to fetch all distfiles at once

You would like to download all the distfiles in a single batch from work or university, where you can’t
run a make fetch. There is an archive of distfiles on ftp.NetBSD.org
(ftp://ftp.NetBSD.org/pub/pkgsrc/distfiles/), but downloading the entire directory may not be appropriate.

The answer here is to do a make fetch-list in /usr/pkgsrc or one of its subdirectories, carry the
resulting list to your machine at work/school and use it there. If you don’t have a NetBSD-compatible
ftp(1) (like tnftp) at work, don’t forget to set FETCH_CMD to something that fetches a URL:

At home:

% cd /usr/pkgsrc

% make fetch-list FETCH_CMD=wget DISTDIR=/tmp/distfiles >/tmp/fetch.sh
% scp /tmp/fetch.sh work:/tmp

At work:

% sh /tmp/fetch.sh

then tar up /tmp/distfiles and take it home.

If you have a machine running NetBSD, and you want to get all distfiles (even ones that aren’t for your
machine architecture), you can do so by using the above-mentioned make fetch-list approach, or fetch
the distfiles directly by running:

% make mirror-distfiles

If you even decide to ignore NO_ { SRC, BIN}_ON_{FTP, CDROM}, then you can get everything by
running:

% make fetch NO_SKIP=yes

33



Chapter 10. Frequently Asked Questions

10.10. What does “Don’t know how to make
/usr/share/tmac/tmac.andoc” mean?

When compiling the pkgtools/pkg_install package, you get the error from make that it doesn’t
know how to make /usr/share/tmac/tmac.andoc? This indicates that you don’t have installed the
“text” set (nroff, ...) from the NetBSD base distribution on your machine. It is recommended to do that to
format man pages.

In the case of the pkgtools/pkg_install package, you can get away with setting NOMAN=YES either
in the environment or in mk . conf.

10.11. What does “Could not find bsd.own.mk” mean?

You didn’t install the compiler set, comp . t gz, when you installed your NetBSD machine. Please get and
install it, by extracting it in /:

# cd /
# tar —--unlink -zxvpf .../comp.tgz

comp.tgz is part of every NetBSD release. Get the one that corresponds to your release (determine via
uname -r).

10.12. Using ’'sudo’ with pkgsrc

When installing packages as non-root user and using the just-in-time su(1) feature of pkgsrc, it can
become annoying to type in the root password for each required package installed. To avoid this, the
sudo package can be used, which does password caching over a limited time. To use it, install sudo
(either as binary package or from security/sudo) and then put the following into your mk . conf,
somewhere after the definition of the LOCALBASE variable:

.if exists (${LOCALBASE}/bin/sudo)
SU_CMD= S{LOCALBASE}/bin/sudo /bin/sh -c
.endif

10.13. How do | change the location of configuration files?

As the system administrator, you can choose where configuration files are installed. The default settings
make all these files go into $ {PREFIX}/etc or some of its subdirectories; this may be suboptimal
depending on your expectations (e.g., a read-only, NFS-exported PREFIX with a need of per-machine
configuration of the provided packages).

In order to change the defaults, you can modify the PKG_SYSCONFBASE variable (in mk . conf) to point
to your preferred configuration directory; some common examples include /etc or /etc/pkg.

Furthermore, you can change this value on a per-package basis by setting the
PKG_SYSCONFDIR. $ {PKG_SYSCONFVAR} variable. PKG_SYSCONFVAR’s value usually matches the
name of the package you would like to modify, that is, the contents of PKGBASE.

34



Chapter 10. Frequently Asked Questions

Note that after changing these settings, you must rebuild and reinstall any affected packages.

10.14. Automated security checks

Please be aware that there can often be bugs in third-party software, and some of these bugs can leave a
machine vulnerable to exploitation by attackers. In an effort to lessen the exposure, the NetBSD
packages team maintains a database of known-exploits to packages which have at one time been
included in pkgsrc. The database can be downloaded automatically, and a security audit of all packages
installed on a system can take place. To do this, refer to the following two tools (installed as part of the
pkgtools/pkg_install package):

1. pkg_admin fetch-pkg-vulnerabilities, an easy way to download a list of the security vulnerabilities
information. This list is kept up to date by the pkgsrc security team, and is distributed from the
NetBSD ftp server:

https://ftp.NetBSD.org/pub/NetBSD/packages/vulns/pkg-vulnerabilities

2. pkg_admin audit, an easy way to audit the current machine, checking each known vulnerability. If
a vulnerable package is installed, it will be shown by output to stdout, including a description of the
type of vulnerability, and a URL containing more information.

Use of these tools is strongly recommended! See Section 5.1.5 for instructions on how to automate
checking and reporting.

If this database is installed, pkgsrc builds will use it to perform a security check before building any
package.

10.15. Why do some packages ignore my CFLAGS?

When you add your own preferences to the CFLAGS variable in your mk . conf, these flags are passed in
environment variables to the . /configure scripts and to make(1). Some package authors ignore the
CFLAGS from the environment variable by overriding them in the Makefiles of their package.

Currently there is no solution to this problem. If you really need the package to use your CFLAGS you
should run make patch in the package directory and then inspect any Makefile and Makefile.in for
whether they define CFLAGS explicitly. Usually you can remove these lines. But be aware that some
“smart” programmers write so bad code that it only works for the specific combination of CFLAGS they
have chosen.

To find out where the CFLAGS are ignored, add the following lines to mk . conf:

CPPFLAGS+= -Dpkgsrc CPPFLAGS
CFLAGS+= -Dpkgsrc CFLAGS
CXXFLAGS+= -Dpkgsrc CXXFLAGS

Then run bmake show-all-configure show-all-build to see whether the above flags are passed to the
actual build commands in general.

To find out whether the flags are passed to individual compiler commands, have a look at the file
work/.work.log. In most cases, the flags from the original command lines (the lines starting with [+]1)

35



Chapter 10. Frequently Asked Questions

are passed unmodified to the actual compiler (the lines starting with <. >). If the flag is missing from the
actual compiler command, it must have been removed by the pkgsrc compiler wrappers.

10.16. A package does not build. What shall | do?

1. Make sure that your copy of pkgsrc is consistent. A case that occurs often is that people only update
pkgsrc in parts, because of performance reasons. Since pkgsrc is one large system, not a collection
of many small systems, there are sometimes changes that only work when the whole pkgsrc tree is
updated.

2. Make sure that you don’t have any CVS conflicts. Search for “<<<<<<” or “>>>>>>" in all your
pkgsrc files.

3. Make sure that you don’t have old copies of the packages extracted. Run make clean clean-depends
to verify this.

4. If you are a package developer who wants to invest some work, have a look at Chapter 21.

5. If the problem still exists, write a mail to the pkgsrc—users mailing list.

10.17. What does “Makefile appears to contain unresolved
cvs/rcs/??? merge conflicts” mean?

You have modified a file from pkgsrc, and someone else has modified that same file afterwards in the
CVS repository. Both changes are in the same region of the file, so when you updated pkgsrc, the cvs
command marked the conflicting changes in the file. Because of these markers, the file is no longer a
valid Makefile.

Have a look at that file, and if you don’t need your local changes anymore, you can remove that file and
run cvs -q update -dP in that directory to download the current version.

36



Il. The pkgsrc developer’s guide

This part of the book deals with creating and modifying packages. It starts with a “HOWTO”-like guide
on creating a new package. The remaining chapters are more like a reference manual for pkgsrc.



Chapter 11.
Getting help

To get help when developing pkgsrc, the definitive source is this document, the pkgsrc guide. If you
don’t find anything here, there are alternatives:

« The built-in pkgsrc help, which is available after bootstrapping pkgsrc. Run bmake help topic=... to
get help for any topic, such as a variable name like BUTLD_DEFS, a make target like do-build, a
missing C or C++ function like strcasecmp or any other topic.

The available help topics are listed in Appendix D.
+ To see the value of a single variable, run bmake show-var VARNAME=x.

« To see the values of the most common variables, run bmake show-all. These variables are grouped by
topic. To see the variables for a single topic, run bmake show-all-topic, for example bmake
show-all-fetch.

« The tech-pkg mailing list, to which you can subscribe
(https://www.NetBSD.org/mailinglists/#tech-pkg) and then ask your questions
(mailto:tech-pkg@NetBSD.org).

« The #pkgsrc IRC channel, which is accessible via a web browser (https://webchat.freenode.net/) or by
using a specialized chat program such as XChat (http://xchat.org/). Pick any user name and join the
channel #pkgsrc.

38



Chapter 12.
Package components - files,
directories and contents

Whenever you’re preparing a package, there are a number of files involved which are described in the
following sections.

12.1. Makefile

Building, installation and creation of a binary package are all controlled by the package’s Makefile.
The Makefile describes various things about a package, for example from where to get it, how to
configure, build, and install it.

A package Makefile contains several sections that describe the package.

In the first section there are the following variables, which should appear exactly in the order given here.
The order and grouping of the variables is mostly historical and has no further meaning.

+ DISTNAME is the basename of the distribution file to be downloaded from the package’s website.

+ PKGNAME is the name of the package, as used by pkgsrc. You need to provide it if DISTNAME (which is
the default) is not a good name for the package in pkgsrc or DISTNAME is not provided (no distribution
file is required). Usually it is the pkgsrc directory name together with the version number. It must
match the regular expression ~ [A-Za-z0-9] [A-Za-z0-9—_.+] x$, that is, it starts with a letter or
digit, and contains only letters, digits, dashes, underscores, dots and plus signs.

+ CATEGORIES is a list of categories which the package fits in. You can choose any of the top-level
directories of pkgsrc for it.

Currently the following values are available for CATEGORIES. If more than one is used, they need to
be separated by spaces:

archivers cross geography meta-pkgs security
audio databases graphics misc shells
benchmarks devel ham multimedia sysutils
biology editors inputmethod net textproc
cad emulators lang news time
chat finance mail parallel W

comms fonts math pkgtools WWW
converters games mbone print x11

+ MASTER_SITES, DYNAMIC_MASTER_SITES, DIST_SUBDIR, EXTRACT_ SUFX and DISTFILES are
discussed in detail in Section 13.5.

The second section contains information about separately downloaded patches, if any.

39



Chapter 12. Package components - files, directories and contents

« PATCHFILES: Name(s) of additional files that contain distribution patches. There is no default. pkgsrc
will look for them at PATCH_SITES. They will automatically be uncompressed before patching if the
names end with .gz or . Z.

+ PATCH_SITES: Primary location(s) for distribution patch files (see PATCHFILES above) if not found
locally.

+ PATCH_DIST_STRIP: an argument to patch(1) that sets the pathname strip count to help find the
correct files to patch. It defaults to -p0.

The third section contains the following variables.

+ MAINTAINER is the email address of the person who feels responsible for this package, and who is
most likely to look at problems or questions regarding this package which have been reported with
send-pr(1). Other developers may contact the MAINTAINER before making changes to the package, but
are not required to do so. When packaging a new program, set MAINTAINER to yourself. If you really
can’t maintain the package for future updates, set it to <pkgsrc-users@NetBSD.org>.

+ OWNER should be used instead of MAINTAINER when you do not want other developers to update or
change the package without contacting you first. A package Makefile should contain one of
MAINTAINER or OWNER, but not both.

« HOMEPAGE is a URL where users can find more information about the package.
« COMMENT is a one-line description of the package (should not include the package name).

+ LICENSE indicates the license(s) applicable for the package. See Section 21.1.3 for further details.

Other variables that affect the build:

+ WRKSRC: The directory where the interesting distribution files of the package are found. The default is
${WRKDIR}/${DISTNAME}, which works for most packages.

If a package doesn’t create a subdirectory for itself (most GNU software does, for instance), but
extracts itself in the current directory, you should set WRKSRC=$ { WRKDIR}.

If a package doesn’t create a subdirectory with the name of DISTNAME but some different name, set
WRKSRC to point to the proper name in $ {WRKDIR}, for example
WRKSRC=$ {WRKDIR}/${DISTNAME} /unix. See lang/tcl and x11/tk for other examples.

The name of the working directory created by pkgsrc is taken from the WRKDIR_BASENAME variable.
By default, its value is work. If you want to use the same pkgsrc tree for building different kinds of
binary packages, you can change the variable according to your needs. Two other variables handle
common cases of setting WRKDIR_BASENAME individually. If 0BJHOSTNAME is defined in mk . conf,
the first component of the host’s name is attached to the directory name. If OBJMACHINE is defined,
the platform name is attached, which might look like work.1386 or work.sparc.

Please pay attention to the following gotchas:

« Add MANCOMPRESSED if man pages are installed in compressed form by the package. For packages
using BSD-style makefiles which honor MANZ, there is MANCOMPRESSED_IF_MANZ.

40



Chapter 12. Package components - files, directories and contents

« Replace /usr/local with “${PREFIX}” in all files (see patches, below).
- If the package installs any info files, see Section 21.6.7.

12.2. distinfo

The distinfo file contains the message digest, or checksum, of each distfile needed for the package.
This ensures that the distfiles retrieved from the Internet have not been corrupted during transfer or
altered by a malign force to introduce a security hole. To provide maximum security, all distfiles are
protected using three different message digest algorithms (SHA1, RMD160, SHA512), as well as the file
size.

The distinfo file also contains the checksums for all the patches found in the patches directory (see
Section 12.3). These checksums ensure that patches are only applied intentionally and that they don’t
accidentally change, e.g. when merging different changes together. They also make sure that new patches
are actually added to CVS and old ones are removed. Too see whether the patches and the distinfo file
match, run pkglint after changing the patches.

To regenerate the distinfo file, use the make distinfo command.

Some packages have different sets of distfiles depending on the platform, for example lang/openjdks.
These are kept in the same distinfo file and care should be taken when upgrading such a package to
ensure distfile information is not lost.

12.3. patches/*

Some packages don’t work out-of-the box on the various platforms that are supported by pkgsrc. These
packages need to be patched to make them work. The patch files can be found in the patches/ directory.

In the patch phase, these patches are applied to the files in WRKSRC directory after extracting them, in
alphabetic order.

12.3.1. Structure of a single patch file

The patch-~ files should be in diff -bu format, and apply without a fuzz to avoid problems. (To force
patches to apply with fuzz you can set PATCH_FUZZ_FACTOR=-F2). Furthermore, each patch should
contain only changes for a single file, and no file should be patched by more than one patch file. This
helps to keep future modifications simple.

Each patch file is structured as follows: In the first line, there is the RCS Id of the patch itself. The
second line should be empty for aesthetic reasons. After that, there should be a comment for each change
that the patch does. There are a number of standard cases:

« Patches for commonly known vulnerabilities should mention the vulnerability ID (CAN, CVE).

« Patches that change source code should mention the platform and other environment (for example, the
compiler) that the patch is needed for.

41



Chapter 12. Package components - files, directories and contents

The patch should be commented so that any developer who knows the code of the application can make
some use of the patch. Special care should be taken for the upstream developers, since we generally want
that they accept our patches, so we have less work in the future.

12.3.2. Creating patch files

One important thing to mention is to pay attention that no RCS IDs get stored in the patch files, as these
will cause problems when later checked into the NetBSD CVS tree. Use the pkgdiff command from the
pkgtools/pkgdiff package to avoid these problems.

For even more automation, we recommend using mkpatches from the same package to make a whole set
of patches. You just have to backup files before you edit them to filename.orig, e.g. with cp -p
filename filename.orig or, easier, by using pkgvi again from the same package. If you upgrade a
package this way, you can easily compare the new set of patches with the previously existing one with
patchdiff. The files in patches are replaced by new files, so carefully check if you want to take all the
changes.

When you have finished a package, remember to generate the checksums for the patch files by using the
make makepatchsum command, see Section 12.2.

When adding a patch that corrects a problem in the distfile (rather than e.g. enforcing pkgsrc’s view of
where man pages should go), send the patch as a bug report to the maintainer. This benefits non-pkgsrc
users of the package, and usually makes it possible to remove the patch in future version.

The file names of the patch files are usually of the form patch-path to file with underscores.c.
Many packages still use the previous convention patch-/a-z] [a-z], but new patches should be of the
form containing the filename. mkpatches included in pkgtools/pkgdiff takes care of the name
automatically.

12.3.3. Sources where the patch files come from

If you want to share patches between multiple packages in pkgsrc, e.g. because they use the same
distfiles, set PATCHDIR to the path where the patch files can be found, e.g.:

PATCHDIR= ../../editors/xemacs/patches

Patch files that are distributed by the author or other maintainers can be listed in PATCHFILES.

If it is desired to store any patches that should not be committed into pkgsrc, they can be kept outside the
pkgsrc tree in the SLOCALPATCHES directory. The directory tree there is expected to have the same
“category/package” structure as pkgsrc, and patches are expected to be stored inside these dirs (also
known as $LOCALPATCHES/$PKGPATH). For example, if you want to keep a private patch for
pkgsrc/graphics/png, keep it in $LOCALPATCHES/graphics/png/mypatch. All files in the
named directory are expected to be patch files, and they are applied after pkgsrc patches are applied.

12.3.4. Patching guidelines

When fixing a portability issue in the code do not use preprocessor magic to check for the current
operating system nor platform. Doing so hurts portability to other platforms because the OS-specific
details are not abstracted appropriately.

42



Chapter 12. Package components - files, directories and contents

The general rule to follow is: instead of checking for the operating system the application is being built
on, check for the specific features you need. For example, instead of assuming that kqueue is available
under NetBSD and using the __NetBSD___ macro to conditionalize kqueue support, add a check that

detects kqueue itself — yes, this generally involves patching the configure script. There is absolutely
nothing that prevents some OSes from adopting interfaces from other OSes (e.g. Linux implementing

kqueue), something that the above checks cannot take into account.

Of course, checking for features generally involves more work on the developer’s side, but the resulting
changes are cleaner and there are chances they will work on many other platforms. Not to mention that
there are higher chances of being later integrated into the mainstream sources. Remember: It doesn’t

work unless it is right!

Some typical examples:

Table 12-1. Patching examples

Where

Incorrect

Correct

configure script

case ${target_os} in
netbsdx) have_kvm=yes ;;
*) have_kvm=no ;;

esac

AC_CHECK_LIB (kvm, kvm_ope]

n, have_kvm=ye

C source file

#if defined(__ NetBSD_

)

# include <sys/event.h>

#endif

#if defined (HAVE_SYS_EVEN]

# dinclude <sys/event.h>

#endif

[_H)

C source file

int monitor_file(...)
#if defined(__ _NetBSD_ )
int fd = kqueue();
#else
#endif }

{

int monitor_file(...)

{

#if defined (HAVE_KQUEUE)

int fd = kqueue();
#else
#endif }

12.3.5. Feedback to the author

Always, always, always feed back any portability fixes or improvements you do to a package to the
mainstream developers. This is the only way to get their attention on portability issues and to ensure that

future versions can be built out-of-the box on NetBSD. Furthermore, any user that gets newer distfiles

will get the fixes straight from the packaged code.

This generally involves cleaning up the patches (because sometimes the patches that are added to pkgsrc
are quick hacks), filing bug reports in the appropriate trackers for the projects and working with the
mainstream authors to accept your changes. It is extremely important that you do it so that the packages
in pkgsrc are kept simple and thus further changes can be done without much hassle.

When you have done this, please add a URL to the upstream bug report to the patch comment.

Support the idea of free software!

43



Chapter 12. Package components - files, directories and contents

12.4. Other mandatory files

DESCR

A multi-line description of the piece of software. This should include any credits where they are
due. Please bear in mind that others do not share your sense of humour (or spelling idiosyncrasies),
and that others will read everything that you write here.

PLIST

This file governs the files that are installed on your system: all the binaries, manual pages, etc.
There are other directives which may be entered in this file, to control the creation and deletion of
directories, and the location of inserted files. See Chapter 19 for more information.

12.5. Optional files

12.5.1. Files affecting the binary package

INSTALL

This shell script is invoked twice by pkg_add(1). First time after package extraction and before files
are moved in place, the second time after the files to install are moved in place. This can be used to
do any custom procedures not possible with @exec commands in PLIST. See pkg_add(1) and
pkg_create(1) for more information. See also Section 20.1. Please note that you can modify
variables in it easily by using FILES_SUBST in the package’s Makefile:

FILES_SUBST+= SOMEVAR="somevalue"

replaces "@SOMEVAR @" with “somevalue” in the INSTALL. By default, substitution is performed
for PREFIX, LOCALBASE, Xx11BASE, VARBASE, and a few others, type make help
topic=FILES_SUBST for a complete list.

DEINSTALL

This script is executed before and after any files are removed. It is this script’s responsibility to
clean up any additional messy details around the package’s installation, since all pkg_delete knows
is how to delete the files created in the original distribution. See pkg_delete(1) and pkg_create(1)
for more information. The same methods to replace variables can be used as for the INSTALL file.

MESSAGE

This file is displayed after installation of the package. While this was used often in the past, it has
two problems: the display will be missed if many packages are intalled at once, and the person
installing the package and the one using or configuring it may be different. It should therefore be
used only in exceptional circumstances where lasting negative consequences would result from
someone not reading it.

MESSAGE should not be used for:
« exhortations to read the documentation

- reminders to install rc.d files and set variables

44



Chapter 12. Package components - files, directories and contents

- anything that should be explained in the installation/configuration documentation that should
come with the package

If the documentation provided by upstream needs enhancing, create e.g. filesyREADME.pkgsrc and
install it in the package’s documentation directory.

Note that MESSAGE is shown for all operating systems and all init systems. If a MESSAGE is
necessary, it should be narrowed to only those operating systems and init systems to which it
applies.

Note that you can modify variables in it easily by using MESSAGE_SUBST in the package’s
Makefile:

MESSAGE_SUBST+= SOMEVAR="somevalue"

replaces "${SOMEVAR}" with “somevalue” in MESSAGE. By default, substitution is performed for
PKGNAME, PKGBASE, PREFIX, LOCALBASE, X11BASE, PKG_SYSCONFDIR, ROOT_GROUP, and
ROOT_USER.

You can display a different or additional files by setting the MESSAGE_SRC variable. Its default is
MESSAGE, if the file exists.
ALTERNATIVES

This file is used by the alternatives framework. It creates, configures, and destroys generic wrappers
used to run programs with similar interfaces. See pkg_alternatives(8) from
pkgtools/pkg_alternatives for more information.

Each line of the file contains two filenames, first the wrapper and then the alternative provided by
the package. Both paths are relative to PREFIX.

12.5.2. Files affecting the build process

Makefile.common

This file contains arbitrary things that could also go into a Makefile, but its purpose is to be used
by more than one package. This file should only be used when the packages that will use the file are
known in advance. For other purposes it is often better to write a « . mk file and give it a good name
that describes what it does.

buildlink3.mk

This file contains the dependency information for the buildlink3 framework (see Chapter 18).

hacks.mk
This file contains workarounds for compiler bugs and similar things. It is included automatically by
the pkgsrc infrastructure, so you don’t need an extra . include line for it.

options.mk

This file contains the code for the package-specific options (see Chapter 16) that can be selected by
the user. If a package has only one or two options, it is equally acceptable to put the code directly
into the Makefile

45



Chapter 12. Package components - files, directories and contents

12.5.3. Files affecting nothing at all

README

These files do not take place in the creation of a package and thus are purely informative to the
package developer.

TODO

This file contains things that need to be done to make the package even better.

12.6. work*

When you type make, the distribution files are unpacked into the directory denoted by WRKDIR. It can be
removed by running make clean. Besides the sources, this directory is also used to keep various
timestamp files. The directory gets removed completely on clean. The default is ${ . CURDIR} /work or
${.CURDIR}/work.${MACHINE_ARCH} if OBJMACHINE is set.

12.7. files/*

If you have any files that you wish to be placed in the package prior to configuration or building, you can
place these files here and use a ${CP} command in the “post-extract” target to achieve this.

If you want to share files in this way with other packages, set the FILESDIR variable to point to the other
package’s files directory, e.g.:

FILESDIR= ../../editors/xemacs/files

46



Chapter 13.
The build process

13.1. Introduction

This chapter gives a detailed description on how a package is built. Building a package is separated into
different phases (for example fetch, build, install), all of which are described in the following
sections. Each phase is split into so-called stages, which take the name of the containing phase, prefixed
by one of pre—, do- or post-. (Examples are pre-configure, post-build.) Most of the actual work
is done in the do—* stages.

Never override the regular targets (like fetch), if you have to, override the do-x ones instead.

The basic steps for building a program are always the same. First the program’s source (distfile) must be
brought to the local system and then extracted. After any pkgsrc-specific patches to compile properly are
applied, the software can be configured, then built (usually by compiling), and finally the generated
binaries, etc. can be put into place on the system.

To get more details about what is happening at each step, you can set the PKG_VERBOSE variable, or the
PATCH_DEBUG variable if you are just interested in more details about the patch step.

13.2. Program location

Before outlining the process performed by the NetBSD package system in the next section, here’s a brief
discussion on where programs are installed, and which variables influence this.

The automatic variable PREFIX indicates where all files of the final program shall be installed. It is
usually set to LOCALBASE (/usr/pkg), or CROSSBASE for pkgs in the cross category. The value of
PREFIX needs to be put into the various places in the program’s source where paths to these files are
encoded. See Section 12.3 and Section 21.3.1 for more details.

When choosing which of these variables to use, follow the following rules:

« PREFIX always points to the location where the current pkg will be installed. When referring to a
pkg’s own installation path, use “${PREFIX}”.

+ LOCALBASE is where all non-X11 pkgs are installed. If you need to construct a -I or -L argument to the
compiler to find includes and libraries installed by another non-X11 pkg, use “${LOCALBASE}”.
The name LOCALBASE stems from FreeBSD, which installed all packages in /usr/local. As pkgsrc
leaves /usr/local for the system administrator, this variable is a misnomer.

+ X11BASE is where the actual X11 distribution (from xsrc, etc.) is installed. When looking for standard
X11 includes (not those installed by a package), use “${X11BASE}”.

« Xl1-based packages using imake must set USE_IMAKE to be installed correctly under LOCALBASE.

47



Chapter 13. The build process

« Within $ {PREFIX}, packages should install files according to hier(7), with the exception that manual
pages go into $ {PREFIX}/man, not $ {PREFIX}/share/man.

13.3. Directories used during the build process

When building a package, various directories are used to store source files, temporary files,
pkgsrc-internal files, and so on. These directories are explained here.

Some of the directory variables contain relative pathnames. There are two common base directories for
these relative directories: PKGSRCDIR/PKGPATH is used for directories that are pkgsrc-specific. WRKSRC
is used for directories inside the package itself.

PKGSRCDIR

This is an absolute pathname that points to the pkgsrc root directory. Generally, you don’t need it.

PKGDIR

This is an absolute pathname that points to the current package.

PKGPATH

This is a pathname relative to PKGSRCDIR that points to the current package.

WRKDIR

This is an absolute pathname pointing to the directory where all work takes place. The distfiles are
extracted to this directory. It also contains temporary directories and log files used by the various
pkgsrc frameworks, like buildlink or the wrappers.

WRKSRC

This is an absolute pathname pointing to the directory where the distfiles are extracted. It is usually
a direct subdirectory of WRKDIR, and often it’s the only directory entry that isn’t hidden. This
variable may be changed by a package Makefile.

The CREATE_WRKDIR_SYMLINK definition takes either the value yes or no and defaults to no. It indicates
whether a symbolic link to the WRKDIR is to be created in the pkgsrc entry’s directory. If users would like
to have their pkgsrc trees behave in a read-only manner, then the value of CREATE_WRKDIR_SYMLINK
should be set to no.

13.4. Running a phase

You can run a particular phase by typing make phase, where phase is the name of the phase. This will
automatically run all phases that are required for this phase. The default phase is build, that is, when
you run make without parameters in a package directory, the package will be built, but not installed.

48



Chapter 13. The build process

13.5. The fetch phase

The first step in building a package is to fetch the distribution files (distfiles) from the sites that are
providing them. This is the task of the fetch phase.

13.5.1. What to fetch and where to get it from

In simple cases, MASTER_SITES defines all URLs from where the distfile, whose name is derived from
the DISTNAME variable, is fetched. The more complicated cases are described below.

The variable DISTFILES specifies the list of distfiles that have to be fetched. Its value defaults to
${DEFAULT_DISTFILES} and its value is $ {DISTNAME}$ {EXTRACT_SUFX}, so that most packages
don’t need to define it at all. EXTRACT_SUFX is .tar.gz by default, but can be changed freely. Note that
if your package requires additional distfiles to the default one, you cannot just append the additional
filenames using the += operator, but you have write for example:

DISTFILES= ${DEFAULT_DISTFILES} additional-files.tar.gz

Each distfile is fetched from a list of sites, usually MASTER_SITES. If the package has multiple
DISTFILES or multiple PATCHFILES from different sites, you can set SITES. distfile to the list of
URLSs where the file dist £ile (including the suffix) can be found.

DISTFILES= S{DISTNAME } ${EXTRACT_SUFX}
DISTFILES+= foo-file.tar.gz
SITES.foo-file.tar.gz= \
https://www.somewhere.com/somehow/ \
https://www.somewhereelse.com/mirror/somehow/

When actually fetching the distfiles, each item from MASTER_SITES or SITES. » gets the name of each
distfile appended to it, without an intermediate slash. Therefore, all site values have to end with a slash or
other separator character. This allows for example to set MASTER_STITES to a URL of a CGI script that
gets the name of the distfile as a parameter. In this case, the definition would look like:

MASTER_SITES= https://www.example.com/download.cgi?file=

The exception to this rule are URLSs starting with a dash. In that case the URL is taken as is, fetched and
the result stored under the name of the distfile. You can use this style for the case when the download
URL style does not match the above common case. For example, if permanent download URL is a
redirector to the real download URL, or the download file name is offered by an HTTP
Content-Disposition header. In the following example, foo-1.0.0.tar.gz will be created instead of
the default v1.0.0.tar.gz.

DISTNAME= foo-1.0.0
MASTER_SITES= -https://www.example.com/archive/v1.0.0.tar.gz

There are some predefined values for MASTER_SITES, which can be used in packages. The names of the
variables should speak for themselves.

MASTER_SITE_APACHE MASTER_SITE_BACKUP
MASTER_SITE_CRATESIO MASTER_SITE_CYGWIN
MASTER_SITE_DEBIAN MASTER_SITE_FREEBSD

MASTER_SITE_FREEBSD_LOCAL MASTER_SITE_GENTOO

49



Chapter 13. The build process

MASTER_SITE_GITHUB MASTER_SITE_GNOME
MASTER_SITE_GNU MASTER_SITE_GNUSTEP
MASTER_SITE_HASKELL_HACKAGE MASTER_SITE_IFARCHIVE
MASTER_SITE_KDE MASTER_SITE_MOZILLA
MASTER_SITE_MOZILLA_ALL MASTER_SITE_MYSQL
MASTER_SITE_NETLIB MASTER_SITE_OPENBSD
MASTER_SITE_OPENOFFICE MASTER_SITE_OSDN
MASTER_SITE_PERL_CPAN MASTER_SITE_PGSQL
MASTER_SITE_PYPI MASTER_SITE_RUBYGEMS
MASTER_SITE_R_CRAN MASTER_SITE_SOURCEFORGE
MASTER_SITE_SUNSITE MASTER_SITE_SUSE
MASTER_SITE_TEX_CTAN MASTER_SITE_XCONTRIB
MASTER_SITE_XEMACS MASTER_SITE_XORG

Some explanations for the less self-explaining ones: MASTER_SITE_BACKUP contains backup sites for
packages that are maintained in ftp://ftp.NetBSD.org/pub/pkgsrc/distfiles/${ DIST_SUBDIR}.
MASTER_SITE_LOCAL contains local package source distributions that are maintained in
ftp://ftp.NetBSD.org/pub/pkgsrc/distfiles/LOCAL_PORTS/.

If you choose one of these predefined sites, you may want to specify a subdirectory of that site. Since
these macros may expand to more than one actual site, you must use the following construct to specify a

subdirectory:
MASTER_SITES= ${MASTER_SITE_GNU:=subdirectory/name/}
MASTER_SITES= ${MASTER_SITE_SOURCEFORGE:=project_name/}

Note the trailing slash after the subdirectory name.

13.5.2. How are the files fetched?

The fetch phase makes sure that all the distfiles exist in a local directory (DISTDIR, which can be set by
the pkgsrc user). If the files do not exist, they are fetched using commands of the form

S{FETCH_CMD} ${FETCH_BEFORE_ARGS} ${site}${file} ${FETCH_AFTER_ARGS}

where ${site} varies through several possibilities in turn: first, MASTER_SITE_OVERRIDE is tried, then
the sites specified in either SITES. file if defined, else MASTER_SITES or PATCH_SITES, as applies,
then finally the value of MASTER_SITE_BACKUP. The order of all except the first and the last can be
optionally sorted by the user, via setting either MASTER_SORT_RANDOM, and MASTER_SORT_AWK or
MASTER_SORT_REGEX.

The specific command and arguments used depend on the FETCH_USING parameter. The example above
is for FETCH_USING=custom.

The distfiles mirror run by the NetBSD Foundation uses the mirror-distfiles target to mirror the distfiles,
if they are freely distributable. Packages setting NO_SRC_ON_FTP (usually to “${RESTRICTED}”) will
not have their distfiles mirrored.

13.6. The checksum phase

After the distfile(s) are fetched, their checksum is generated and compared with the checksums stored in

50



Chapter 13. The build process

the distinfo file. If the checksums don’t match, the build is aborted. This is to ensure the same distfile is
used for building, and that the distfile wasn’t changed, e.g. by some malign force, deliberately changed
distfiles on the master distribution site or network lossage.

13.7. The extract phase

When the distfiles are present on the local system, they need to be extracted, as they usually come in the
form of some compressed archive format.

By default, all DISTFILES are extracted. If you only need some of them, you can set the EXTRACT_ONLY
variable to the list of those files.

Extracting the files is usually done by a little program, mk /ext ract /extract, which already knows
how to extract various archive formats, so most likely you will not need to change anything here. But if
you need, the following variables may help you:

EXTRACT_OPTS_ {BIN, LHA, PAX,RAR, TAR, ZIP, ZOO}

Use these variables to override the default options for an extract command, which are defined in

mk/extract/extract.

EXTRACT_USING

This variable can be set to bsdtar, gtar, nbtar (which is the default value), pax, or an absolute
pathname pointing to the command with which tar archives should be extracted. It is preferred to
choose bsdtar over gtar if NetBSD’s pax-as-tar is not good enough.

If the extract program doesn’t serve your needs, you can also override the EXTRACT_CMD variable,
which holds the command used for extracting the files. This command is executed in the $ {WRKSRC}
directory. During execution of this command, the shell variable extract_file holds the absolute
pathname of the file that is going to be extracted.

And if that still does not suffice, you can override the do—extract target in the package Makefile.

13.8. The patch phase

After extraction, all the patches named by the PATCHFILES, those present in the patches subdirectory of
the package as well as in SLOCALPATCHES/$PKGPATH (e.g.
/usr/local/patches/graphics/png) are applied. Patchfiles ending in . z or . gz are uncompressed
before they are applied, files ending in .orig or . rej are ignored. Any special options to patch(1) can
be handed in PATCH_DIST_ARGS. See Section 12.3 for more details.

By default patch(1) is given special arguments to make it fail if the expected text from the patch context
is not found in the patched file. If that happens, fix the patch file by comparing it with the actual text in
the file to be patched.

13.9. The tools phase

This is covered in Chapter 17.

51



Chapter 13. The build process

13.10. The wrapper phase

This phase creates wrapper programs for the compilers and linkers. The following variables can be used
to tweak the wrappers.

ECHO_WRAPPER_MSG

The command used to print progress messages. Does nothing by default. Set to $ {ECHO} to see the
progress messages.

WRAPPER_DEBUG

This variable can be set to yes (default) or no, depending on whether you want additional
information in the wrapper log file.

WRAPPER_UPDATE_CACHE

This variable can be set to yes or no, depending on whether the wrapper should use its cache,
which will improve the speed. The default value is yes, but is forced to no if the platform does not
support it.

WRAPPER_REORDER_CMDS

A list of reordering commands. A reordering command has the form reorder:1:1ib1:1ip2. It
ensures that that -11ib1 occurs before -11ib2.

13.11. The configure phase

Most pieces of software need information on the header files, system calls, and library routines which are
available on the platform they run on. The process of determining this information is known as
configuration, and is usually automated. In most cases, a script is supplied with the distfiles, and its
invocation results in generation of header files, Makefiles, etc.

If the package contains a configure script, this can be invoked by setting HAS_CONFIGURE to “yes”. If
the configure script is a GNU autoconf script, you should set GNU_CONFIGURE to “yes” instead.

In the do-configure stage, a rough equivalent of the following command is run. See
mk/configure/configure.mk, target do-configure-script for the exact definition.

.for dir in ${CONFIGURE_DIRS}
cd ${WRKSRC} && cd ${dir} \
&& env S${CONFIGURE_ENV} \
$S{CONFIG_SHELL} S${CONFIGURE_SCRIPT} ${CONFIGURE_ARGS}
.endfor

[T}

CONFIGURE_DIRS (default: “.”) is a list of pathnames relative to WRKSRC. In each of these directories,
the configure script is run with the environment CONFIGURE_ENV and arguments CONF IGURE_ARGS.
The variables CONFIGURE_ENV, CONFIGURE_SCRIPT (default: “./configure”) and CONFIGURE_ARGS
may all be changed by the package.

If the program uses the Perl way of configuration (mainly Perl modules, but not only), i.e. a file called
Makefile.PL, it should include ../../lang/perl5/module.mk. To set any parameter for
Makefile.PL use the MAKE_PARAMS variable (e.g., MAKE_PARAMS+=foo=bar

52



Chapter 13. The build process

If the program uses an Imakefile for configuration, the appropriate steps can be invoked by setting
USE_IMAKE to “yes”. If you only need xmkmf, add it to USE_TOOLS. You can add variables to xmkmf’s
environment by adding them to the SCRIPTS_ENV variable.

If the program uses cmake for configuration, the appropriate steps can be invoked by setting USE_CMAKE
to “yes”. You can add variables to cmake’s environment by adding them to the CONFIGURE_ENV variable
and arguments to cmake by adding them to the CMAKE_ARGS variable. The top directory argument is
given by the CMAKE_ARG_PATH variable, that defaults to ““.” (relative to CONFIGURE_DIRS)

If there is no configure step at all, set NO_CONFIGURE to “yes”.

13.12. The build phase

For building a package, a rough equivalent of the following code is executed; see mk /build/build.mk,
target do—build for the exact definition.

.for dir in ${BUILD_DIRS}
cd ${WRKSRC} && cd ${dir} \
&& env S{MAKE_ENV} \
$ {MAKE_PROGRAM} ${MAKE_FLAGS} ${BUILD_MAKE_FLAGS} \
-f ${MAKE_FILE} \
$S{BUILD_TARGET}
.endfor

IT3EL)

BUILD_DIRS (default: “.”) is a list of pathnames relative to WRKSRC. In each of these directories,
MAKE_PROGRAM is run with the environment MAKE_ENV and arguments BUILD_MAKE_FLAGS. The
variables MAKE_ENV, BUILD_MAKE_FLAGS, MAKE_FILE and BUILD_TARGET may all be changed by the
package.

LLINNT3

The default value of MAKE_PROGRAM is “gmake” if USE_TOOLS contains “gmake”, “make” otherwise.
The default value of MAKE_FILE is “Makefile”, and BUILD_TARGET defaults to “all”.

If there is no build step at all, set NO_BUTILD to “yes”.

13.13. The test phase
[TODO]

13.14. The install phase

Once the build stage has completed, the final step is to install the software in public directories, so users
can access the programs and files.

In the install phase, a rough equivalent of the following code is executed; see
mk/install/install.mk, target do—install for the exact definition. Additionally, before and after
this code, several consistency checks are run against the files-to-be-installed, see mk /check/ . mk for
details.

.for dir in ${INSTALL_DIRS}

53



cd ${WRKSRC} && cd ${dir} \
§&& env S${INSTALL_ENV} ${MAKE_ENV} \

Chapter 13. The build process

${MAKE_PROGRAM} ${MAKE_FLAGS} ${INSTALL_MAKE_FLAGS} \

—f ${MAKE_FILE} ${INSTALL_ TARGET}

.endfor

The variable’s meanings are analogous to the ones in the build phase. INSTALL_DIRS defaults to
BUILD_DIRS. INSTALL_TARGET is “install” by default, plus “install.man” if USE_IMAKE is defined and

NO_INSTALL_MANPAGES is not defined.

In the install phase, the following variables are useful. They are all variations of the install(1) command
that have the owner, group and permissions preset. INSTALL is the plain install command. The

specialized variants, together with their intended use, are:
INSTALL_PROGRAM_DIR
directories that contain binaries

INSTALL_SCRIPT_DIR

directories that contain scripts

INSTALL_LIB_DIR

directories that contain shared and static libraries

INSTALL_DATA_DIR

directories that contain data files

INSTALL_MAN_DIR

directories that contain man pages

INSTALL_GAME_DIR

directories that contain data files for games

INSTALL_PROGRAM

binaries that can be stripped from debugging symbols

INSTALL_SCRIPT

binaries that cannot be stripped

INSTALL_GAME

game binaries

INSTALL_LIB

shared and static libraries

INSTALL_DATA

data files

54



Chapter 13. The build process

INSTALL_GAME_DATA

data files for games

INSTALL_MAN
man pages

Some other variables are:

INSTALL_UNSTRIPPED

If set to yes, do not run strip(1) when installing binaries. Any debugging sections and symbols
present in binaries will be preserved.

INSTALLATION_DIRS

A list of directories relative to PREFIX that are created by pkgsrc at the beginning of the install
phase. The package is supposed to create all needed directories itself before installing files to it and
list all other directories here.

In the rare cases that a package shouldn’t install anything, set NO_INSTALL to “yes”. This is mostly
relevant for packages in the regress category.

13.15. The package phase

Once the install stage has completed, a binary package of the installed files can be built. These binary
packages can be used for quick installation without previous compilation, e.g. by the make bin-install or
by using pkg_add.

By default, the binary packages are created in $ {PACKAGES}/A11 and symlinks are created in
${PACKAGES}/category, one for each category in the CATEGORIES variable. PACKAGES defaults to
pkgsrc/packages.

13.16. Cleaning up

Once you’re finished with a package, you can clean the work directory by running make clean. If you
want to clean the work directories of all dependencies too, use make clean-depends.

13.17. Other helpful targets

pre/post-*

For any of the main targets described in the previous section (configure, build, install, etc.), two
auxiliary targets exist with “pre-" and “post-" used as a prefix for the main target’s name. These
targets are invoked before and after the main target is called, allowing extra configuration or
installation steps be performed from a package’s Makefile, for example, which a program’s
configure script or install target omitted.

55



Chapter 13. The build process

About 5% of the pkgsrc packages define their custom post-extract target, another 5% define
pre-configure, and 10% define post-install. The other pre/post-* targets are defined even less often.

do-*

Should one of the main targets do the wrong thing, and should there be no variable to fix this, you
can redefine it with the do-* target. (Note that redefining the target itself instead of the do-* target is
a bad idea, as the pre-* and post-* targets won’t be called anymore, etc.)

About 15% of the pkgsrc packages override the default do-install, the other do-* targets are
overridden even less often.

reinstall

If you did a make install and you noticed some file was not installed properly, you can repeat the
installation with this target, which will ignore the “already installed” flag.

This is the default value of DEPENDS_TARGET except in the case of make update and make
package, where the defaults are “package” and “update”, respectively.

deinstall

This target does a pkg_delete(1) in the current directory, effectively de-installing the package. The
following variables can be used to tune the behaviour:

PKG_VERBOSE

Add a "-v" to the pkg_delete(1) command.

DEINSTALLDEPENDS

Remove all packages that require (depend on) the given package. This can be used to remove
any packages that may have been pulled in by a given package, e.g. if make deinstall
DEINSTALLDEPENDS=1 is done in pkgsrc/x11/kde, this is likely to remove whole
KDE. Works by adding “-R” to the pkg_delete(1) command line.

bin-install

Install a binary package from local disk and via FTP from a list of sites (see the BINPKG_SITES
variable), and do a make package if no binary package is available anywhere. The arguments given
to pkg_add can be set via BIN_INSTALL_FLAGS e.g., to do verbose operation, etc.

install-clean

This target removes the state files for the "install" and later phases so that the "install" target may be
re-invoked. This can be used after editing the PLIST to install the package without rebuilding it.

build-clean

This target removes the state files for the "build" and later phases so that the "build" target may be
re-invoked.

56



Chapter 13. The build process

update

This target causes the current package to be updated to the latest version. The package and all
depending packages first get de-installed, then current versions of the corresponding packages get
compiled and installed. This is similar to manually noting which packages are currently installed,
then performing a series of make deinstall and make install (or whatever UPDATE_TARGET is set
to) for these packages.

You can use the “update” target to resume package updating in case a previous make update was
interrupted for some reason. However, in this case, make sure you don’t call make clean or
otherwise remove the list of dependent packages in WRKDIR. Otherwise, you lose the ability to
automatically update the current package along with the dependent packages you have installed.

Resuming an interrupted make update will only work as long as the package tree remains
unchanged. If the source code for one of the packages to be updated has been changed, resuming
make update will most certainly fail!

The following variables can be used either on the command line or in mk . conf to alter the
behaviour of make update:

UPDATE_TARGET

Install target to recursively use for the updated package and the dependent packages. Defaults
to DEPENDS_TARGET if set, “install” otherwise for make update. Other good targets are
“package” or “bin-install”. Do not set this to “update” or you will get stuck in an endless loop!

NOCLEAN

Don’t clean up after updating. Useful if you want to leave the work sources of the updated
packages around for inspection or other purposes. Be sure you eventually clean up the source
tree (see the “clean-update” target below) or you may run into troubles with old source code
still lying around on your next make or make update.

REINSTALL

Deinstall each package before installing (making DEPENDS_TARGET). This may be necessary
if the “clean-update” target (see below) was called after interrupting a running make update.

DEPENDS_TARGET

Allows you to disable recursion and hardcode the target for packages. The default is “update”
for the update target, facilitating a recursive update of prerequisite packages. Only set
DEPENDS_TARGET if you want to disable recursive updates. Use UPDATE_TARGET instead to
just set a specific target for each package to be installed during make update (see above).

clean-update

Clean the source tree for all packages that would get updated if make update was called from the
current directory. This target should not be used if the current package (or any of its depending
packages) have already been de-installed (e.g., after calling make update) or you may lose some
packages you intended to update. As a rule of thumb: only use this target before the first time you
run make update and only if you have a dirty package tree (e.g., if you used NOCLEAN).

57



Chapter 13. The build process

If you are unsure about whether your tree is clean, you can either perform a make clean at the top
of the tree, or use the following sequence of commands from the directory of the package you want
to update (before running make update for the first time, otherwise you lose all the packages you
wanted to update!):

# make clean-update
# make clean CLEANDEPENDS=YES
# make update

The following variables can be used either on the command line or in mk . conf to alter the
behaviour of make clean-update:

CLEAR_DIRLIST

After make clean, do not reconstruct the list of directories to update for this package. Only use
this if make update successfully installed all packages you wanted to update. Normally, this is
done automatically on make update, but may have been suppressed by the NOCLEAN variable
(see above).

replace

Update the installation of the current package. This differs from update in that it does not replace
dependent packages. You will need to install pkgtools/pkg_tarup for this target to work.

Be careful when using this target! There are no guarantees that dependent packages will still work,
in particular they will most certainly break if you make replace a library package whose shared
library major version changed between your installed version and the new one. For this reason, this
target is not officially supported and only recommended for advanced users.

info

This target invokes pkg_info(1) for the current package. You can use this to check which version of
a package is installed.

index

This is a top-level command, i.e. it should be used in the pkgsrc directory. It creates a database of
all packages in the local pkgsrc tree, including dependencies, comment, maintainer, and some other
useful information. Individual entries are created by running make describe in the packages’
directories. This index file is saved as pkgsrc/INDEX. It can be displayed in verbose format by
running make print-index. You can search in it with make search key=something. You can
extract a list of all packages that depend on a particular one by running make show-deps
PKG=somepackage.

Running this command takes a very long time, some hours even on fast machines!

readme

This target generates a index.html file, which can be viewed using a browser such as
www/firefox or www/1links. The generated files contain references to any packages which are in
the PACKAGES directory on the local host. The generated files can be made to refer to URLs based
on FTP_PKG_URL_HOST and FTP_PKG_URL_DIR. For example, if I wanted to generate

58



Chapter 13. The build process

index.html files which pointed to binary packages on the local machine, in the directory
/usr/packages, set FTP_PKG_URL_HOST=file://localhost and
FTP_PKG_URL_DIR=/usr/packages. The $ {PACKAGES} directory and its subdirectories will be
searched for all the binary packages.

The target can be run at the toplevel or in category directories, in which case it descends recursively.

readme-all

This is a top-level command, run it in pkgsrc. Use this target to create a file README-all.html
which contains a list of all packages currently available in the NetBSD Packages Collection,
together with the category they belong to and a short description. This file is compiled from the
pkgsrc/*/index.html files, so be sure to run this affer a make readme.

cdrom-readme
This is very much the same as the “readme” target (see above), but is to be used when generating a
pkgsrc tree to be written to a CD-ROM. This target also produces index.html files, and can be
made to refer to URLs based on CDROM_PKG_URL_HOST and CDROM_PKG_URL_DIR.
show-distfiles
This target shows which distfiles and patchfiles are needed to build the package (ALLFILES, which
contains all DISTFILES and PATCHFILES, but not patches/ ).
show-downlevel

This target shows nothing if the package is not installed. If a version of this package is installed, but
is not the version provided in this version of pkgsrc, then a warning message is displayed. This
target can be used to show which of your installed packages are downlevel, and so the old versions
can be deleted, and the current ones added.

show-pkgsrc-dir
This target shows the directory in the pkgsrc hierarchy from which the package can be built and
installed. This may not be the same directory as the one from which the package was installed. This
target is intended to be used by people who may wish to upgrade many packages on a single host,
and can be invoked from the top-level pkgsrc Makefile by using the “show-host-specific-pkgs”
target.

show-installed-depends
This target shows which installed packages match the current package’s DEPENDS. Useful if out of
date dependencies are causing build problems.

print-build-depends-list

This target shows the list of packages that the current package depends on for building.

print-run-depends-list

This target shows the list of packages that the current package depends on for running.

59



Chapter 13. The build process

check-shlibs
After a package is installed, check all its binaries and (on ELF platforms) shared libraries to see if
they find the shared libs they need. Run by default if PKG_DEVELOPER is set in mk . conf.
print-PLIST

After a “make install” from a new or upgraded pkg, this prints out an attempt to generate a new
PLIST from a find -newer work/.extract_done. An attempt is made to care for shared libs etc., but
it is strongly recommended to review the result before putting it into PLIST. On upgrades, it’s
useful to diff the output of this command against an already existing PLIST file.

If the package installs files via tar(1) or other methods that don’t update file access times, be sure to
add these files manually to your PLIST, as the “find -newer” command used by this target won’t
catch them!

See Section 19.3 for more information on this target.

60



Chapter 14.
Creating a new pkgsrc package
from scratch

When you find a package that is not yet in pkgsrc, you most likely have a URL from where you can
download the source code. Starting with this URL, creating a package involves only a few steps.

1. Inyour mk.conf, set PKG_DEVELOPER=yes to enable the basic quality checks.

2. Install the package meta-pkgs/pkg_developer, which among others will install the utilities
url2pkg, pkglint, pkgvi and mkpatches:

$ ed /usr/pkgsrc
$ (cd meta-pkgs/pkg_developer && bmake update)

3. Choose one of the top-level directories as the category in which you want to place your package.
You can also create a directory of your own (maybe called 1ocal). In that category directory, create
another directory for your package and change into it:

$ mkdir category/package
$ ed category/package

4. Run the program url2pkg, which will ask you for a URL. Enter the URL of the distribution file (in
most cases a . tar.gz file) and watch how the basic ingredients of your package are created
automatically. The distribution file is extracted automatically to fill in some details in the Makefile
that would otherwise have to be done manually:

$ url2pkg https://www.example.org/packages/package-1.0.tar.gz

5. Examine the extracted files to determine the dependencies of your package. Ideally, this is
mentioned in some README file, but things may differ. For each of these dependencies, look where it
exists in pkgsrc, and if there is a file called buildlink3.mk in that directory, add a line to your
package Makefile which includes that file just before the last line. If the buildlink3.mk file does
not exist, it must be created first. The buildlink3.mk file makes sure that the package’s include
files and libraries are provided.

If you just need binaries from a package, add a DEPENDS line to the Makefile, which specifies the
version of the dependency and where it can be found in pkgsrc. This line should be placed in the
third paragraph. If the dependency is only needed for building the package, but not when using it,
use TOOL_DEPENDS or BUILD_DEPENDS instead of DEPENDS. The difference between
TOOL_DEPENDS and BUILD_DEPENDS occurs when cross-compiling: TOOL_DEPENDS are native
packages, i.e. packages for the architecture where the package is built; BUILD_DEPENDS are target
packages, i.e. packages for the architecture for which the package is built. There is also
TEST_DEPENDS, which is used to specify a dependency used only for testing the resulting package
built, using the upstream project’s included test suite. Your package may then look like this:

[...]

61



10.

11.

12.
13.

14.

15.

16.
17.

Chapter 14. Creating a new pkgsrc package from scratch

TOOL_DEPENDS+= libxslt-[0-9]x:../../textproc/libxslt

DEPENDS+= screen—-[0-9]%:../../misc/screen
DEPENDS+= screen>=4.0:../../misc/screen
[...]

.include "../../category/package/buildlink3.mk"
.include "../../devel/glib2/buildlink3.mk"
.include "../../mk/bsd.pkg.mk"

Run pkglint to see what things still need to be done to make your package a “good” one. If you
don’t know what pkglint’s warnings want to tell you, try pkglint --explain or pkglint -e, which
outputs additional explanations.

In many cases the package is not yet ready to build. You can find instructions for the most common
cases in the next section, Section 14.1. After you have followed the instructions over there, you can
hopefully continue here.

Run bmake clean to clean the working directory from the extracted files. Besides these files, a lot of
cache files and other system information has been saved in the working directory, which may
become wrong after you edited the Makefile.

Now, run bmake to build the package. For the various things that can go wrong in this phase,
consult Chapter 21.

If the extracted files from the package need to be fixed, run multiple rounds of these commands:

$ make

$ pkgvi ${WRKSRC}/some/file/that/does/not/compile
$ mkpatches

$ make mps

$

make clean

When the package builds fine, the next step is to install the package. Run bmake install and hope
that everything works.

Up to now, the file PLIST, which contains a list of the files that are installed by the package, is
nearly empty. Run bmake print-PLIST >PLIST to generate a probably correct list. Check the file
using your preferred text editor to see if the list of files looks plausible.

Run pkglint again to see if the generated PLIST contains garbage or not.

When you ran bmake install, the package had been registered in the database of installed files, but
with an empty list of files. To fix this, run bmake deinstall and bmake install again. Now the
package is registered with the list of files from PLIST.

Run bmake package to create a binary package from the set of installed files.

Run bmake clean update to run everything from above again in a single step, making sure that the
PLIST is correct and the whole package is created as intended.

Run pkglint to see if there’s anything left to do.

Commit the package to pkgsrc-wip or main pkgsrc; see Chapter 23.

62



Chapter 14. Creating a new pkgsrc package from scratch

14.1. Common types of packages

14.1.1. Perl modules

Simple Perl modules are handled automatically by url2pkg, including dependencies.

14.1.2. Python modules and programs
Python modules and programs packages are easily created using a set of predefined variables.

If some Python versions are not supported by the software, set the PYTHON_VERSIONS_INCOMPATIBLE
variable to the Python versions that are not supported, e.g.

PYTHON_VERSIONS_INCOMPATIBLE= 27

If the packaged software is a Python module, include one of . ./../lang/python/egg.mk,
../../lang/python/distutils.mk,0r ../../lang/python/extension.mk.

Most Python packages use either “distutils” or easy-setup/setuptools (“eggs”). If the packaged software
is using setuptools, you only need to include “. ./../lang/python/egg.mk”. Otherwise, if the
software uses “distutils”, include “../../lang/python/distutils.mk”, so pkgsrc will use this
framework. “distutils” uses a script called setup . py; if the “distutils” driver is not called setup.py, set
the PYSETUP variable to the name of the script.

Either way, the package directory should be called “py-software” and PKGNAME should be set to
“${PYPKGPREFIX}-${DISTNAME}”, e.g.

DISTNAME= foopymodule-1.2.10
PKGNAME= S {PYPKGPREFIX}-${DISTNAME}

If it is an application, include “. ./../lang/python/application.mk”. In order to correctly set the
path to the Python interpreter, use the REPLACE_PYTHON variable and set it to the list of files (paths
relative to WRKSRC) that must be corrected. For example:

REPLACE_PYTHON= *.py

Some Python modules have separate distributions for Python-2.x and Python-3.x support. In pkgsrc this
is handled by the versioned_dependencies.mk file. Set PYTHON_VERSIONED_DEPENDENCIES to
the list of packages that should be depended upon and include

../../lang/python/versioned_dependencies.mk”, then the pkgsrc infrastructure will depend
on the appropriate package version. For example:

PYTHON_VERSIONED_DEPENDENCIES=dialog

Look inside versioned_dependencies.mk for a list of supported packages.

63



Chapter 14. Creating a new pkgsrc package from scratch

14.1.3. R packages

Simple R packages from CRAN
(https://cran.r-project.org/web/packages/available_packages_by_name.html) are handled automatically
by R2pkg, which is available in pkgtools/R2pkg. Individual packages (and optionally their
dependencies) may be created and updated. R packages generally follow the same form, and most of the
relevant information needed is contained in a DESCRIPTION file as part of each R package on CRAN
(https://cran.r-project.org/web/packages/available_packages_by_name.html). Consequently, R2pkg
downloads that information and creates or updates a package in the canonical form. The resulting
package should be reviewed for correctness.

14.1.4. TeXlive packages

TeXlive packages from CTAN (https://www.ctan.org/) are handled automatically by texlive2pkg, which
is available in pkgtools/texlive2pkg.

If the TeXlive package name is not known, it may be useful to search CTAN (https://www.ctan.org/). A
“Contained in” field on the package page typically identifies the basename of the package file in the
TeXlive archive (https://www.ctan.org/tex-archive/systems/texlive/tlnet/archive).

If the TeXlive package name is known, download the files from the TeXlive archive
(https://www.ctan.org/tex-archive/systems/texlive/tlnet/archive). For package foo, you will need to
download foo.tar.xz. Most TeXlive packages also have associated documentation packages, so
download foo.doc.tar.xz at the same time. These files should be placed in the appropriate category
directory, which is often but not always print. Then run the following command in the category
directory.

texlive2pkg foo.tar.xz foo.doc.tar.xz

This will create two packages, tex-foo and tex-foo-doc. Be sure to check that both packages are
correct.

Finally, CTAN (https://www.ctan.org/) currently does not include version information in package
filenames and changes their contents periodically when updates occur. Consequently, pkgsrc avoids
downloading distfiles directly from CTAN (https://www.ctan.org/) and instead relies on the pkgsrc
archives. For each new or updated TeXlive package, e.g., the main one and the corresponding
documentation, upload the distfiles with the following command in each package directory.

make upload-distfiles

14.2. Examples

14.2.1. How the www/nvu package came into pkgsrc

14.2.1.1. The initial package

Looking at the file pkgsrc/doc/ToDO, I saw that the “nvu” package has not yet been imported into

64



Chapter 14. Creating a new pkgsrc package from scratch

pkgsrc. As the description says it has to do with the web, the obvious choice for the category is “www”.

$ mkdir www/nvu
$ cd www/nvu

The web site says that the sources are available as a tar file, so I fed that URL to the url2pkg program:
$ url2pkg http://cvs.nvu.com/download/nvu-1.0-sources.tar.bz2

My editor popped up, and I added a PKGNAME line below the DISTNAME line, as the package name should
not have the word “sources” in it. I also filled in the MAINTAINER, HOMEPAGE and COMMENT fields. Then
the package Makefile looked like that:

# SNetBSD $

#

DISTNAME= nvu-1l.0-sources

PKGNAME= nvu-1.0

CATEGORIES= WWW

MASTER_SITES= http://cvs.nvu.com/download/
EXTRACT_SUFX= .tar.bz2

MAINTAINER= rillig@NetBSD.org

HOMEPAGE= http://cvs.nvu.com/

COMMENT= Web Authoring System

# url2pkg-marker (please do not remove this line.)
.include "../../mk/bsd.pkg.mk"

On the first line of output above, an artificial space has been added between NetBSD and $, this is a
workaround to prevent CVS expanding to the filename of the guide.

Then, I quit the editor and watched pkgsrc downloading a large source archive:

url2pkg> Running "make makesum"

=> Required installed package digest>=20010302: digest-20060826 found
=> Fetching nvu-1.0-sources.tar.bz2

Requesting http://cvs.nvu.com/download/nvu-1.0-sources.tar.bz2

100 | *kkkkkhkrhhhkkkkkxkhkkkkkkkxkkkkkkkxx| 28992 KB 150.77 KB/s00:00 ETA
29687976 bytes retrieved in 03:12 (150.77 KB/s)

url2pkg> Running "make extract"

=> Required installed package digest>=20010302: digest-20060826 found
=> Checksum SHA1l OK for nvu-1l.0-sources.tar.bz2

=> Checksum RMD160 OK for nvu-1l.0-sources.tar.bz2

work.bacc -> /tmp/roland/pkgsrc/www/nvu/work.bacc

===> Installing dependencies for nvu-1.0

===> Overriding tools for nvu-1.0

===> Extracting for nvu-1.0

url2pkg> Adjusting the Makefile.

Remember to correct CATEGORIES, HOMEPAGE, COMMENT, and DESCR when you’re done!

Good luck! (See pkgsrc/doc/pkgsrc.txt for some more help :-)

65



Chapter 14. Creating a new pkgsrc package from scratch

14.2.1.2. Fixing all kinds of problems to make the package work

Now that the package has been extracted, let’s see what’s inside it. The package has a README . txt, but
that only says something about mozilla, so it’s probably useless for seeing what dependencies this
package has. But since there is a GNU configure script in the package, let’s hope that it will complain
about everything it needs.

$ bmake

=> Required installed package digest>=20010302: digest-20060826 found
=> Checksum SHAl OK for nvu-1l.0-sources.tar.bz2

=> Checksum RMD160 OK for nvu-l.0-sources.tar.bz2

===> Patching for nvu-1.0

===> Creating toolchain wrappers for nvu-1.0

===> Configuring for nvu-1.0

[...]

configure: error: Perl 5.004 or higher is required.

[...]

WARNING: Please add USE_TOOLS+=perl to the package Makefile.
[...]

That worked quite well. So I opened the package Makefile in my editor, and since it already has a
USE_TOOLS line, I just appended “perl” to it. Since the dependencies of the package have changed now,
and since a perl wrapper is automatically installed in the “tools” phase, I need to build the package from
scratch.

$ bmake clean

===> Cleaning for nvu-1.0

$ bmake

[...]

x*%%x /tmp/roland/pkgsrc/www/nvu/work.bacc/.tools/bin/make is not \
GNU Make. You will not be able to build Mozilla without GNU Make.
[...]

So I added “gmake” to the UsE_TOOLS line and tried again (from scratch).

[...]

checking for GTK - version >= 1.2.0... no

*xx Could not run GTK test program, checking why...
[...]

Now to the other dependencies. The first question is: Where is the GTK package hidden in pkgsrc?

$ echo ../../x/gtk~

[many packages ...]

$ echo ../../*/gtk
../../x11/gtk

$ echo ../../x/gtk2
../../x11/gtk2

$ echo ../../x/gtk2/buix*
../../x11/gtk2/buildlink3.mk

The first try was definitely too broad. The second one had exactly one result, which is very good. But
there is one pitfall with GNOME packages. Before GNOME 2 had been released, there were already

66



Chapter 14. Creating a new pkgsrc package from scratch

many GNOME 1 packages in pkgsrc. To be able to continue to use these packages, the GNOME 2
packages were imported as separate packages, and their names usually have a “2” appended. So I
checked whether this was the case here, and indeed it was.

Since the GTK2 package has a buildlink3.mk file, adding the dependency is very easy. I just inserted
an . include line before the last line of the package Makefile, so that it now looks like this:

[...]
.include "../../x11/gtk2/buildlink3.mk"
.include "../../mk/bsd.pkg.mk

After another bmake clean & & bmake, the answer was:

[...]

checking for gtk-config... /home/roland/pkg/bin/gtk-config

checking for GTK - version >= 1.2.0... no

*%% Could not run GTK test program, checking why...

**x% The test program failed to compile or link. See the file config.log for the
*%*x exact error that occured. This usually means GTK was incorrectly installed
*%% or that you have moved GTK since it was installed. In the latter case, you
*x* may want to edit the gtk-config script: /home/roland/pkg/bin/gtk-config
configure: error: Test for GTK failed.

[...]

In this particular case, the assumption that “every package prefers GNOME 2 had been wrong. The first
of the lines above told me that this package really wanted to have the GNOME 1 version of GTK. If the
package had looked for GTK?2, it would have looked for pkg-config instead of gtk-config. So I changed
the x11/gtk2 to x11/gtk in the package Makefile, and tried again.

[...]

cc —o xpidl.o —-c -DOSTYPE=\"NetBSD3\" —-DOSARCH=\"NetBSD\" [...]
In file included from xpidl.c:42:

xpidl.h:53:24: 1ibIDL/IDL.h: No such file or directory

In file included from xpidl.c:42:

xpidl.h:132: error: parse error before "IDL_ns"

[...]

The package still does not find all of its dependencies. Now the question is: Which package provides the
1ibIDL/IDL.h header file?

$ echo ../../x/xidlx

../../devel/py-idle ../../wip/idled ../../x11l/acidlaunch
$ echo ../../x/*IDLx*

../../net/1ibIDL

Let’s take the one from the second try. So Iincluded the . ./../net/1ibIDL/buildlink3.mk file and
tried again. But the error didn’t change. After digging through some of the code, I concluded that the
build process of the package was broken and couldn’t have ever worked, but since the Mozilla source tree
is quite large, I didn’t want to fix it. So I added the following to the package Makefile and tried again:

CPPFLAGS+= —-IS${BUILDLINK_PREFIX.1libIDL}/include/1libIDL-2.0
BUILDLINK_TRANSFORM+= 1:IDL:IDL-2

67



Chapter 14. Creating a new pkgsrc package from scratch

The latter line is needed because the package expects the library 1ibIDL. so, butonly 1ibIDL-2.s0 is
available. So I told the compiler wrapper to rewrite that on the fly.

The next problem was related to a recent change of the FreeType interface. I looked up in
www/seamonkey which patch files were relevant for this issue and copied them to the patches
directory. Then I retried, fixed the patches so that they applied cleanly and retried again. This time,
everything worked.

14.2.1.3. Installing the package

$ bmake CHECK_FILES=no install
[...]

$ bmake print-PLIST >PLIST

$ bmake deinstall

$ bmake install

68



Chapter 15.
Programming in MakefileS

Pkgsrc consists of many Makefile fragments, each of which forms a well-defined part of the pkgsrc
system. Using the make(1) system as a programming language for a big system like pkgsrc requires
some discipline to keep the code correct and understandable.

The basic ingredients for Make file programming are variables and shell commands. Among these shell
commands may even be more complex ones like awk(1) programs. To make sure that every shell
command runs as intended it is necessary to quote all variables correctly when they are used.

This chapter describes some patterns that appear quite often in Make £i 1es, including the pitfalls that
come along with them.

15.1. Caveats

« When you are creating a file as a target of a rule, always write the data to a temporary file first and
finally rename that file. Otherwise there might occur an error in the middle of generating the file, and
when the user runs make(1) for the second time, the file exists and will not be regenerated properly.
Example:
wrong:

Qecho "line 1" > ${.TARGET}
@echo "line 2" >> S${.TARGET}
@false

correct:
@echo "line 1" > ${.TARGET}.tmp
@echo "line 2" >> ${.TARGET}.tmp
@false
@mv ${.TARGET}.tmp ${.TARGET}

When you run make wrong twice, the file wrong will exist, although there was an error message in
the first run. On the other hand, running make correct gives an error message twice, as expected.

You might remember that make(1) sometimes removes ${ . TARGET } in case of error, but this only
happens when it is interrupted, for example by pressing ctr1+C. This does not happen when one of
the commands fails (like false(1) above).

15.2. Makefile variables

Makefile variables contain strings that can be processed using the five operators =, +=, 2=, :=and !=,
which are described in the make(1) man page.

69



Chapter 15. Programming in Makerfiles

When a variable’s value is parsed from a Makefile, the hash character # and the backslash character \
are handled specially. If a backslash is the last character in a line, that backslash is removed from the line
and the line continues with the next line of the file.

The # character starts a comment that reaches until the end of the line. To get an actual # character, such
as in a URL, write \ # instead.

The evaluation of variables either happens immediately or lazy. It happens immediately when the
variable occurs on the right-hand side of the : = or the != operator, in a . if condition or a . for loop. In
the other cases, it is evaluated lazily.

Some of the modifiers split the string into words and then operate on the words, others operate on the
string as a whole. When a string is split into words, double quotes and single quotes are interpreted as
delimiters, just like in sh(1).

15.2.1. Naming conventions

« All variable names starting with an underscore are reserved for use by the pkgsrc infrastructure. They
shall not be used by packages.

+ In .for loops you should use lowercase variable names for the iteration variables.

« All list variables should have a plural name, such as PKG_OPTIONS or DISTFILES.

15.3. Code snippets

15.3.1. Adding things to a list

When adding a string that possibly contains whitespace or quotes to a list (example 1), it must be quoted
using the : Q modifier.

When adding another list to a list (example 2), it must not be quoted, since its elements are already
quoted.

STRING= foo * bar ‘date’
LIST= # empty
ANOTHER_LIST= a=b c=d

LIST+= S$S{STRING:Q} # 1
LIST+= $ {ANOTHER_LIST} # 2

15.3.2. Echoing a string exactly as-is

Echoing a string containing special characters needs special work.

STRING= foo bar < > % ‘date' $$SHOME " "
EXAMPLE_ENV= string=${STRING:Q} x=multiple\ quoted\ words
all:

70



Chapter 15. Programming in Makefiles

echo S${STRING} #
echo S${STRING:Q} #
printf ’%s\n’ S${STRING:Q}” # 3
env ${EXAMPLE_ENV} sh -c 'echo "$S$string"; echo "$$x"’ # 4

1
2

Example 1 leads to a syntax error in the shell, as the characters are just copied.

Example 2 quotes the string so that the shell interprets it correctly. But the echo command may
additionally interpret strings with a leading dash or those containing backslashes.

Example 3 can handle arbitrary strings, since printf(1) only interprets the format string, but not the next
argument. The trailing single quotes handle the case when the string is empty. In that case, the :Q
modifier would result in an empty string too, which would then be skipped by the shell. For printf(1) this
doesn’t make a difference, but other programs may care.

In example 4, the ExaMPLE_ENV does not need to be quoted because the quoting has already been done
when adding elements to the list.

15.3.3. Passing crracs to GNU configure scripts

When passing CFLAGS or similar variables to a GNU-style configure script (especially those that call
other configure scripts), it must not have leading or trailing whitespace, since otherwise the configure
script gets confused. To trim leading and trailing whitespace, use the : M modifier, as in the following
example:

CPPFLAGS= # empty

CPPFLAGS+= -Wundef -DPREFIX=\"S{PREFIX}\"

CPPFLAGS+= ${MY_CPPFLAGS}

CONFIGURE_ARGS+= CPPFLAGS=S${CPPFLAGS:Mx:Q}

all:
echo x${CPPFLAGS:Q}x # leading and trailing whitespace
echo x${CONFIGURE_ARGS:Q}x # properly trimmed

In this example, CPPFLAGS has both leading and trailing whitespace because the += operator always
adds a space.

15.3.4. Handling possibly empty variables

When a possibly empty variable is used in a shell program, it may lead to a syntax error.

EGFILES= # empty
install-examples: # produces a syntax error in the shell
for egfile in ${EGFILES}; do \
echo "Installing $Segfile"; \
done

The shell only sees the text for egfile in ; do, since ${EGFILES} is replaced with an empty string
by make(1). To fix this syntax error, use one of the snippets below.

71



Chapter 15. Programming in Makefiles
EMPTY= # empty

install-examples:

for egfile in ${EGFILES} ""; do \
[ -n "$$egfile" ] || continue; \
echo "Installing $Segfile"; \
done

In this case, an empty string is appended to the iteration list (to prevent the syntax error) and filtered out
later.

EGFILES= # empty

install-examples:
.for egfile in ${EGFILES}

echo "Installing ${egfile}"
.endfor

If one of the filenames contains special characters, it should be enclosed in single or double quotes.

To have a shell command test whether a make variable is empty, use the following code: $ {TEST} -z
${POSSIBLY_EMPTY:Q}"".

72



Chapter 16.
Options handling

Many packages have the ability to be built to support different sets of features. bsd.options.mkisa
framework in pkgsrc that provides generic handling of those options that determine different ways in
which the packages can be built. It’s possible for the user to specify exactly which sets of options will be
built into a package or to allow a set of global default options apply.

There are two broad classes of behaviors that one might want to control via options. One is whether
some particular feature is enabled in a program that will be built anyway, often by including or not
including a dependency on some other package. The other is whether or not an additional program will
be built as part of the package. Generally, it is better to make a split package for such additional
programs instead of using options, because it enables binary packages to be built which can then be
added separately. For example, the foo package might have minimal dependencies (those packages
without which foo doesn’t make sense), and then the foo-gfoo package might include the GTK frontend
program gfoo. This is better than including a gtk option to foo that adds gfoo, because either that option
is default, in which case binary users can’t get foo without gfoo, or not default, in which case they can’t
get gfoo. With split packages, they can install foo without having GTK, and later decide to install gfoo
(pulling in GTK at that time). This is an advantage to source users too, avoiding the need for rebuilds.

Plugins with widely varying dependencies should usually be split instead of options.

It is often more work to maintain split packages, especially if the upstream package does not support
this. The decision of split vs. option should be made based on the likelihood that users will want or
object to the various pieces, the size of the dependencies that are included, and the amount of work.

A further consideration is licensing. Non-free parts, or parts that depend on non-free dependencies
(especially plugins) should almost always be split if feasible.

16.1. Global default options

Global default options are listed in PKG_DEFAULT_OPTIONS, which is a list of the options that should be
built into every package if that option is supported. This variable should be set in mk . conf.

16.2. Converting packages to use bsd.options.mk

The following example shows how bsd. options.mk should be used by the hypothetical “wibble”
package, either in the package Makefile, orin a file, e.g. opt ions.mk, that is included by the main
package Makefile.

PKG_OPTIONS_VAR= PKG_OPTIONS.wibble
PKG_SUPPORTED_OPTIONS= wibble-foo ldap
PKG_OPTIONS_OPTIONAL_GROUPS= database
PKG_OPTIONS_GROUP.database= mysgl pgsqgl

73



Chapter 16. Options handling

PKG_SUGGESTED_OPTIONS= wibble-foo
PKG_OPTIONS_LEGACY VARS+= WIBBLE_USE_OPENLDAP:ldap
PKG_OPTIONS_LEGACY_OPTS+= foo:wibble-foo

.include "../../mk/bsd.prefs.mk"

# this package was previously named wibble2
.if defined (PKG_OPTIONS.wibble2)
PKG_LEGACY_ OPTIONS+= ${PKG_OPTIONS.wibble2}
PKG_OPTIONS_DEPRECATED_WARNINGS+= \

"Deprecated variable PKG_OPTIONS.wibble2 used, use ${PKG_OPTIONS_VAR} instead."
.endif

.include "../../mk/bsd.options.mk"

# Package-specific option-handling

#H4#
##4# FOO support
#H4#
.if lempty (PKG_OPTIONS:Mwibble-foo0)
CONFIGURE_ARGS+= ——enable-foo
.endif
#H4#
### LDAP support
#H4#
.if !empty (PKG_OPTIONS:Mldap)
include "../../databases/openldap-client/buildlink3.mk"
CONFIGURE_ARGS+= ——enable-1dap=${BUILDLINK_PREFIX.openldap-client}
.endif
###
### database support
###
.1f !empty (PKG_OPTIONS:Mmysql)
include "../../mk/mysqgl.buildlink3.mk"
.endif
.1f !empty (PKG_OPTIONS:Mpgsql)
include "../../mk/pgsqgl.buildlink3.mk"
.endif

The first section contains the information about which build options are supported by the package, and
any default options settings if needed.

1. PKG_OPTIONS_VAR is the name of the make(1) variable that the user can set to override the default
options. It should be set to PKG_OPTIONS.pkgbase. Do not set it to
PKG_OPTIONS.${PKGBASE}, since PKGBASE is not defined at the point where the options are
processed.

2. PKG_SUPPORTED_OPTIONS is a list of build options supported by the package.

74



Chapter 16. Options handling

3. PKG_OPTIONS_OPTIONAL_GROUPS is a list of names of groups of mutually exclusive options. The
options in each group are listed in PKG_OPTIONS_GROUP . groupname. The most specific setting of
any option from the group takes precedence over all other options in the group. Options from the
groups will be automatically added to PKG_SUPPORTED_OPTIONS.

4. PKG_OPTIONS_REQUIRED_GROUPS is like PKG_OPTIONS_OPTIONAL_GROUPS, but building the
packages will fail if no option from the group is selected.

5. PKG_OPTIONS_NONEMPTY_SETS is a list of names of sets of options. At least one option from each
set must be selected. The options in each set are listed in PKG_OPTIONS_SET . setname. Options
from the sets will be automatically added to PKG_SUPPORTED_OPTIONS. Building the package will
fail if no option from the set is selected.

6. PKG_SUGGESTED_OPTIONS is a list of build options which are enabled by default.

7. PKG_OPTIONS_LEGACY_VARS is a list of “USE_VARIABLE:option” pairs that map legacy
mk . conf variables to their option counterparts. Pairs should be added with “+=" to keep the listing
of global legacy variables. A warning will be issued if the user uses a legacy variable.

8. PKG_OPTIONS_LEGACY_OPTS is a list of “old-option:new—option” pairs that map options that
have been renamed to their new counterparts. Pairs should be added with “+="to keep the listing of
global legacy options. A warning will be issued if the user uses a legacy option.

9. PKG_LEGACY_OPTIONS is a list of options implied by deprecated variables used. This can be used
for cases that neither PKG_OPTIONS_LEGACY_VARS nor PKG_OPTIONS_LEGACY_OPTS can handle,
e. g. when PKG_OPTIONS_VAR is renamed.

10. PKG_OPTIONS_DEPRECATED_WARNINGS is a list of warnings about deprecated variables or options
used, and what to use instead.

A package should never modify PKG_DEFAULT_OPTIONS or the variable named in PKG_OPTIONS_VAR.
These are strictly user-settable. To suggest a default set of options, use PKG_SUGGESTED_OPTIONS.

PKG_OPTIONS_VAR must be defined before including bsd.options.mk. If none of
PKG_SUPPORTED_OPTIONS, PKG_OPTIONS_OPTIONAL_GROUPS, and
PKG_OPTIONS_REQUIRED_GROUPS are defined (as can happen with platform-specific options if none of
them is supported on the current platform), PKG_OPTIONS is set to the empty list and the package is
otherwise treated as not using the options framework.

After the inclusion of bsd. options.mk, the variable PKG_OPTIONS contains the list of selected build
options, properly filtered to remove unsupported and duplicate options.

The remaining sections contain the logic that is specific to each option. The correct way to check for an
option is to check whether it is listed in PKG_OPTIONS:

.if !empty (PKG_OPTIONS :Moption)

16.3. Option Names

Options that enable similar features in different packages (like optional support for a library) should use
a common name in all packages that support it (like the name of the library). If another package already
has an option with the same meaning, use the same name.

75



Chapter 16. Options handling

Options that enable features specific to one package, where it’s unlikely that another (unrelated) package
has the same (or a similar) optional feature, should use a name prefixed with pkgname-.

If a group of related packages share an optional feature specific to that group, prefix it with the name of
the “main” package (e. g. djbware-errno-hack).

For new options, add a line to mk /defaults/options.description. Lines have two fields,
separated by tab. The first field is the option name, the second its description. The description should be a
whole sentence (starting with an uppercase letter and ending with a period) that describes what enabling
the option does. E. g. “Enable ispell support.” The file is sorted by option names.

16.4. Determining the options of dependencies

When writing buildlink3.mk files, it is often necessary to list different dependencies based on the
options with which the package was built. For querying these options, the file
pkgsrc/mk/pkg-build-options.mk should be used. A typical example looks like this:

pkgbase := libpurple
.include "../../mk/pkg-build-options.mk"

.if !empty (PKG_BUILD_OPTIONS.libpurple:Mdbus)
.endif

Including pkg-build-options.mk here will set the variable PKG_BUILD_OPTIONS.libpurple to
the build options of the libpurple package, which can then be queried like PKG_OPTIONS in the
options.mk file. See the file pkg-build-options.mk for more details.

76



Chapter 17.
Tools needed for building or
running

The USE_ToOLS definition is used both internally by pkgsrc and also for individual packages to define
what commands are needed for building a package (like TOOL_DEPENDS) or for later run-time of an
installed packaged (such as DEPENDS). If the native system provides an adequate tool, then in many
cases, a pkgsrc package will not be used.

When building a package, the replacement tools are made available in a directory (as symlinks or
wrapper scripts) that is early in the executable search path. Just like the buildlink system, this helps with
consistent builds.

A tool may be needed to help build a specific package. For example, perl, GNU make (gmake) or yacc
may be needed.

Also a tool may be needed, for example, because the native system’s supplied tool may be inefficient for
building a package with pkgsrc. For example, a package may need GNU awk, bison (instead of yacc) or
a better sed.

The tools used by a package can be listed by running make show-tools.

17.1. Tools for pkgsrc builds

The default set of tools used by pkgsrc is defined in bsd. pkg.mk. This includes standard Unix tools,
such as: cat, awk, chmod, test, and so on. These can be seen by running: make show-var
VARNAME=USE_TOOLS.

If a package needs a specific program to build then the USE_TOOLS variable can be used to define the
tools needed.

17.2. Tools needed by packages

In the following examples, the :run means that it is needed at run-time (and becomes a DEPENDS). The
default is a build dependency which can be set with :build. (So in this example, it is the same as
gmake:build and pkg-config:build.)

USE_TOOLS+= gmake perl:run pkg-config

When using the tools framework, a TOOLS_PATH. foo variable is defined which contains the full path to
the appropriate tool. For example, TOOLS_PATH.bash could be “/bin/bash” on Linux systems.

If you always need a pkgsrc version of the tool at run-time, then just use DEPENDS instead.

77



Chapter 17. Tools needed for building or running

17.3. Tools provided by platforms

When improving or porting pkgsrc to a new platform, have a look at (or create) the corresponding
platform specific make file fragment under pkgsrc/mk/tools/tools.${0PSYS}.mk which defines
the name of the common tools. For example:

.if exists(/usr/bin/bzcat)

TOOLS_PLATFORM.bzcat?= /usr/bin/bzcat

.elif exists (/usr/bin/bzip2)

TOOLS_PLATFORM.bzcat?= /usr/bin/bzip2 -cd

.endif

TOOLS_PLATFORM.true?= true # shell builtin

78



Chapter 18.
Buildlink methodology

Buildlink is a framework in pkgsrc that controls what headers and libraries are seen by a package’s
configure and build processes. This is implemented in a two step process:

1. Symlink headers and libraries for dependencies into BUILDLINK_DIR, which by default is a
subdirectory of WRKDIR.

2. Create wrapper scripts that are used in place of the normal compiler tools that translate
~-I${LOCALBASE}/include and -L${LOCALBASE}/1ib into references to BUILDLINK_DIR. The
wrapper scripts also make native compiler on some operating systems look like GCC, so that
packages that expect GCC won’t require modifications to build with those native compilers.

This normalizes the environment in which a package is built so that the package may be built
consistently despite what other software may be installed. Please note that the normal system header and
library paths, e.g. /usr/include, /usr/1ib, etc., are always searched -- buildlink3 is designed to
insulate the package build from non-system-supplied software.

18.1. Converting packages to use buildlink3

The process of converting packages to use the buildlink3 framework (“bl3ifying”) is fairly
straightforward. The things to keep in mind are:

1. Ensure that the build always calls the wrapper scripts instead of the actual toolchain. Some packages
are tricky, and the only way to know for sure is the check $ {WRKDIR}/.work.log to see if the
wrappers are being invoked.

2. Don’t override PREFIX from within the package Makefile, e.g. Java VMs, standalone shells, etc.,
because the code to symlink files into $ {BUILDLINK_DIR} looks for files relative to “pkg_info -qp
pkgname”.

3. Remember that only the buildlink3.mk files that you list in a package’s Makefile are added as
dependencies for that package.

If a dependency on a particular package is required for its libraries and headers, then we replace:

DEPENDS+= foo>=1.1.0:../../category/foo
with
.include "../../category/foo/buildlink3.mk"

The buildlink3.mk files usually define the required dependencies. If you need a newer version of the
dependency when using buildlink3.mk files, then you can define it in your Makefile; for example:

79



Chapter 18. Buildlink methodology

BUILDLINK_API_DEPENDS. foot= foo>=1.1.0
.include "../../category/foo/buildlink3.mk"

There are several buildlink3.mk files in pkgsrc/mk that handle special package issues:

* bdb.buildlink3.mk chooses either the native or a pkgsrc Berkeley DB implementation based on
the values of BDB_ACCEPTED and BDB_DEFAULT.

+ curses.buildlink3.mk: If the system comes with neither Curses nor NCurses, this will take care
to install the devel/ncurses package.

* krb5.buildlink3.mk uses the value of KRB5_ACCEPTED to choose between adding a dependency
on Heimdal or MIT-krb5 for packages that require a Kerberos 5 implementation.

+ motif.buildlink3.mk checks for a system-provided Motif installation or adds a dependency on
x11/lesstif or x11/motif. The user can set MOTIF_TYPE to “dt”, “lesstif” or “motif” to choose
which Motif version will be used.

+ readline.buildlink3.mk checks for a system-provided GNU readline or editline (libedit)
installation, or adds a dependency on devel/readline, devel/editline. The user can set
READLINE_DEFAULT to choose readline implementation. If your package really needs GNU readline
library, its Makefile should include devel/readline/buildlink3.mk instead of
readline.buildlink3.mk.

+ oss.buildlink3.mk defines several variables that may be used by packages that use the Open
Sound System (OSS) APL

* pgsgl.buildlink3.mk will accept any of the Postgres versions in the variable
PGSQL_VERSIONS_ACCEPTED and default to the version PGSQIL_VERSION_DEFAULT. See the file for
more information.

+ pthread.buildlink3.mk uses the value of PTHREAD_OPTS and checks for native pthreads or adds
a dependency on devel/pth as needed.

+ xaw.buildlink3.mk uses the value of XxAW_TYPE to choose a particular Athena widgets library.

The comments in those buildlink3.mk files provide a more complete description of how to use them
properly.

18.2. Writing buildlink3.mk files

A package’s buildlink3.mk file is included by Makefiles to indicate the need to compile and link
against header files and libraries provided by the package. A buildlink3.mk file should always
provide enough information to add the correct type of dependency relationship and include any other
buildlink3.mk files that it needs to find headers and libraries that it needs in turn.

To generate an initial bui1dlink3.mk file for further editing, Rene Hexel’s
pkgtools/createbuildlink package is highly recommended. For most packages, the following
command will generate a good starting point for buildlink3.mk files:

% cd pkgsrc/category/pkgdir
% createbuildlink >buildlink3.mk

80



Chapter 18. Buildlink methodology

18.2.1. Anatomy of a buildlink3.mk file

The following real-life example buildlink3.mk is taken from pkgsrc/graphics/tiff:

# S$NetBSD: buildlink3.mk,v 1.16 2009/03/20 19:24:45 joerg Exp $
BUILDLINK_TREE+= tiff

.if !defined(TIFF_BUILDLINK3_MK)
TIFF_BUILDLINK3_MK:=

BUILDLINK_API_DEPENDS.tiff+= tiff>=3.6.1
BUILDLINK_ABI_DEPENDS.tiff+= tiff>=3.7.2nbl
BUILDLINK_PKGSRCDIR.tiff?= ../../graphics/tiff

.include "../../devel/zlib/buildlink3.mk"
.include "../../graphics/jpeg/buildlink3.mk"
.endif # TIFF_BUILDLINK3_MK

BUILDLINK_TREE+= -tiff

The header and footer manipulate BUILDLINK_TREE, which is common across all buildlink3.mk files
and is used to track the dependency tree.

The main section is protected from multiple inclusion and controls how the dependency on pkg is added.
Several important variables are set in the section:

+ BUILDLINK_API_DEPENDS. pkg is the dependency version recorded in the installed package; this
should always be set using += to ensure that we’re appending to any pre-existing list of values. This
variable should be set to the last version of the package that had an backwards-incompatible API
change.

+ BUILDLINK_PKGSRCDIR.pkg is the location of the pkg pkgsrc directory.

+ BUILDLINK_DEPMETHOD.pkg (not shown above) controls whether we use BUILD_DEPENDS or
DEPENDS to add the dependency on pkg. The build dependency is selected by setting
BUILDLINK_DEPMETHOD. pkg to “build”. By default, the full dependency is used.

e BUILDLINK_INCDIRS.pkgand BUILDLINK_LIBDIRS.pkg (not shown above) are lists of
subdirectories of $ {BUILDLINK_PREFIX.pkg} to add to the header and library search paths. These
default to “include” and “lib” respectively.

+ BUILDLINK_CPPFLAGS.pkg (not shown above) is the list of preprocessor flags to add to CPPFLAGS,
which are passed on to the configure and build phases. The “-I”” option should be avoided and instead
be handled using BUILDLINK_INCDIRS.pkg as above.

The following variables are all optionally defined within this second section (protected against multiple
inclusion) and control which package files are symlinked into $ {BUILDLINK_DIR} and how their names
are transformed during the symlinking:

+ BUILDLINK_FILES.pkg (not shown above) is a shell glob pattern relative to
${BUILDLINK_PREFIX.pkg} to be symlinked into $ {BUILDLINK_DIR},e.g. include/«.h.

81



Chapter 18. Buildlink methodology

+ BUILDLINK_FILES_CMD.pkg (not shown above) is a shell pipeline that outputs to stdout a list of files
relative to $ {BUILDLINK_PREFIX.pkg}. The resulting files are to be symlinked into
${BUILDLINK_DIR}. By default, this takes the +CONTENTS of a pkg and filters it through
${BUILDLINK_CONTENTS_FILTER.pkg}.

+ BUILDLINK_CONTENTS_FILTER.pkg (not shown above) is a filter command that filters +CONTENTS
input into a list of files relative to $ {BUILDLINK_PREFIX.pkg} on stdout. By default,
BUILDLINK_CONTENTS_FILTER.pkg outputs the contents of the include and 1ib directories in the
package +CONTENTS.

+ BUILDLINK_FNAME_TRANSFORM.pkg (not shown above) is a list of sed arguments used to transform
the name of the source filename into a destination filename, e.g. -e "'sl/curses.hl/ncurses.hig''.

This section can additionally include any buildlink3.mk needed for pkg’s library dependencies.
Including these buildlink3.mk files means that the headers and libraries for these dependencies are
also symlinked into $ {BUILDLINK_DIR} whenever the pkg buildlink3.mk file is included.
Dependencies are only added for directly include buildlink3.mk files.

When providing a buildlink3.mk and including other buildlink3.mk files in it, please only add
necessary ones, i.e., those whose libraries or header files are automatically exposed when the package is
use.

In particular, if only an executable (bin/foo) is linked against a library, that library does not need to be
propagated in the buildlink3.mk file.

The following steps should help you decide if a buildlink3.mk file needs to be included:

« Look at the installed header files: What headers do they include? The packages providing these files
must be buildlinked.

« Run 1dd on all installed libraries and look against what other libraries they link. Some of the packages
providing these probably need to be buildlinked; however, it’s not automatic, since e.g. GTK on some
systems pulls in the X libraries, so they will show up in the 1dd output, while on others (like OS X) it
won’t. 1dd output can thus only be used as a hint.

18.2.2. Updating BUILDLINK_API_DEPENDS.pkg and
BUILDLINK ABI_DEPENDS.pkg iN buildlink3.mk files

Both variables set lower bounds for a version of this package. The two variables differ in that one
describes source compatibility (API) and the other binary compatibility (ABI). The difference is that a
change in the API breaks compilation of programs while changes in the ABI stop compiled programs
from running.

The BUILDLINK_API_DEPENDS. pkg variable in a bui1dlink3.mk should be changed very rarely.
(One possible scenario: If all packages using this package need a higher version than defined in the
buildlink3.mk, BUILDLINK_API_DEPENDS.pkg could be updated to that higher version.)

On the other hand, changes to BUILDLINK_ABI_DEPENDS. pkg are more common. The variable will
need to be updated every time the major version of one of its shared libraries is changed, or any other
change where a binary built against the previous version of the package will not run against the new
version any longer.

82



Chapter 18. Buildlink methodology

In such a case, the package’s BUILDLINK_ABI_DEPENDS . pkg must be increased to require the new
package version. Then the PKGREVISION of all packages foo that depend on this package need to be
increased, and if they have buildlink3.mk files, BUILDLINK_ABI_DEPENDS. foo in their
buildlink3.mk files must be increased to the new version as well. This is required so that a package
will pull in the versions of the packages that use the new ABI and that the packages’ PKGREVISIONS
uniquely identify the packages built against the new ABI. The pkgtools/revbump package can help
with these updates.

See Section 21.1.5 for more information about dependencies on other packages, including the
BUILDLINK_API_DEPENDS definitions.

Please take careful consideration before adjusting BUILDLINK_API_DEPENDS. pkg Of
BUILDLINK_ABI_DEPENDS.pkginabuildlink3.mk file as we don’t want to cause unneeded package
deletions and rebuilds. In many cases, new versions of packages work just fine with older dependencies.

Also it is not needed to set BUILDLINK_ABI_DEPENDS.pkg When it is identical to
BUILDLINK_API_DEPENDS. pkg.

18.3. Writing builtin.mk files

Some packages in pkgsrc install headers and libraries that coincide with headers and libraries present in
the base system. Aside from a buildlink3.mk file, these packages should also include a builtin.mk
file that includes the necessary checks to decide whether using the built-in software or the pkgsrc
software is appropriate.

The only requirements of a builtin.mk file for pkg are:

1. It should set USE_BUILTIN. pkg to either “yes” or “no” after it is included.

2. It should not override any USE_BUILTIN.pkg which is already set before the builtin.mk file is
included.

3. It should be written to allow multiple inclusion. This is very important and takes careful attention to
Makefile coding.

18.3.1. Anatomy of a builtin.mk file

The following is the recommended template for builtin.mk files:

.1f !'defined (IS_BUILTIN. foo)

#

# IS_BUILTIN.foo is set to "yes" or "no" depending on whether "foo"
# genuinely exists in the system or not.

#

IS_BUILTIN.foo?= no

# BUILTIN_PKG.foo should be set here if "foo" is built-in and its package
# version can be determined.
#
if lempty (IS_BUILTIN.foo:M[yY][eE][sS])
BUILTIN_PKG.foo?= foo-1.0

83



Chapter 18. Buildlink methodology

endif
.endif # IS_BUILTIN.foo

.if 'defined (USE_BUILTIN. foo)
USE_BUILTIN. foo?= S{IS_BUILTIN.foo}
if defined (BUILTIN_PKG. foo0)
for _depend_ in ${BUILDLINK_API_DEPENDS.foo}
. if 'empty (USE_BUILTIN.foo:M[yY] [eE] [sS])
USE_BUILTIN.foo!= \

${PKG_ADMIN} pmatch ’${_depend_}’ S${BUILTIN_PKG.foo} \
&& S{ECHO} "yes" || S${ECHO} "no"
endif
endfor
endif

.endif # USE_BUILTIN.foo

CHECK_BUILTIN. foo?= no

.if lempty (CHECK_BUILTIN.foo:M[nN] [00])

#

# Here we place code that depends on whether USE_BUILTIN.foo is set to
# "yes" or "no".

#

.endif # CHECK_BUILTIN. foo

The first section sets IS_BUILTIN.pkg depending on if pkg really exists in the base system. This should
not be a base system software with similar functionality to pkg; it should only be “yes” if the actual
package is included as part of the base system. This variable is only used internally within the
builtin.mk file.

The second section sets BUILTIN_PKG. pkg to the version of pkg in the base system if it exists (if
IS_BUILTIN.pkg is “yes”). This variable is only used internally within the builtin.mk file.

The third section sets USE_BUILTIN. pkg and is required in all builtin.mk files. The code in this
section must make the determination whether the built-in software is adequate to satisfy the
dependencies listed in BUILDLINK_API_DEPENDS. pkg. This is typically done by comparing
BUILTIN_PKG.pkg against each of the dependencies in BUILDLINK_API_DEPENDS. pkg.
USE_BUILTIN. pkg must be set to the correct value by the end of the builtin.mk file. Note that
USE_BUILTIN.pkg may be “yes” even if IS_BUILTIN.pkg is “no” because we may make the
determination that the built-in version of the software is similar enough to be used as a replacement.

The last section is guarded by CHECK_BUILTIN. pkg, and includes code that uses the value of
USE_BUILTIN. pkg set in the previous section. This typically includes, e.g., adding additional
dependency restrictions and listing additional files to symlink into $ {BUILDLINK_DIR} (via
BUILDLINK_FILES.pkg).

18.3.2. Global preferences for native or pkgsrc software

When building packages, it’s possible to choose whether to set a global preference for using either the
built-in (native) version or the pkgsrc version of software to satisfy a dependency. This is controlled by

setting PREFER_PKGSRC and PREFER_NATIVE. These variables take values of either “yes”, “no”, or a
list of packages. PREFER_PKGSRC tells pkgsrc to use the pkgsrc versions of software, while

84



Chapter 18. Buildlink methodology

PREFER_NATIVE tells pkgsrc to use the built-in versions. Preferences are determined by the most
specific instance of the package in either PREFER_PKGSRC or PREFER_NATIVE. If a package is specified
in neither or in both variables, then PREFER_PKGSRC has precedence over PREFER_NATIVE. For
example, to require using pkgsrc versions of software for all but the most basic bits on a NetBSD system,
you can set:

PREFER_PKGSRC= yes
PREFER_NATIVE= getopt skey tcp_wrappers

A package must have a builtin.mk file to be listed in PREFER_NATIVE, otherwise it is simply ignored
in that list.

PREFER_PKGSRC and PREFER_NATIVE should be set during bootstrap to ensure that the bootstrap
process does not use inapropriate native tools as dependencies for core packages.

# ./bootstrap —-prefer-pkgsrc yes ——-prefer-native openssl

Switching between settings globally at a later date can introduce complications with dependency
resolution. This is caused by packages built with the opposite preference being installed alongside each
other. Hence, any changes to these variables after bootstrap will necessitate rebuilding all packages
depending on one whose preference has been changed. This is not trivial and should be avoided.

When using pkgsrc on Linux systems, there is high risk of "leakage", where programs installed by
pkgsrc may inadvertently use a command or library not installed by pkgsrc, e.g. those installed by yum
or apt. Such foreign dependencies may be installed, removed, or upgraded to a version incompatible with
the pkgsrc package at any time, causing pkgsrc packages to subsequently malfunction. Pkgsrc cannot
prevent this, as it has no control over other package managers. Another potential problem is that under
Redhat Enterprise and related Linux systems, yum packages are only patched and never upgraded, so
eventually they may become too outdated for use by pkgsrc. Even intentionally using foreign
dependencies, not considered leakage, can lead to these problems, so it is generally discouraged. In order
to minimize such problems, PREFER_PKGSRC defaults to "yes" on Linux systems. This ensures that
pkgsre is aware of any changes to dependency packages and can rebuild or upgrade the entire
dependency tree as needed. This default can be overridden by setting --prefer-pkgsrc to "no" or a list of
packages, or by setting --prefer-native to "yes".

85



Chapter 19.
PLIST issues

The pLIST file contains a package’s “packing list”, i.e. a list of files that belong to the package (relative
to the $ {PREFIX} 