
Implementing Thread Local Storage

for HP PA-RISC Linux

Randolph Chung, Carlos O’Donell, John David Anglin

April 14, 2006

2 HPPA SPECIFIC

1 Introduction

This document describes the specific thread local storage (TLS) implemen-

tations for HP PA-RISC Linux. It is meant to be read after reading:

http://people.redhat.com/drepper/tls.pdf

Hereafter the HP PA-RISC architecture will be referred to as hppa.

2 hppa Specific

The thread-local storage structure follows variant I. The size of the TCB is

8 bytes on hppa32 (16 bytes in hppa64). The first 4 (8) bytes contain the

pointer to the dynamic thread vector, the remianing 4 (8) bytes are reserved

for the implementation.

The TLS blocks for all modules present at startup time are created consec-

utively following the TCB. The tlsoffset x values are computed as follows:

tlsoffset1 = round(tlssize1, align1)

tlsoffsetm+1 = round(tlsoffsetm + tlssizem+1, alignm+1)

for all m in 1 ≤ m ≤ M , where M is the total number of modules.

The tls get addr function is defined as:

extern void *__tls_get_addr(tls_index *ti);

tls index is an internal data structure with the following definition:

typedef struct {

unsigned long int ti_module;

unsigned long int ti_offset;

} tls_index;

1

http://people.redhat.com/drepper/tls.pdf

3 HPPA GENERAL DYNAMIC TLS MODEL

The thread pointer is held in a control register (cr27). The control regis-

ter must be transfered to a general register before it can be used. The thread

pointer cannot be written to in user mode; the kernel provides an interface

to set the thread pointer (set thread pointer).

Note: the Linux TLS ABI differs from the HP-UX TLS ABI. In HP-UX,

a single TLS access model is defined, which is similar to the ”Initial Exec

TLS model” described below.

3 hppa General Dynamic TLS model

The hppa general dynamic access model is similar to SPARC. The tls get addr

function is called with one parameter, which is a pointer to an object of type

tls index.

General Dynamic Model Code Sequence Initial Relocation Symbol

addil LT’x-$tls gdidx$, gp R PARISC TLS GD21L x

ldo RT’x-$tls gdidx$(%r1), %arg0 R PARISC TLS GD14R x

b tls get addr R PARISC TLS GDCALL

nop

Outstanding Relocations

GOT[n] R PARISC TLS DTPMOD32 x

GOT[n+1] R PARISC TLS DTPOFF32 x

The expressions LT’x-$tls gdidx$ and RT’x-$tls gdidx$ causes the

linker to create a tls index object in the GOT. The GOT offset of the first

entry is loaded into %r26 using the addil/ldo instructions, and passed to

tls get addr. The tls index object occupies two entries in the GOT, the

first entry (marked with R PARISC TLS DTPMOD32) will be filled in at runtime

with the module id; the second entry (R PARISC TLS DTPOFF32) is filled in

with the offset. On hppa64, the relocations become R PARISC TLS DTPMOD64

and R PARISC TLS DTPOFF64.

2

4 HPPA LOCAL DYNAMIC TLS MODEL

The nop in the delay slot of the branch to tls get addr is needed to

reserve space in case an optimization needs to convert the above sequence

into one of the other sequences.

4 hppa Local Dynamic TLS Model

The local dynamic TLS model is useful in case multiple variables are used.

The code sequence is similar to that for the general dynamic model:

Local Dynamic Model Code Sequence Initial Relocation Symbol

addil LT’x1-$tls ldidx$, gp R PARISC TLS LDM21L x1

b tls get addr R PARISC TLS LDMCALL

ldo RT’x1-$tls ldidx$(%r1), %arg0 R PARISC TLS LDM14R x1

addil LR’x1-$tls dtpoff$, %ret0 R PARISC TLS LDO21L x1

ldo RR’x1-$tls dtpoff$(%r1), %tmp1 R PARISC TLS LDO14R x1

addil LR’x2-$tls dtpoff$, %ret0 R PARISC TLS LDO21L x2

ldo RR’x2-$tls dtpoff$(%r1), %tmp2 R PARISC TLS LDO14R x2

Outstadning Relocations

GOT[n] R PARISC TLS DTPMOD32 x1

GOT[n+1]

The first three instructions are similar to the general dynamic model. A

single entry in the GOT is created to hold the module id (filled in at runtime

by the dynamic linker). The offset passed in the initial call to tls get addr

will be 0.

The remaining instructions load the offset of the variables being accessed

and add them to the address returned by tls get addr. x-$tls dtpoff$

is replaced by the offset to the symbol x; and the addil/ldo sequence adds

the offset to the result of tls get addr. The sequences are marked with

the relocations R PARISC TLS LDO21L and R PARISC TLS LDO14R so that the

linker can recognize it.

3

5 HPPA INITIAL EXEC TLS MODEL

Compared to the general dynamic model, the local dynamic model saves

one GOT entry, two instructions and one function call for each additional

variable referenced. Avoiding the branch penality may make this optimiza-

tion worthwhile if multiple TLS variables are referenced.

5 hppa Initial Exec TLS Model

The sequence to support the initial exec model on hppa is fairly straightfor-

ward:

Initial Exec Model Code Sequence Initial Relocation Symbol

mfctl cr27, %t1

addil LT’x-$tls ieoff$, %gp R PARISC TLS IE21L x

ldw RT’x-$tls ieoff$(%r1), %t2 R PARISC TLS IE14R x

add %t1, %t2, %t3

Outstanding Relocations

GOT[n] R PARISC TLS TPREL32 x

Note: The R PARISC TLS IE21L should be the same as R PARISC LTOFF TP21L,

R PARISC TLS IE14R should be the same as R PARISC LTOFF TP14{D}R and

R PARISC TLS TPREL32 should be the same as R PARISC TPREL32.

The thread pointer needs to be loaded into a general register before it

can be used for address manipulations. mfctl has a significant latency, so the

compiler should optimize calls to load the thread pointer.

The LT’x-$tls ieoff$ expression causes the creation of a GOT entry

marked with a R PARISC TLS TPREL32 relocation (R PARISC TLS TPREL64 on

hppa64). At runtime, the entry is filled in with the offset of the TLS variable

relative to its TCB block. The addil/ldw sequence loads this value and adds

it to the thread pointer to produce the desired address.

Note that this is the sole TLS access method defined by the PA-RISC 64-

bit runtime document. The relocations used here are renamed from the ones

4

7 HPPA LINKER OPTIMIZATIONS

specified in that document to be consistent with glibc TLS implementations

on other architectures.

6 hppa Local Exec TLS Model

The simplest case is the local exec model. The code sequence is as follows:

Local Exec Model Code Sequence Initial Relocation Symbol

mfctl cr27, %t1

addil LR’x-$tls leoff$, %t1 R PARISC TLS LE21L x

ldo RR’x-$tls leoff$(%r1), %t2 R PARISC TLS LE14R x

Outstanding Relocations

None

Note: The relocation R PARISC TLS LE21L should be the same as R PARISC TPREL21L

and R PARISC TLS LE14R should be the same as R PARISC TPREL14R.

The x-$tls leoff$ expression is translated into immediate values by the

linker which represent the offset of the variable x from the thread pointer.

The addil/ldo instructions adds the resulting value to the thread pointer to

get the effective address of the TLS variable. As in the case for the initial

exec TLS model, loading the thread pointer from cr27 should be optimized

for accesses to multiple variables in the same function.

R PARISC TPREL21L/R PARISC TPREL14R are the relocation types defined

in the PA-RISC ELF supplement that describes the manipulations required

here, but the names R PARISC TLS LE21L/R PARISC TLS LE14R were chosen

to be consistent with the other glibc implementations.

7 hppa Linker Optimizations

General Dynamic to Initial exec:

5

7 HPPA LINKER OPTIMIZATIONS

GD → IE Code Transition Initial Relocation Symbol

addil LT’x-$tls gdidx$, gp R PARISC TLS GD21L x

ldo RT’x-$tls gdidx$(%r1), %arg0 R PARISC TLS GD14R x

b tls get addr R PARISC TLS GDCALL

nop

⇓ ⇓ ⇓

mfctl cr27, %t1

addil LT’x-$tls ieoff$, %gp R PARISC TLS IE21L x

ldw RT’x-$tls ieoff$(%r1), %t2 R PARISC TLS IE14R x

add %t1, %t2, %t3

Outstanding Relocations

GOT[n] R PARISC TLS TPREL32 x

Note: The relocation R PARISC TLS IE21L should be the same as R PARISC LTOFF TP21L,

R PARISC TLS IE14R should be the same as R PARISC LTOFF TP14{D}R and

R PARISC TLS TPREL32 should be the same as R PARISC TPREL32.

General Dyanmic to Local Exec:

GD → LE Code Transition Initial Relocation Symbol

addil LT’x-$tls gdidx$, gp R PARISC TLS GD21L x

ldo RT’x-$tls gdidx$(%r1), %arg0 R PARISC TLS GD14R x

b tls get addr R PARISC TLS GDCALL

nop

⇓ ⇓ ⇓

mfctl cr27, %t1

addil LR’x-$tls leoff$, %t1 R PARISC TLS LE21L x

ldo RR’x-$tls leoff$(%r1), %t2 R PARISC TLS LE14R x

nop

Outstanding Relocations

None

Note: The relocation R PARISC TLS LE21L should be the same as R PARISC TPREL21L,

and R PARISC TLS LE14R should be the same as R PARISC TPREL14R.

6

7 HPPA LINKER OPTIMIZATIONS

Local dynamic to local exec:

LD → LE Code Transition Initial Relocation Symbol

addil LT’x1-$tls ldidx$, gp R PARISC TLS LDM21L x1

b tls get addr R PARISC TLS LDMCALL

ldo RT’x1-$tls ldidx$(%r1), %arg0 R PARISC TLS LDM14R x1

addil LR’x1-$tls dtpoff$, %ret0 R PARISC TLS LDO21L x1

ldo RR’x1-$tls dtpoff$(%r1), %tmp1 R PARISC TLS LDO14R x1

⇓ ⇓ ⇓

nop

nop

mfctl cr27, %t1

addil LR’x-$tls leoff$, %t1 R PARISC TLS LE21L x

ldo RR’x-$tls leoff$(%r1), %t2 R PARISC TLS LE14R x

Outstanding Relocations

None

Note: The relocation R PARISC TLS LE21L should be the same as R PARISC TPREL21L,

and R PARISC TLS LE14R should be the same as R PARISC TPREL14R.

Initial exec to local exec:

IE → LE Code Transition Initial Relocation Symbol

mfctl cr27, %t1

addil LT’x-$tls ieoff$, %gp R PARISC TLS IE21L x

ldw RT’x-$tls ieoff$(%r1), %t2 R PARISC TLS IE14R x

add %t1, %t2, %t3

⇓ ⇓ ⇓

mfctl cr27, %t1

addil LR’x-$tls leoff$, %t1 R PARISC TLS LE21L x

ldo RR’x-$tls leoff$(%r1), %t2 R PARISC TLS LE14R x

nop

Outstanding Relocations

None

7

8 NEW HPPA ELF DEFINITIONS

Note: The relocation R PARISC TLS IE21L should be same as R PARISC LTOFF TP21L,

R PARISC TLS IE14R should be the same as R PARISC LTOFF TP14{D}R, R PARISC TLS LE21L

should be the same as R PARISC TPREL21 and R PARISC TLS LE14R should

be the same as R PARISC TPREL14R.

8 New hppa ELF definitions

The following are the required additional ELF definitions to implement

TLS on hppa.

#define R_PARISC_TLS_GD21L

#define R_PARISC_TLS_GD14R

#define R_PARISC_TLS_GDCALL

#define R_PARISC_TLS_LDM21L

#define R_PARISC_TLS_LDM14R

#define R_PARISC_TLS_LDMCALL

#define R_PARISC_TLS_LDO21L

#define R_PARISC_TLS_LDO14R

#define R_PARISC_TLS_IE21L

#define R_PARISC_TLS_IE14R

#define R_PARISC_TLS_LE21L

#define R_PARISC_TLS_LE14R

#define R_PARISC_TLS_DTPMOD32

#define R_PARISC_TLS_DTPMOD64

#define R_PARISC_TLS_DTPOFF32

#define R_PARISC_TLS_DTPOFF64

#define R_PARISC_TLS_TPREL32

#define R_PARISC_TLS_TPREL64

The operators used in the code sequences are defined as follows:

8

8 NEW HPPA ELF DEFINITIONS

$tls gdidx$ Allocate two contiguous entries in the GOT to hold a

TLS index structure for passing to tls get addr. At runtime,

the ti module field (R PARISC TLS DTPMOD32) and ti offset (R PARISC TLS DTPOFF32)

fields are filled in to point to the correct module/offset.

$tls ldidx$ Allocate two contiguous entries in the GOT to hold a

tls index structure for passing to tls get addr. The ti offset

field is set to 0. The ti module field is filled in at runtime.

The call to tls get addr will return the starting offset of

the dynamic TLS block.

$tls dtpoff$ Calculate the offset of the variable relative to the

TLS block it is contained in.

$tls ieoff$ Calculate the offset of the variable relative to the

TLS block

$tls leoff$ Calculate the offset of the variable relative to the

static TLS block

9

	Introduction
	hppa Specific
	hppa General Dynamic TLS model
	hppa Local Dynamic TLS Model
	hppa Initial Exec TLS Model
	hppa Local Exec TLS Model
	hppa Linker Optimizations
	New hppa ELF definitions

