
1

UTURN ERS

Version 0.95
May 17, 1996

Systems Technology Division
General Systems Lab

REVIEW COPY

2

1. Introduction

The UTurn I/O Subsystem Interface provides a bus converter path between the Runway (processor–
memory) bus and two GSC+2X busses. UTurn will be implemented in CMOS26G and will be packaged
in a 432 pin CPGA. The following diagram illustrates how both GSC+2X interfaces are supported within
a single UTurn:

Arbitration

Runway Addr/Data Pads

 GSC+2X Port 0 GSC+2X Port 1

I/O
Adapter

A

I/O
Adapter

B

Up to 50 MHz GCLKUp to 50 MHz GCLK

120+ MHz

arb_in

60+

MHz

P
D

H
 P

ort

Note that there can be up to four separate frequencies on the chip. The Runway Arbitration block and
all Runway Pads will run at a bus speed of 120+ MHz. The Runway interface block within each I/O
Adapter will run at one–half of this external Runway frequency. Each GSC+2X interface has an indepen-
dent frequency of up to 50 MHz (GCLK). In GSC 2X data transfer mode, write data mastered by UTurn
can be transferred at a peak rate of as high as 100 MWords/sec.

This document describes the functional design of UTurn, including architectural requirements, overall
I/O performance, clock–domain specific operation, testability, and packaging. The remainder of this
chapter is simply an introduction.

The UTurn design is heavily leveraged from the U2 design. UTurn adds GSC+2X capability, corrects
a few minor U2 anomalies, improves DMA read performance, and incorporates internal and external tim-
ing enhancements for higher frequency of operation and improved design margins.

3

1.1. Functional Operation

On the following page is a block diagram of a single I/O Adapter within a UTurn. As transactions flow
from Runway to GSC+, transaction information (such as address, operation, transaction identification,
size, and status) is stored in order in either the outbound command queue (OutQ) or the DMA read return
queue (RRQ). Corresponding data is stored either in the OutQ or in a designated DMA read return RAM
(RRR) location. The GSC+ interface block extracts transactions in order from the two queues unless a
connected GSC+ read has been issued. In this case the return data must be advanced in front of the queues
to avoid deadlock on GSC+. There is a high water mark near the tail of the OutQ. If the number of OutQ
entries exceeds this high water mark limit, the I/O Adapter will limit further CPU and memory mastered
transactions to I/O address space (with the exception of DMA read returns, which utilize the DMA read
return queue). This prevents overflow of the OutQ.

Transactions going from GSC+ to Runway are placed in the inbound queue (InQ) in order. Associated
data is stored in a corresponding inbound RAM (InRAM) location. Once at the head of the InQ, the physi-
cal page map (I/O TLB) is accessed for the appropriate address mapping. If there is a miss on the I/O
TLB access, the I/O Adapter may be configured to access the I/O Page Directory (I/O PDIR) in main
memory to obtain the address translation, updating the I/O TLB with this new mapping. Now the original
request can be issued over Runway with the new translation.

The Runway pool and prefetch buffers store transaction information for outstanding I/O Adapter mas-
tered Runway reads. When memory data corresponding to an I/O Adapter mastered read is returned over
Runway, the data is stored in the read return RAM (RRR) and the transaction information is obtained
from the pool or prefetch buffer and placed in the DMA read return queue (RRQ). The I/O Adapter mas-
ters prefetches from memory over Runway when indicated by a GSC+ guest via the XQL hint. The corre-
sponding transaction information is stored in the prefetch buffer until the GSC+ guest explicitly requests
the data, at which point the transaction information is pooled (if data has not yet been received) or queued
in the RRQ (if data is valid on chip).

The cache is required for performing partial cache line writes (of less than 16 bytes) and semaphores,
where private ownership of a cache line is required. The existence of a cache requires the I/O Adapter
to participate in the Runway snoopy coherence protocol. Coherent transactions mastered by other Run-
way modules (processors or I/O Adapters) require snooping. These transactions are stored in the cache
coherency check (CCC) queue and are responded to in order. The I/O Adapter cache is only one line deep
and in most cases will not contain a valid entry, so the I/O Adapter is expected to respond very quickly
to outstanding coherent requests. The I/O Adapter only needs to queue coherent transactions when it
holds a cache line privately.

4

Byte
Pack /

HPA

Registers

20

32

32

32

GSC+ Drive (Pads)

Outbound

Queue

(26 x 128)

Runway Receive Register

CCC

Queue

(32 deep)

Byte
Mux

Address

Data

8

8

32

128

Prefetch and Inbound RAM

32

GSC+ Receive (Pads)

128

Inbound

Queue

(8 x 52)

PDIR
Base

36

TLB Control

TLB

+

128

Runway Drive Register

32

8

offset

12

page

20

(256 x 59)DMA Read

Queue

(8 x 11)

Return Command

P
D

C
/P

D
H

HPA Regs

DMA read return RAM

(Left and Right Side Decode)

IO_Control
IO_Chain_ID_Mask
IO_PDIR_Base
IO_TLB_Entry

(53 x 256)

organized 16 x 128)organized 26 x 128)

Pool

(8 entries)

pool_info

coherency info

pool info

trans_info

(8 32–byte entries,(13 32–byte entries,

address

GSC

Runway

GSC clock domain

Runway clock domain

Unpack

Cache

20

12

5

1.2. Feature Set

Each of UTurn’s I/O Adapters include several features to optimize performance. These are described
below.

Hardware Coherency is featured in the I/O Adapter to optimize performance by eliminating both the
memory utilization required for partial cache line writes and the software overhead required to perform
dflushes and dpurges prior to initiating or after completing a DMA. On the I/O Adapter, hardware I/O
coherency requires an I/O TLB for performing physical to virtual address translation, a cache RAM loca-
tion for containing private copies of data, and a CCC queue to implement snoopy bus protocol. The I/O
TLB will be merged with the physical page map which is required for mapping the 32 bit I/O address
space to the expanded PA and Runway address space, for future upgradability (such as PCX–U).

Each I/O TLB entry has bits indicating page type, which are manipulated by software drivers, to impose
certain hardware behavior when accessing a given page. UTurn will perform inbound full cache line
DMA using Runway WRITE_PURGEs. For half cache line DMA writes to fast DMA pages, Runway
WRITE_16_PURGEs are used. For writes of less than half a cache line, or for half cache line writes to
safe DMA pages, the I/O Adapter will issue Runwy READ_PRIVATEs, followed by modifies on chip,
followed by WRITEBACKs to memory.

Processors could implement a special uniprocessor mode bit for maximizing performance while coexist-
ing with the I/O Adapter. In this mode, software drivers will maintain coherency by executing the ap-
propriate flushes and purges. A processor is not required to broadcast flushes and purges or to eavesdrop
on WRITE(16)_PURGEs and READ_SHAR_OR_PRIVs. However, the I/O Adapter will operate iden-
tically in this mode issuing coherent transactions such as private reads for semaphores or partial cache
line writes, and the processor is expected to eavesdrop and respond to these.

Buffering is provided in each I/O Adapter for all inbound and outbound writes and for pended DMA read
requests. The depth of the inbound queue and the corresponding DMA read return queue is currently
eight entries. The depth of the outbound command queue is twenty–six entries, providing adequate
graphics word write performance and minimizing the likelihood of filling the OutQ, which results in the
issuance of STOP_IO on Runway for flow control.

Memory Prefetch is implemented based on two levels of hints. GSC+ devices may issue a DMA read
prefetch hint by asserting the GSC+ XQL line, indicating that the next address will be accessed. Each
entry in the I/O TLB contains a prefetch enable bit indicating whether prefetech accesses to a given page
are permitted. Both the TLB prefetch enable bit and the GSC+ XQL signal will be evaluated by the I/O
Adapter to determine whether a prefetch is issued.

Fully Asynchronous Synchronization is implemented in the I/O Adapter using synchronizing FIFOs,
which are deep enough to compensate for handshake synchronization delays. The synchronization cir-
cuitry has been used on several HP VLSI products and is well tested. The I/O Adapter is designed to
work with a Runway:GSC frequency ratios between 2:1 and 4:1 (Runway ckrw: GSC GCLK).

Processor Dependent Hardware is supported through a separate physical port on one of UTurn’s I/O
Adapters. Because PDC must be accessible at all times (especially during errors), special precautions
are taken to ensure that this path is always available.

GSC1.5X and GSC2X capability is supported for DIO writes (mastered by UTurn), enabling break-
through data transfer performance for writes from processors to I/O devices. This capability is primarily
utilized to enhance graphics performance.

6

1.3. Seldom Used UTurn Features

The following list of UTurn features are seldom used but may come in handy in certain system applica-
tions:

1. Arbitration support for two UTurns.

2. Special CMD_Reset interpretation for GSC+: When CMD_Reset is issued by a pro-
cessor to one of UTurn’s IOAs, RESETL will be asserted on the corresponding GSC
bus if an internal configuration bit is set. This feature is intended for use in
manufacturing test.

3. Performance counters and programmable testability features for the purposes of mon-
itoring UTurn and the system.

1.4. Sizing of UTurn Internal Structures

The original GSC specification and the GSC+ and GSC+2X extensions place limits on the number of
outstanding DMA read transactions possible on a given GSC bus. These GSC limits determine the size
of some of UTurn’s internal structures required to avoid deadlock. The following explains the GSC rules
and how they affect the sizes of UTurn internal structures. Sizing of internal structures also has perfor-
mance implications, which are addressed briefly in the performance chapter of this ERS.

1.4.1. GSC and GSC+ Limitations

The maximum number of GSC guests allowed per bus is determined by the frequency goals, electrical
loading, and UTurn pin count limits. For UTurn, each GSC bus is limited to a maximum of six bus–mas-
tering guests (any mix of GSC and GSC+ guests).

The GSC specification defines only connected reads, so only one read can be in progress at a time. The
GSC+ extensions allow pended reads, increasing the maximum number of DMA reads simultaneously
in progress to one per guest. Since the GSC+ extensions do NOT include a transaction ID capability, and
ordering of DMA read responses from memory is not guaranteed, GSC+ can not support more than one
outstanding DMA read per guest. Thus, assuming a GSC bus fully loaded with GSC+ guests, there can
be at most six formally–requested DMA reads outstanding at any one time. These formally–requested
reads do not include prefetches.

The GSC+ extension for prefetching allows each guest to have one prefetch read outstanding in addition
to one formally–requested read. Assuming a GSC+ bus with six guests all prefetching, there can be a
maximum of six prefetch reads outstanding to memory at any one time.

1.4.2. UTurn Limitations

Due to Tornado limitations on the number of transaction ID bits implemented on Runway, each IOA is
limited to having only eight outstanding read transactions at any one time. Internally, each transaction
ID is assigned to a pool location. Thus, the limit of eight transaction IDs allows the pool size to be limited
to eight entries per IOA. This also means that a maximum of eight reads per IOA (16 per UTurn) may
issued on Runway (with no data returned) at any one time.

1.4.3. Sizing of UTurn Internal Structures

Since the depths of the internal queues and pool in each of UTurn’s IOAs are configurable, anyone alter-
ing the default sizes should be aware (and beware) of the following rules regarding structure sizes. When

7

reducing the size of the queues or pool(s), one should make a corresponding reduction in the number of
GSC+ guests per bus to avoid deadlocks and overruns.

Read Return RAM size rule: for all outstanding DMA reads (reads with data back as well as reads in
the pool waiting for data), each of UTurn’s IOAs must have a place to store the data. This implies that
the size of the Read Return RAM (RRR) in each IOA must be greater than or equal to the TOTAL number
of outstanding GSC reads from that IOA (formally–requested + prefetch = 2 x number of GSC guests).

� size of RRR >= 2 x number of GSC guests

For UTurn, which supports a maximum of six GSC guests, RRR = 12 entries. Each entry is one cache
line (256 bits) wide.

Pool size rule: for all outstanding DMA reads on Runway (including prefetch reads), each of UTurn’s
IOAs must have a place to store the transaction information for that IOA’s outstanding reads (GSC guest
ID and length of read requested). This implies that the size of the pool must be greater than or equal to
the TOTAL number of outstanding GSC reads (formally–requested + prefetch = 2 x number of GSC
guests). The size of pool can thus be computed as follows:

� size of (RRQ + pool) >= (2 x number of GSC guests).

UTurn has a implemented 8 physical pool entries, since only 8 unique transaction IDs are supported per
IOA. It is thus possible with 5 or 6 guests to have more requests queued inbound than can be accommo-
dated by the pool (if prefetches are included). UTurn’s Runway inbound logic ensures that only 8 reads
can be outstanding on Runway at a time, preventing pool overflow.

Read return queue size: there must be enough RRQ entries to accommodate all explicitly requested
pended reads on GSC. Since each GSC guest is limited to one pended read request at a time, the RRQ
must contain 6 entries.

Extreme conditions: Under some conditions, all formally–requested GSC reads (one per guest) could
be in the pool, where all reads have been issued on Runway and no data has been returned. Similarly,
data returns for all GSC–issued pended reads could be in the RRQ (all reads have had data returned and
the data needs to be returned to the guests). UTurn’s IOAs accommodate these two allowable (but unlike-
ly) extreme conditions.

1.5. Transaction Map

In the following table, transactions on the left side are mastered by a Runway module, and destined for
the I/O Adapter. All transactions require a minimum amount of activity on receipt, such as address and
transaction information being placed in a queue and data being placed in the RAM. Subsequent activity
is required when the transaction reaches the head of the queue, and the right side of this table reflects that
activity. The first four transactions in the table have transaction type encodings on Runway. The last
transactions are read responses (memory data returns or cache to cache copies) resulting from a previous
I/O Adapter mastered read request.

8

Runway Transaction I/O Adapter Activity

write_short if (address==IOA HPA) write data internally
if (address==GSC+) issue GSC+ write1, write2, 2 write1s, or writeV
if (address==PDH) issue PDH write

read_short if (address== IOA HPA) read internally
if (address==GSC+) issue GSC+ read1 or read2
if (address==PDH) issue PDH read

broadcast_error log as hard error

directed_error log as hard error

ttype[2]: any coherent transactioncoherency response

data read return
(trans_id==connected)

store data in RAM, discard pool entry, form entry in reserved head of read
return queue, and drive connected GSC+ return

data read return
(trans_id==prefetch)

store data in RAM, note data returned, and wait for GSC+ to issue address

data read return
(trans_id==pool)

store data in RAM, discard pool entry, and form read return queue entry
for the tail of the read return queue

data read return
(trans_id==cache)

this is a partial cache line write, so store data in cache and modify, then
issue write_back to memory and discard pool entry

data read return
(trans_id==tlb)

store data in the appropriate TLB location and discard pool entry

Note that a prefetch entry converts to a standard pool entry when the GSC+ guest formally requests data
from the prefetch address while the read return is still outstanding. A pool entry can indicate both con-
nected and cache, meaning that the return data is stored both in the cache and driven over GSC+ (for a
GSC+ clear transaction).

The next table shows GSC+ guest mastered transactions in the left column and corresponding I/O Adapt-
er activity in the right column. On inbound traffic, all transactions require a minimum amount of activity,
such as placing the request in the queue, obtaining a virtual index and expanded physical address from
the I/O TLB and Physical Page Map, and checking to see if the data wasn’t already prefetched or con-
tained in the on chip cache (in the case of a semaphore). Once it is determined that the request at the head
of the inbound queue must be issued over Runway, the I/O Adapter operates on the transaction and the
right column in this table reflects that activity.

9

GSC+ Transaction I/O Adapter Activity

GSC+ connected read
(GSC+ LSL asserted)

issue Runway read_priv
return data gets stored in cache and returned to GSC+ guest

GSC+ reads
(no assertion of GSC+ LSL)

issue Runway read_shar
return data gets queued for GSC+

GSC+ write 1,2,4 (safe page) (No LSL) OR
GSC+ write 1,2,4 with LSL asserted

check cache to see if read_priv previously issued:
 if cache hit: modify in cache and issue Runway write_back
 if cache miss: issue read_priv, modify, and write_back

GSC+ write 4 words (half cache line)
(fast page) (No LSL)

issue Runway write16_purge

GSC+ write 8 with LSL asserted check cache to see if read_priv previously issued:
 if cache hit: modify in cache and issue Runway write_back
 if cache miss: issue write_purge

GSC+ write 8 words (cache line)
(fast or safe page) (No LSL)

issue Runway write_purge

GSC+ write1 to I/O address issue Runway write_short to ”F”–extended I/O address

GSC+ non–write1 to I/O address signal and log GSC error

GSC+ data read return issue Runway read return transaction

GSC+ clear transaction issue Runway read_private; when data is back, return data to
GSC and store data in cache, clear first word pointed to by ad-
dress, and write_back data to memory

GSC+ error transaction log hard error on GSC side

GSC+ reads that match previous prefetch
(previous transaction from GSC+ guest was
a read with XQL asserted and this read
matches a pool entry)

Runway read_shar_or_priv has already been issued. Mark up
pool entry to indicate that the GSC+ guest has ”formally” re-
quested the data. Update pool with formal transaction informa-
tion.

Note that the GSC+ XQL line may be indicated and prefetch issued on any sequential 16 and 32 byte
reads. Likewise, the GSC+ LSL line may be indicated on any of the above transactions, resulting in the
assertion of STOP_MOST on Runway. The following table entries reflect these orthogonal behaviors:

GSC+ XQL asserted
GSC+ read half or full cache line
(prefetch enable from TLB)

issue Runway read_shar_or_priv and place read entry into the
pool; increment address by transaction size and issue subsequent
Runway read_shar_or_priv and place prefetch entry in the pool

GSC+ LSL asserted issue STOP_MOST

GSC+ transaction with no LSL asserted deassert STOP_MOST and issue transaction on Runway
release any cache line owned by this IOA

Data return (from GSC+, PDH or HPA reg) deassert STOP_MOST and issue return on Runway
release any cache line owned by this IOA

GSC+ transaction on a no lock page deassert STOP_MOST and issue transaction on Runway

GSC+ LSL deasserted on GSC+ deassert STOP_MOST
release any cache line owned by this IOA

10

2. Architectural Requirements

This chapter documents the architectural features of each I/O Adapter within a single UTurn. Specific
topics discussed include the register set layouts, register definitions, address space mapping, architected
I/O writes, and error strategy.

When describing registers and their contents, is is often necessary to identify the specific value of a field.
To differentiate between hex, decimal, and binary values, the following syntax is used:

n’b indicates that the following n digits are in binary
n’d indicates that the following n digits are in decimal
n’h indicates that the following n digits are in hexadecimal
X’ indicates that the following digits are in hexadecimal
x’ indicates that the following digits are in hexadecimal

Many registers contain undefined fields that are reserved for future definition. Often, the single letter
R is used to describe these reserved fields. When read, the bits in a reserved field are zeroes. Writes to
reserved fields have no effect.

The reader should beware that there are some ordering concerns on processor–mastered I/O reads and
writes of Runway clock domain registers in UTurn. Runway does not define slave acknowledgement
for write transactions. Therefore, there is no way for UTurn to hold off subsequent accesses until an I/O
write completes internally. Additionally, writes to UTurn internal registers that reside in the Runway
clock domain will take affect within 3 Runway cycles, whereas reads of these Runway registers are
queued, passing through the OutQ and back through the InQ prior to actual extraction of a read value.
Neither reads nor writes will bypass writes, but writes of Runway registers can bypass reads of Runway
registers. It is the responsibility of software to follow UTurn–internal Runway I/O register writes with
a UTurn I/O register read (such as IO_STATUS). Upon receipt of the read response, software can contin-
ue with the confidence that its write has completed. This “read sweep” must occur on a per–processor
basis, since the relationship of I/O reads and writes mastered by different processors is in general un-
known. There are no ordering concerns for accesses to GSC clock domain register, because all accesses
to these registers are queued in the OutQ and processed in the queued order.

2.1. Runway Hard Physical Address (HPA) Space

The Runway HPA space consists of three register sets: the Runway Supervisory Register Set, the Run-
way Auxiliary Register Set, and the Runway Bus Specific Register Set. Runway is allocated 256 KBytes
of HPA space within I/O address space. As a Runway module, UTurn responds to some of the addresses
in this region. For KittyHawk, the Runway HPA region is in the address range from X’FFFFF80000 to
X’FFFFFBFFFF. Hard physical 40–bit addresses to architected I/O registers take the following form:

0 3
1111

4 11
extend

12 21
flex

22 24
001

 25
UTurn

 26
 ioa

27
0

28 33
regset

34 37
offset

38 39
 00

where: 1111 indicates an I/O address.
extend allows for extended I/O address space. (On UTurn, this field is tied to 8’b11111111.)
flex indicates bus to which UTurn is connected. (For Runway, the flex field is hardwired

 to 10’b1111111110.)
UTurn indicates UTurn’s location on the bus. It is set to Runway CLIENT_ID [2].

11

ioa indicates which of two internal IOAs within the selected UTurn; corresponds to
 Runway CLIENT_ID[3]. Together with the above UTurn client encoding, this field
 allows for a distinct IOA address space corresponding to a client_id value of
 4, 5, 6, or 7. (Bits 22 through 27 define the fixed field.)

regset indicates the register set within the HPA. The register sets are as follows:
Supervisory Register Set: 0
Auxiliary Register Set: 1
UTurn Specific Register Set: 17 decimal

offset indicates the address offset of a given register. Registers are described in more detail
 in the following sections.

Note that the field specified by bits [22:27] corresponds to the fixed field (as defined by the PA–RISC
I/O ACD).

2.1.1. Runway Supervisory Register Set (Register Set 0)

The following registers comprise the Runway Supervisory Register Set:

 Offset Access Modes Class Name Address LSB

 2 R A IO_DC_DATA .. 008

 2 W A IO_DC_ADDRESS .. 008

 12 W A IO_COMMAND .. 030

 13 R A IO_STATUS .. 034

 14 RW A IO_CONTROL .. 038

2.1.1.1. Runway IO_DC_DATA Register

The IO_DC_DATA register are used to read an IOA’s IODC. The architecturally specified locations of
IODC are defined as follows:

 Byte Address Name Description

 0 – 1 IODC_HVERSION Hardware version number

 2 IODC_SPA Soft physical address capability

 3 IODC_TYPE Type of module

 4 – 7 IODC_SVERSION Software version number

The contents of these bytes are hardwired, as follows:

0 4
bus=01011

5 11
hvmod=0000000

12 15
 hv_rev

 16
io=0

17
 0

 18
sv=0

19 23
shift=8

 24
mr=0

 25
wd=1

26
 R

27 31
type=01100

32 35
 sv_rev

36 55
 svmod = 5’h0000B

56
 R

 57
sv.opt=1

58
 R

 59
mc=1

60 63
 R

12

where bus is set to an encoded value to indicate Runway. This value is 5’b01011.
hvmod specifies the module hardware implementation. This value is 7’b0000000.
hv_rev indicates hardware version. For UTurn rev 1.3 (1MM6–0001) and rev 1.4

(1MM6–0002), this value is 4’b1111.
io set to 0, indicating that soft physical address space is in memory address space.
0 is simply hardwired to 0.
sv indicates if the following shift field is valid. This value is set to 0.
shift specifies the maximum TLB space size in entries. This value is set to 5’b01000.

(This field is emulated by PDC.)
mr more bit is 0 to indicate that no more than the first 8 bytes of IODC are implemented.
wd word bit is 1 to indicate that a full word of address justified data is provided on reads

from IO_DC_DATA.
R reserved. Reserved fields are always 0 when read.
type specifies the module type. This value is set to 5’b01100 to indicate TP_IOA.
sv_rev indicates feature enhancements. For UTurn, this value is 4’b0001.
svmod specifies software interface to module. This value is set to 5’h0000B, indicating that

the upper port is a coherent I/O bus converter port..
R reserved. Reserved fields are always 0 when read.
sv.opt set to 1, indicating that UTurn implements greater than 32 bits of physical address.
R reserved. Reserved fields are always 0 when read.
mc module category. This value is set to 1.
R reserved. Reserved fields are always 0 when read.

Because a write to the IO_DC_ADDRESS register determines which IO_DC_DATA word is returned,
software must ensure that at least 2 Runway cycles transpire between the IO_DC_ADDRESS write and
the IO_DC_DATA read.

2.1.1.2. Runway IO_DC_ADDRESS Register

The IO_DC_ADDRESS register specifies which 32 bit word of an IOA’s IODC is to be returned on a
read from the IO_DC_DATA register. IO_DC_ADDRESS need only be a single bit register as shown
below:

0 28
 undefined

 29
 wd

30 31
undefin

If IO_DC_ADDRESS[wd] is set to 1, reads from IO_DC_DATA will return IO_DC_DATA[32:63]. If
IO_DC_ADDRESS[wd] is set to 0, reads from IO_DC_DATA will return IO_DC_DATA[0:31].

This register powers up with bit 29 being set to 0. Its value is unchanged as a result of a CMD_Reset
or a CMD_Clear.

2.1.1.3. Runway HPA IO_COMMAND Register

The Runway IO_COMMAND register has the following format:

0 19
 page_num

 20 23
 com depend

 24
 0

25 31
 Command Code

Bits 0..19 of the command dependent field contain the I/O virtual page number (called page_num in the
following table) for the TLB_Purge and TLB_Insert commands.

13

The following commands are supported:

Command Name Command Code Command Operation

Reset 5 Reset module

TLB_Purge 2’d33 Delete TLB entry specified by page_num

TLB_Insert 2’d34 Fetch TLB entry specified by page_num

TLB_Direct_Write 2’d35 Write TLB entry specified by page_num

Clear 3 Clears IO_STATUS error bits

TEST_Ld_OutQ 2’d64 Load dummy Outbound Queue Entry

TEST_Ld_RRQ 2’d65 Load dummy Read Return Queue Entry

The Runway IO_COMMAND register is a write only register. This is because the I/O Adapter simply
executes the command specified, as opposed to storing a value corresponding to the command code. The
Reset command is decoded by the Runway receive block and reset signals are driven and synchronized
to the GSC+ block. Software must synchronize TLB updates with transactions in progress.

CMD_Reset causes the I/O Adapter to behave identically to a power_on reset, with the exception that
the only registers which change values are IO_STATUS, IO_CONTROL, and the IO_ERR registers on
both the GSC+ and Runway ports. Additionally, the GSC+ port will assert ErrorL under certain circum-
stances on GSC+ during a CMD_Reset, to conclude any outstanding transactions. However, the contents
of all queues (inbound, outbound, and data read return) and the pool entries are invalidated. Note that
a CMD_Reset will take 32 – 40 Runway cycles, during which time the I/O Adapter will not recognize
transactions in progress. Subsequent writes will appear discarded and reads will result in a timeout.

CMD_TLB_Purge causes the I/O Adapter to mark invalid the I/O TLB entry, corresponding to the
I/O virtual page number specified by the page num field.

CMD_TLB_Insert causes the I/O Adapter to fetch the I/O TLB entry, corresponding to the I/O virtual
page number specified by the page num field, from the memory I/O PDIR table.

CMD_TLB_Direct_Write causes the I/O Adapter to fill the I/O TLB entry, corresponding to the I/O
virtual page number specified by the page num field, with the value in the I/O_TLB_ENTRY_L and
I/O_TLB_ENTRY_R registers.

CMD_Clear causes the I/O Adapter to clear the soft error indication in the Runway IO_STATUS regis-
ter.

The TEST commands instruct the I/O Adapter to fake a GSC+ DMA transaction, for test purposes. The
dummy GSC+ DMA test is described in the testability section.

TEST_Ld_OutQ triggers the Runway slave block to load the contents of the TEST_ADDRESS and
TEST_INFO into the Outbound Command Queue.

TEST_Ld_RRQ triggers the Runway slave block to load the contents of the TEST_ADDRESS and
TEST_INFO into the Read Return Queue.

2.1.1.4. Runway IO_STATUS Register

The Runway IO_STATUS register has the following format:

14

0 11
 HV

12 14
 R

 15
HV

16 21
 estat

 22
 se

 23
 he

 24
 fe

 25
 ry

26 27
 R

 28 30
 000

 31
 pf

This register serves two main purposes: to indicate when the Runway IO_COMMAND register is ready
for a new command and to relay error information. Bit 28 is zero, indicating that this is an upper port
(Runway) register. Bits 29 and 30 are zero, indicating that the lower port bus has power available. Since
both the upper and lower port busses are powered off of the same supply, it is safe to assume that the
lower port has power if UTurn has power.

Bit 31 would typically indicate a power fail occurrence on the remote (GSC+) bus. However, on UTurn
this bit simply indicates whether the lower port GSC+ bus is in the midst of a reset (GSC+ RESETL
asserted). No transactions are allowed on GSC+ during a reset, so software must check the pf bit prior
to issuing transactions to the GSC+ bus if a reset may be in progress. If the value of the pf bit is 1, then
the lower port is unavailable and subsequent transactions directed to GSC+ may be lost. If the value of
the pf bit is 0, then transactions to GSC+ should proceed normally. Accesses to PDC space and to UTurn
internal registers can continue regardless of the value of the pf bit.

The ry bit is set when UTurn is available to accept a new command. UTurn will respond to only one
IO_STATUS read when it is busy processing an IO_COMMAND; for such a read, the ry bit set to 0.
After completion of an IO_COMMAND, a subsequent IO_STATUS register read will return a value of
1 for the ry bit.

The se (soft error), he (hard error), and fe (fatal error) bits indicate the severity of the error. The estat field
is encoded to indicate error type. Values for this field are presented in the error handling section of this
chapter, along with more discussion of the errors in general.

This register is cleared (set to x’00000041) at power–on and set to x’00000040 after a CMD_Reset is
issued or after a CMD_Clear is issued and the IO_Status Register has logged a soft error. If a CMD_Clear
occurs and the IO_STATUS Register does not have a soft error logged, then the register is unchanged.

2.1.1.5. Runway IO_CONTROL Register

The Runway IO_CONTROL register, which controls the forwarding of transactions, has the following
format:

0 13
 HV

14 15
 TLB

16 21
 R

 22
 HV

23 24
 mode

25 31
 reserved

The mode field indicates the address translation required for the transactions forwarded from Runway
to GSC+, and is defined as follows:

Mode Name Value Definition

 Off 0 Opaque to matching addresses.

 Include 1 Transparent for matching addresses.

 Peek 3 Map matching addresses.

The Runway IO_CONTROL Register defaults to Off mode when a power–on occurs or when a
CMD_Reset is received. This mode will cause Runway transactions which match the I/O range specified
by the IO_IO_LOW and IO_IO_HIGH registers to be ignored.

15

In Include, all addresses within the I/O range specified by the IO_IO_LOW and IO_IO_HIGH registers
are transparently forwarded. This is the I/O Adapter’s normal operating mode.

Peek mode is used during system configuration to initialize the GSC+ bus. In Peek mode, Runway
Write_Shorts in the address range specified by IO_IO_LOW and IO_IO_HIGH are forwarded through
the I/O Adapter, but with a modified address. The GSC+ address is remapped to the Broadcast Physical
Address space by setting the 14 high order address bits of the 32 bit GSC+ address to ones.

On UTurn, the TLB field is used to manipulate the I/O TLB to affect transactions which are forwarded
from GSC+ to Runway. The TLB field is defined as follows:

 TLB Mode Value Description

 Real 0 No TLB translation (virtual address affected by physical address)

 Error 1 Software fills the TLB manually and misses logged as fatal error.

 Normal 2 IOA fetch TLB misses from the memory IO–PDIR.

The TLB field of the Runway IO_CONTROL defaults to Real mode when a power–on occurs. Real
mode is used during system configuration, before an I/O PDIR exists in memory. When in real mode,
the I/O–TLB will not be accessed to obtain the virtual address of a memory space GSC+ transaction.
Instead, the address is directly mapped and the virtual address is composed of selected physical bits.

Error mode provides the operating system the flexibility of not implementing an I/O PDIR. In this mode,
software is responsible for manually inserting I/O TLB entries using the CMD_TLB_Direct_Write
mechanism described in the Runway IO_COMMAND Register discussion. However, if a GSC+ transac-
tion is issued and there is no corresponding I/O TLB entry, the miss is logged as a hard error.

Typically, each IOA is expected to operate in Normal mode. When in this mode, the I/O Adapter per-
forms fetches from the memory resident IO–PDIR on TLB misses.

Since the Runway IO_CONTROL register impacts the Runway slave and master operation, it will reside
on the Runway side of the chip. It is accessed by PDC and the OS during configuration. Writes to this
register will bypass the queues and take effect immediately. Reads from this register are queued in the
outbound command queue and the inbound queue. This design approach means that a Runway IO_CON-
TROL register read could be bypassed by an IO_CONTROL register write. Additionally, software must
to be cautious when issuing a write to the IO_CONTROL register while I/O is in progress, as updates
to the register would have an immediate affect on the way in which these I/O transactions are issued over
Runway. Therefore software which updates this register might want to prevent an update until the queues
are known to be empty (no I/O is in progress).

The Runway IO_CONTROL is set to X’00000000 when a power–on occurs. The HV fields will always
be set to zeroes. The register is unchanged, as a result of a CMD_Clear. When a CMD_Reset occurs,
the TLB field should be unaffected, but the remaining fields are set to zero.

2.1.2. Runway Auxiliary Register Set (Register Set 1)

The following registers comprise the auxiliary register set:

16

 Offset Access Modes Class Name Address LSB

 0 R A IO_ERR_RESP .. 040

 1 R A IO_ERR_INFO .. 044

 2 R A IO_ERR_REQ .. 048

 3 R HV IO_ERR_RESP_HI .. 04c

 4 RW HV IO_TLB_ENTRY_M .. 050

 5 RW HV IO_TLB_ENTRY_L .. 054

 7 RW HV IO_PDIR_BASE .. 05c

 8 RW HV IO_IO_LOW_HV .. 060

 9 RW HV IO_IO_HIGH_HV .. 064

 11 RW HV IO_CHAIN_ID_MASK .. 06c

 14 RW A IO_IO_LOW .. 078

 15 RW A IO_IO_HIGH .. 07c

It should be noted that there is a requirement for an IO_TLB_SIZE register, but this functionality is emu-
lated by PDC.

2.1.2.1. Runway IO_ERR_RESP_HI and IO_ERR_RESP Registers

These registers indicate the module which was responsible for responding to a Runway operation which
failed. The slave address of the transaction is stored. The format of these registers are as follows:

0 23
 000000000000000000000000

24 31
sys–resp–address[0:7]

0 31
 sys–resp–address[8:39]

The contents of these registers are not necessarily valid. Validity is indicated by the rsi bit in the Runway
IO_ERR_INFO register.

These registers do not have a defined power–on value and are unaffected by CMD_Clear or CMD_Reset.

2.1.2.2. Runway IO_ERR_INFO Register

This register indicates the validity of the Runway IO_ERR_RESP(_HI) and IO_ERR_REQ registers.
The format of this register is as follows:

0 6
 undefined

 7
 0

8 13
 R

14 19
source = 111111

 20
 sv

21 28
 R

 29
 rm

 30
 rsi

 31
 rqi

If rqi is 0, the contents of the IO_ERR_REQ register are valid and if rsi is 0, then contents of the
IO_ERR_RESP(_HI) registers are valid. The rm bit indicates whether the requestor is on the remote bus
(GSC+). If this bit is set to 1, then the System Requestor Fixed and Flex fields in the IO_ERR_REQ

17

Register specify the GSC+ guest id. If this bit is a 0, then the System Requestor Fixed and Flex fields
specify the Runway Master_ID of the requestor of the erroneous transaction. The sv bit indicates the
source of a Runway read return (assuming the logged transaction is indeed a read return). Since the re-
sponding processor can not be identified on a cache–to–cache copy, the sv bit is set to 0 on C2C_Writes.
However, on memory read returns, the sv bit is set to one, and the source field indicates that the errored
response was issued by the main memory controller.

This register is set to x’0003F003 when either of the following three conditions occur: a CMD_Clear
is issued and the IO_STATUS register currently has a soft error logged, a CMD_Reset is issued, or at
power–on. If a CMD_Clear occurs and the IO_STATUS register does not have a soft error logged, then
the register is unchanged.

2.1.2.3. Runway IO_ERR_REQ Register

This register logs the HPA of the requester of an erroneous Runway operation. The format of this register
is as follows:

0 7
 11111111

8 15
 extend

16 25
 System Requester Flex

26 31
 Sys Req Fixed

The value of the System Requester Flex is set to the Runway Flex value (which is hardwired), if this I/O
Adapter detected this error as a Runway slave. If the error is the result of a transaction which this I/O
Adapter attempts to master to Runway on behalf of a GSC+ guest, then the GSC+ Flex field is set based
on the GSC+_SHADOW_FLEX register.

If this I/O Adapter is a Runway slave of the transaction, then the fixed field is set as follows:

 26
 1

 27
 0

28 30
master_id

 31
 0

where master_id corresponds to the Runway master of the failing transaction.

If this I/O Adapter is a Runway master (on behalf of a GSC+ guest) of the transaction, then the fixed field
has the following format:

 26
 0

26 29
 guest_id

30 31
 00

where guest_id corresponds to the GSC+ guest master of the failing transaction. Note that this is not the
entire fixed field of a GSC+ guest. Bits 30 through 31 typically correspond to the GSC+ guest submo-
dule. Unfortunately, UTurn does not have visibility of the submodule.

The contents of this register is not necessarily valid. Validity is indicated by the rqi bit in the Runway
IO_ERR_INFO register.

The IO_ERR_REQ register is undefined at power–on and is unaffected by CMD_Clear or CMD_Reset.

2.1.2.4. IO_TLB_ENTRY Registers

The IO_TLB_ENTRY registers are used by the CMD_TLB_Direct_Write. Software must load these
registers with the entry it intends to store in the TLB, and then issue a CMD_TLB_Direct_Write to the
Runway IO_COMMAND with the target TLB location specified in the page_num field.

18

Because an I/O–PDIR entry is 64 bits in width, two IO_TLB_ENTRY registers (IO_TLB_ENTRY_M
and IO_TLB_ENTRY_L) are required to denote the most significant and least significant contents. The
width of the I/O TLB is 52 bits which include the physical page number, eight bits of the coherency in-
formation, the sequential prefetch hint, the page type field, and the valid indicator. These fields are ex-
plained in more detail in the Inbound Runway Chapter.

The format of the registers is identical to the IO–PDIR format, which is as follows, with the most signifi-
cant (IO_TLB_ENTRY_M) register illustrated first, followed by the least significant register
(IO_TLB_ENTRY_L):

0 3
 PPN[0:3]

4 15
 coherency_information[0:11]

16 31
 Physical_Page_Number[4:19]

0 19
 Physical_Page_Number[20:39]

20 24
 R

 25
 PH

26 28
 R

29 30
 PT

31
 V

where: PPN[0:3] are Physical_Page_Number[0:3]
R is a reserved field (all bits in reserved fields are zero when read)
PH is the prefetch hint (bit indicates prefetch enable)
PT is the page type indicators
V is a valid indicator

These registers are located in the Runway inbound block. Writes to these registers will take effect im-
mediately, bypassing the queues, while reads are queued. This introduces the possibility of a read being
bypassed by a subsequent write to the register. This sequence can be avoided by having software wait
for read returns before issuing subsequent writes.

The contents of these registers will not change as a result of a CMD_Reset or a CMD_Clear, and are unde-
fined as a result of a power–on.

2.1.2.5. IO_PDIR_BASE Register

The IO_PDIR_BASE register contains the base address of the IO–PDIR translation table. When the I/O
Adapter is in ”normal mode”, as indicated by the IO_CONTROL register, the Runway inbound block
will access the TLB for translations on coherent accesses. If there is a TLB miss, the value in the
IO_PDIR_BASE register together with the virtual I/O address of the transaction at the head of the in-
bound queue are used to fetch the missing translation from the IO–PDIR in main memory.

Because the IO–PDIR is guaranteed to begin on a page boundary and reside in the first 4 GB of memory,
only 20 bits of the address need to be stored. These 20 bits correspond to REAL_ADDR[8:27] (which
maps to Runway bus ADDR_DATA[32:51]). The format of the register is therefore as follows:

0 19
 IO_PDIR_BASE

20 31
 000000000000

This register is located in the Runway inbound block. It should be initialized by that part of the kernel
which sets up the IO_PDIR in memory. Following initialization, subsequent writes should be unneces-
sary. Writes to this register will take effect immediately, bypassing the queues, while reads are queued.
This introduces the possibility of a read being bypassed by a subsequent write to the register. This se-
quence can be avoided by having software wait for read returns before issuing subsequent writes.

19

The contents of this register will not change as a result of a CMD_Reset or a CMD_Clear. At power–on,
the value of the IO_PDIR_BASE field is undefined and the value of bits 20 through 31 is zero.

2.1.2.6. IO_CHAIN_ID_MASK Register

The IO_CHAIN_ID_MASK register is initialized by software, based on the size of the I/O Adapter resi-
dent TLB (specified by IO_TLB_SIZE). It is used as a mask that can extract the ChainID from an I/O
Virtual Address, on inbound coherent transactions. This extracted ChainID becomes the index into the
I/O TLB. Note that the IO_CHAIN_ID_MASK must not change once the TLB has valid entries, other-
wise the TLB must be completely re–initialized. Because the ChainID is composed of the most signifi-
cant 20 bits of the I/O virtual address, its format is as follows:

0 19
 IO_CHAIN_ID_MASK

20 31
 000000000000

This register is located in the Runway inbound block. Writes to this register will take effect immediately,
bypassing the queues, while reads are queued. This introduces the possibility of a read being bypassed
by a subsequent write to the register. This sequence can be avoided by having software wait for read
returns before issuing subsequent writes. As this register is initialized by software prior to going from
real to virtual mode, subsequent writes should be unnecessary and avoided once the TLB has valid en-
tries.

The contents of this register will not change as a result of a CMD_Reset or a CMD_Clear. At power–on,
the value of the IO_CHAIN_ID_MASK field is undefined and the value of bits 20 through 31 is zero.

2.1.2.7. IO_IO_LOW(_HV) and IO_IO_HIGH(_HV) Registers

IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the I/O Adapter address space, respec-
tively. They both have the following format:

0 7
 11111111

8 15
 11111111

16 31
 address

Note that there are two sets of these registers. This is to accommodate two disjoint address space regions
per GSC+ port. Each incoming Runway transaction address is compared with both sets of IO_IO_LOW
and IO_IO_HIGH to determine if the address is in the range greater than or equal to IO_IO_LOW and
less than IO_IO_HIGH. If the incoming Runway transaction address is outside of the specified address
range, then the transaction is not intended for this UTurn. Note: It is not an error to have IO_IO_LOW
equal to or greater than IO_IO_HIGH. In fact, this is the only method to avoid specifying an address
space region.

In order for a Runway address to reside within GSC+ extended address space:
Runway Address [0:7] must identically compare to 8’b11111111.
Runway Address [8:11] must be equal to IO_IO_LOW(_HV)[16:19]
Runway Address [12:23] must be greater than or equal to IO_IO_LOW(_HV)[20:31]

and less than IO_IO_HIGH(_HV)[20:31].
Runway Address [24:39] is not used in the comparison.

When the Runway transaction is forwarded to GSC+, the GSC+ address is as follows:
GSC+ Address[0:3] 4’b1111

20

GSC+ Address[4:29] Runway Address[12:37]
GSC+ Address[30:31] 2’b00

These registers reside in the Runway outbound block, as Runway slave transactions must be checked
against these bounds registers to determine if the slave transaction address is in the range of this I/O
Adapter. These registers must be initialized by PDC, once the lower bus is interrogated and address space
is defined. The operating system will modify the architectural IO_IO_LOW and IO_IO_HIGH registers
following the PDC initialization. However, the hardware version dependent IO_IO_LOW and
IO_IO_HIGH registers should not be subsequently altered by the OS. Writes to both sets of registers
will take effect immediately, bypassing the queues, which ensures that subsequent Runway transactions
are checked against the updated bounds values. However reads are queued, introducing the possibility
of a read being bypassed by a subsequent write to the same register. This sequence can be avoided by
having software wait for read returns before issuing subsequent writes.

The contents of these registers will not change as a result of a CMD_Reset or a CMD_Clear. At power–
on, the value of bits 0 through 15 are ones and the value of the address field is undefined.

2.1.3. UTurn Specific Register Set (Register Set 17)

The following registers comprise the UTurn Specific Register Set:

 Offset Access Modes Class UTurn Specific Register Name Address LSB

 0 RW HV QUEUE/POOL_DEPTH_CTL .. 440

 1 RW HV EIM_MONARCH_AND_GROUP .. 444

 2 RW HV TOC_MONARCH_CLIENT_ID .. 448

 3 R HV READ_TLB_TAG .. 44c

 4 R HV READ_TLB_M .. 450

 5 R HV READ_TLB_L .. 454

 6 RW HV TEST_ADDRESS .. 458

 7 RW HV TEST_INFO/CONFIG .. 45c

 8 R HV GSC+_SHADOW_FLEX .. 460

 9 RW0 HV PERF_CTR1 .. 464

 10 RW0 HV PERF_CTR2 .. 468

 11 RW HV PERF_MODE .. 46c

2.1.3.1. QUEUE/POOL_DEPTH_CTL Register

The purpose of the QUEUE/POOL_DEPTH_CTL Register is to indicate the queue depths of the inbound
queue, read return queue, and outbound queue and the size of the pool. This degree of configurability
is expected to enhance performance measurements and testability.

The format of the QUEUE/POOL_DEPTH_CTL Register is as follows:

0 2
 R

3 7
OQ_hyst_ctl

8 15
 unused_pool

16 19
inQ_unusd_loc

20 26
 R

27 31
OutQ_unusd_loc

21

The inQ_unusd_loc and OutQ_unusd_loc fields indicate the unused portions of the respective queues.
The outbound command queue has a high water mark, and when the queue depth reaches this point, the
signal STOP_IO is asserted on Runway to flow control processor initiated read_short and write_short
transactions to I/O space. For the Outbound Command Queue, the OutQ_unusd_loc field determines
the placement of this high water mark. Additionally, the field OQ_hyst_ctl is the OutQ’s hysteresis con-
trol. Once STOP_IO is asserted, this field indicates how many queue locations must drain, prior to the
deassertion of STOP_IO. The unused_pool field contains one bit for every pool entry. This bit indicates
whether the corresponding pool entry is unavailable for use.

Since the depths of the UTurn internal queues and pool are configurable, anyone altering the default sizes
should be aware (and beware) of the following UTurn rules. When reducing the size of the queues or
pool, one should make a corresponding reduction in the number of GSC+ guests to avoid deadlocks and
overruns.

Pool size rule: for all outstanding reads on RUNWAY, UTurn must have a place to store the transaction
information (which GSC guest, and length of read requested). UTurn is limited to 8 unique transaction
IDs on Runway per master ID (per IOA). Thus, the pool has 8 entries. If fewer than 4 guests are con-
nected, the pool could be smaller, but its minimum size must be twice the number of GSC guests.

Strange conditions: Under some conditions, all formally–requested GSC+ reads (one per guest) could
be in the pool, if all reads have been issued on RUNWAY and no data has been returned. Similarly, all
reads could be in the read_return_queue, if all reads have had data returned and the data needs to be re-
turned to the guests. UTurn accommodates these two allowable (but unlikely) extreme conditions.

The minimum depth of the outbound command queue (OutQ) is a function of how many Runway transac-
tions can be issued following the transaction that causes UTurn to hit its OutQ high water mark. UTurn
is implemented such that a maximum of 7 Runway transactions can be issued in the time it takes UTurn
to detect that the OutQ high water mark has been reached, assert STOP_IO to flow control Runway, and
have the processors all see STOP_IO and halt further I/O operations. Therefore the OutQ_unusd_loc
field must be set to no fewer than 7. The range of valid values for the OQ_hyst_ctl field is 1 through 26.

The minimum allowed value for inQ_unusd_loc is 1.

The QUEUE/POOL_DEPTH_CTL register is located in the Runway inbound block. Only PDC is al-
lowed to manipulate the contents of this register. This register must not be written to affect a queue which
has any valid entries. More specifically, PDC must issue a CMD_Reset immediately prior to altering
the QUEUE/POOL_DEPTH_CTL register to ensure that there are no pending transactions to HPA, BPA,
PDC, or GSC+ space in the outbound queue and no DMAs in the inbound queue. Software is also re-
quired to issue a CMD_Reset immediately following a write to the POOL_DEPTH_CTL register.

On power on, the OutQ_unusd_loc field is set to 1’d7, the OQ_hyst_ctl and inQ_unusd_loc fields are
set to 1’d1, and all remaining bits are set to zero. The contents of this register are unaffected as a result
of a CMD_Reset or a CMD_Clear. Its power–on value is X’01001007.

2.1.3.2. EIM_MONARCH_AND_GROUP Register

The EIM_MONARCH_AND_GROUP register provides the information needed to convert a GSC+ In-
terruptL assertion into a processor external interrupt message.

The register consists of two programmable fields. The client_id field is a four bit value which PDC must
load with the Runway CLIENT_ID of the processor which has been identified as the monarch for receipt
of IO_EIR writes. This four bit value corresponds to the fixed field of the monarch processor and is con-

22

catenated between the hardwired flex field and register information to form the the address of the mon-
arch processor’s IO_EIR register. The second programmable field is called the group field, which com-
prises the data portion of the IO_EIR write to the monarch processor. This 6 bit group encoding indicates
a bit in the processor’s 64 bit EIR control register.

The following diagram illustrates the format of the EIM_MONARCH_AND_GROUP register and is
used to compose both the address of the monarch processor’s IO_EIR and the write data contents:

0 3
 1111

4 13
 flex = 1111111110

 14
 1

15 18
 client_id

 19
 0

20 25
 reg_set = 000000

26 31
 group

The client_id field (bits 15 thru 18) and the group field (bits 26 through 31) are loaded on writes to this
register. However the full contents of the register are returned on a read.

When a GSC+ INTERRUPTL signal is detected by the GSC+ block, an entry is placed in the inbound
queue which triggers the Runway inbound block to master a WRITE_SHORT of the encoded interrupt
value to the monarch processor’s IO_EIR register. This address is computed as follows:

io_eir_addr <– 0xFFFFF000 & EIM_MONARCH_AND_GROUP (and F extend to 40 bits)

The significant data corresponding to this write is simply the group field. Therefore,
io_eir_data <– EIM_MONARCH_AND_GROUP

The EIM_MONARCH_AND_CLIENT register is located in the Runway inbound block. It is the re-
sponsibility of PDC to set up the contents of this register. Due to its location, writes to this register occur
immediately, bypassing the queues, whereas reads from this register are queued. This approach allows
writes to bypass previously issued reads stored in the queue. Therefore it is recommended that software
wait for read responses from this register before issuing stores.

On power on, the client_id and group fields are set to zero, causing a register value of X’FFFA0000. The
contents of this register will not change as a result of a CMD_Reset or a CMD_Clear.

2.1.3.3. TOC_MONARCH_CLIENT_ID Register

The TOC_MONARCH_CLIENT_ID register is just a four bit value which PDC must load with the Run-
way CLIENT_ID of the processor which has been identified as the monarch for receipt of directed
CMD_Resets. This four bit value corresponds to the fixed field of the monarch processor and is concate-
nated between the hardwired flex field and register information to form the the address of the monarch
processor’s IO_COMMAND register.

The following diagram illustrates the format of the TOC_MONARCH_CLIENT_ID register and corre-
sponds to the address of the monarch processor’s SRS IO_COMMAND:

0 3
 1111

4 13
 flex = 1111111110

14
 1

15 18
 client_id

19
 0

20 25
regset = 000000

26 29
 reg=1100

30 31
 00

The client_id field (bits 15 thru 18) are loaded on writes to this register. However the full contents of
the register are returned on a read.

The I/O Adapter will issue a directed CMD_RESET write (value equal to x’00000005) to the monarch
processor’s IO_COMMAND register in response to a user–initiated Transfer–of–Control (Control–B
TC at the console routed through the Access Port or assertion of the panel switch).

23

The TOC_MONARCH_CLIENT_ID register is located in the Runway inbound block. When a TOC
assertion is detected by the Runway inbound block, it will master a WRITE_SHORT with the CMD_RE-
SET command code to the address specified by this register. It is the responsibility of PDC to set up the
contents of this register. Due to its location, writes to this register occur immediately, bypassing the
queues, whereas reads from this register are queued. This approach allows writes to bypass previously
issued reads stored in the queue. Therefore it is recommended that software wait for read responses from
this register before issuing stores.

On power on, the client_id field is set to zero, causing a register value of X’FFFA0030. The contents
of this register will not change as a result of a CMD_Reset or a CMD_Clear.

2.1.3.4. READ_TLB_TAG Register

The READ_TLB_TAG register allows software to access the tag associated with a given I/O TLB look-
up. To read the tag, first the TEST_ADDRESS Register must be loaded with an I/O TLB address (which
indicates the I/O TLB lookup or chain id). Then a read of the READ_TLB_TAG Register will return
the tag (or block id) associated with the specified I/O TLB chain id.

This register accompanies the READ_TLB Registers described below. Specifically, if the
READ_TLB_TAG register returns a block id which matches the block id in the TEST_ADDRESS Reg-
ister, then by reading the READ_TLB registers, the TLB entry associated with the TEST_ADDRESS
can be obtained. However, if the READ_TLB_TAG register returns a block id which differs from the
block id in the TEST ADDRESS Register, then a read of READ_TLB registers will still return the TLB
entry associated with the chain id, although technically this is a miss.

The format of the READ_TLB_TAG Register is as follows:

0 7
 undefined

8 19
 tag (or block id)

20 31
 undefined

Note that the READ_TLB_TAG register is read only. It is located in the Runway block. The Runway
outbound controller manages the TLB read mechanism, by forming an Outbound Queue Entry which
contains the page_num field when a read from READ_TLB_TAG occurs. This queue entry gets redi-
rected to the Inbound Queue and when it reaches the head of the queue, the inbound Runway controller
obtains the TLB tag and issues the read return transaction across Runway. As with all registers located
in the Runway block, writes occur immediately, whereas reads are queued. Therefore, it is recommended
that the READ_TLB_TAG read return is received before the processor overwrites the TEST_ADDRESS
register.

On power–on, the READ_TLB_TAG register is undefined. The READ_TLB_TAG register is unaf-
fected by CMD_Reset or CMD_Clear.

2.1.3.5. READ_TLB Registers

The READ_TLB_M and READ_TLB_L registers facilitate reading entries from the I/O TLB. To read
an entry in the I/O TLB, first the TEST_ADDRESS must be loaded with the I/O TLB address (which
corresponds to the I/O Virtual Page Number). Then a read of either READ_TLB_M or READ_TLB_L
will return the I/O TLB entry specified by the I/O Virtual Page Number stored in the TEST_ADDRESS
register.

The format of the READ_TLB_M and READ_TLB_L registers is illustrated, respectively, below:

24

0 7
 R

8 15
 coherency_info[4:11]

16 23
 R

24 31
Phys_Page_Num[12:19]

0 19
 Physical_Page_Number[20:39]

20 24
 R

 25
prefetch

26 28
 R

29 30
 PT

31
 V

Note that the READ_TLB_M and READ_TLB_L registers are read only. A read from either of these
two registers returns the entire 64 bit entry. However, the processor simply expects the most significant
portion of the entry on the high order bits when it reads the register offset of 4 and the least significant
portion of the entry on the low order bits when it reads the register offset of 5.

Both registers are located in the Runway block. The Runway outbound controller manages the TLB read
mechanism, by forming an Outbound Queue Entry which contains the page_num field, when a read from
either READ_TLB_M and READ_TLB_L occurs. This queue entry gets redirected to the Inbound
Queue and when it reaches the head of the queue, the inbound Runway controller obtains the TLB con-
tents and issues the read return transaction across Runway. Because the processor must issue a read of
both registers before it obtains a full entry, it is responsible for ensuring that the TEST_ADDRESS regis-
ter is not overwritten between these two reads. As with all registers located in the Runway block, writes
occur immediately, whereas reads are queued. Therefore, it is recommended that both read returns are
received before the processor overwrites the TEST_ADDRESS register.

On power–on, both registers have undefined values. Likewise, these register are unaffected as a result
of a CMD_Reset or a CMD_Clear.

2.1.3.6. TEST_ADDRESS Register

The TEST_ADDRESS Register is used for testing the I/O Adapter. When a read from the I/O TLB is
requested, the TEST_ADDRESS Register contains the I/O Virtual Page Number. When a dummy GSC+
DMA transaction is created for test purposes, this register contains the GSC+ Slave Address. The I/O
TLB test is described in more detail in the COMMAND_READ_TLB Register section and the dummy
GSC+ DMA test is described in the testability section.

There are two formats for the TEST_ADDRESS Register, based on the type of test in progress. The for-
mats below show first the format for the I/O TLB test, and second the format for the GSC+ DMA test.
Note that in both cases, bits 30:31 are guaranteed to be zero.

0 19
 I/O Virtual Page Number

20 31
 not relevant

0 29
 GSC+ Slave Address

30 31
 R

This register is located in the Runway block. As with all registers located in the Runway block, writes
occur immediately, whereas reads are queued. Because this register influences the operation of a test
sequence, it is recommended that the test completes, determined by the completion of read returns, before
the processor overwrites the TEST_ADDRESS register.

On power–on, the TEST_ADDRESS register has an undefined value. This register is unaffected by a
CMD_Reset or a CMD_Clear.

25

2.1.3.7. TEST_INFO/CONFIG Register

The TEST_INFO/CONFIG Register is used for testing and configuring the I/O Adapter. The
TEST_INFO portion of this register specifies the type of dummy GSC+ DMA transaction to create for
test purposes. The TEST_ADDRESS together with this TEST_INFO determine the queue entry contents
to be loaded in the queue designated by the TEST_COMMAND. The dummy GSC+ DMA test is de-
scribed in detail in the testability section. The CONFIG portion of this register provides enables/disables
for various capabilities, including parity error checking, error modes, and viewport.

The format for the TEST_INFO/CONFIG Register is as follows:

0 2
gst_id

3 6
byt_enb

7 10
 type

 11
con

 12
loc

 13
prft

 14
Adr

15 17
WinL

18 24
 R

 25
spd

 26
any

 27
 ato

 28
 ret

 29
 err

 30
par

 31
vpt

where: gst_id specifies the mastering GSC+ guest_id (values range from 0 to 5).
byt_enb specifies the GSC+ byte enable of the intended transaction
type corresponds to the GSC+ transaction type
con means that the specified transaction should be connected
loc means that the specified transaction is to be locked by assertion of LSL
prft means that the intended transaction must specify prefetch
Adr together with the guest_id, determines the outbound RAM address
WinL specifies the GSC+ word in line (word address offset within cache line)
R is a reserved field (all bits are set to zero in reserved fields)
spd DMA read speed–up disable (default is 0 – speed–up enabled)
any enables / disables the any_trans backoff mechanism
ato enables / disables the atomic backoff mechanism
ret enables / disables the ret_only backoff mechanism
err enables / disables error modes
par enables / disables Runway parity checking
vpt enables / disables blocks dumping to viewport

Note, all fields are positive true, with the exception of the byte_enb field which corresponds identically
with the GSC+ byte enable bus, which is negative true.

DMA read speed–ups are incorporated in the UTurn design, reducing latency for DMA reads compared
to the U2 design. The spd bit, when set, allows these speed–ups to be disabled in case of some unforeseen
problem with the speed–ups.

When error modes are disabled (set to 0), the Runway side of this IOA will still detect and log any ob-
served errors. However, it will not go into either fatal or hard error mode. This allows subsequent transac-
tions to proceed. When parity checking is disabled (set to 0), this IOA will not perform parity checking
or logging on any Runway transactions. However, UTurn will always continue to generate proper Run-
way parity. When the viewport is enabled, the PDC address port will dump state information of various
blocks within UTurn. This is programmable through the PDC data port. The viewport functionality is
documented in detail in the testability chapter of this document.

The TEST_INFO/CONFIG register is located in the Runway block. As with all registers located in the
Runway block, writes occur immediately, whereas reads are queued. Because this register influences the
operation of a test sequence, it is recommended that the test completes (determined by the completion
of read returns) before the processor overwrites the TEST_INFO/CONFIG register.

26

On power–on, the value of the TEST_INFO/CONFIG register is undefined except for the least signifi-
cant 3 nibbles– x’?????039. This register is unaffected by a CMD_Reset or a CMD_Clear.

2.1.3.8. GSC+_SHADOW_FLEX Register

The format of the read–only GSC+_SHADOW_FLEX register is as follows:

0 3
 1111

4 13
 flex

14 30
 00000000000000000

 31
enb

The flex field in the GSC+_SHADOW_FLEX register specifies the programmable portion of the I/O
Adapter’s HPA space for the GSC+ port. This value is loaded by PDC and the OS during system configu-
ration. The GSC+_SHADOW_FLEX register also contains the enable bit (enb), which indicates enab-
ling and disabling of GSC+ modules from arbitration for bus mastership.

This register is readable by indicating register set 17 and register offset 8 in the Runway address. Its read-
able contents are simply a reflection of the GSC+ IO_FLEX register in GSC+ Broadcast Physical Ad-
dress Space. Therefore, to change the value contained in this register, the Runway IO_CONTROL regis-
ter must be placed in peek mode and a Runway WRITE_SHORT transaction must be issued with Runway
address bits 0 through 3 being ones, address bits 4 through 13 falling between an IO_IO_LOW(_HV)
and corresponding IO_IO_HIGH(_HV) field, address bits 14 and 15 being zeroes, and address bits 16
through 31 equal to 4’h0020.

The GSC+_SHADOW_FLEX register is located in the Runway block so that software can obtain the
lower port flex value associated with this Runway block, since the broadcast GSC+ IO_FLEX is unread-
able.

At power–on, the register is set to X’FFF80000. The register is unaffected by CMD_Reset or
CMD_Clear.

2.1.3.9. Runway PERF_CTR1 and PERF_CTR2 Registers

The two performance counters on the Runway side of the chip count event cycles and occurrences as pro-
grammed in the PERF_MODE Register (see below). They are readable; reads do not alter the value in
the register. A write to these registers will automatically clear the value in the register, independent of
the data value written.

The format of the PERF_CTR1 and PERF_CTR2 Registers is as follows:

0 31
 count

The Runway PERF_CTR registers are intended to be accessed by test code only. Writes to these registers
will bypass the queues and take effect immediately. Reads from these registers are queued in the out-
bound command queue and the inbound queue. This means that a Runway PERF_CTR register read
could be bypassed by a write. Additionally, software must to be cautious when clearing a PERF_CTR
register while transactions are in progress, as these transactions may be computed into the next set of
counts. Therefore software which updates this register might want to prevent an update until the queues
are known to be empty (no I/O is in progress).

The Runway PERF_CTR1 and PERF_CTR2 registers power–up undefined. The registers are left un-
changed as a result of a CMD_Clear or CMD_Reset.

27

2.1.3.10. Runway PERF_MODE Register

The Runway PERF_MODE Register is programmed to manipulate the Runway PERF_CTR Registers.
This register will enhance performance measurements and testability.

The format of the PERF_MODE Register is as follows:

0 11
 R

12 15
 mode1

16 27
 R

28 31
 mode2

where mode1 and mode2 are defined as follows:
0000 number of tlb accesses
0001 number of tlb accesses resulting in a miss
0010 number of cycles stop_most is asserted
0011 number of stop_most occurrences
0100 number of cycles stop_io is asserted
0101 number of stop_io occurrences
0110 number of prefetches
0111 number of prefetch hits
1000 number of cycles ccc responses are stalled due to a private hit
1001 number of ccc response stall occurrences
1010 number of cycles that pool is full
1011 number of pool full occurrences
1100 number of Runway data cycles (cycles in which data_valid is asserted)
1101 number of Runway clock cycles / 2 (R2clk)
1110 number of 32–byte transactions on Runway
1111 number of c2c–writes on Runway

The Runway PERF_MODE register resides on the Runway side of the chip, and is intended to be ac-
cessed by test code only. The register is both readable and writeable. Writes to this register will bypass
the queues and take effect immediately. Reads from this register are queued in the outbound command
queue and the inbound queue. This means that a Runway PERF_MODE register read could be bypassed
by a write. Additionally, software must to be cautious when issuing a write to the PERF_MODE register
while transactions are in progress, as these transactions may be computed into the counts. Therefore soft-
ware which updates this register might want to prevent an update until the queues are known to be empty
(no I/O is in progress).

The contents of the Runway PERF_MODE Register are undefined when a power–on occurs. The register
is unaffected by CMD_Clear or CMD_Reset.

2.2. GSC+ Hard Physical Address (HPA) Space

The GSC+ HPA space consists of eleven register sets: the GSC+ Supervisory Register Set, the GSC+
Auxiliary Register Set, UTurn RAM Register Sets 1 through 7, the GSC+ Bus Specific Register Set, and
the GSC+ Performance Counter Register Set. Each GSC+ port is allocated 256 KBytes of HPA space
within I/O address space. As a GSC+ module, UTurn must respond to addresses in this region. This
region is programmed by PDC and the operating system as part of the system configuration process.
GSC+ hard physical addresses to architected I/O registers take the following form:

28

Runway addr bits

GSC address bits

0 11
0 3
 ones

12 21
4 13
 flex

22 27
14 19
 111111

28 33
20 25
 regset

34 37
26 29
 offset

38 39
30 31
 00

where: ones indicates an I/O address.
flex indicates GSC+ port to which this IOA is connected. (This field is programmed by

PDC and OS.)
111111 corresponds to the fixed field which is UTurn’s location on the GSC+ port. Since

 UTurn is always host of the GSC+ bus, this field is hardwired to 6’b111111.
regset indicates the register set within the HPA. The register sets are as follows:

Supervisory Register Set: 0
Auxiliary Register Set 1
UTurn RAM Test Register Set 1 2’d16
UTurn RAM Test Register Set 2 2’d17
UTurn RAM Test Register Set 3 2’d18
UTurn RAM Test Register Set 4 2’d19
UTurn RAM Test Register Set 5 2’d20
UTurn RAM Test Register Set 6 2’d21
UTurn RAM Test Register Set 7 2’d22
GSC+ Bus Specific Register Set 2’d30
GSC+ Performance Ctr Register Set 2’d31

offset indicates the address offset within a register set of a given register. Registers are
 described in more detail in the following sections.

In order for UTurn to recognize this address region, PDC must configure the GSC+ flex field to reside
within one of UTurn’s sets of IO_IO_LOW and IO_IO_HIGH registers.

2.2.1. GSC+ Supervisory Register Set (Register Set 0)

The following registers comprise the GSC+ Supervisory Register Set:

 Offset Access Modes Class Name LSB Address

 2 R A IO_DC_DATA .. 008

 2 W A IO_DC_ADDRESS .. 008

 13 R A IO_STATUS .. 034

 14 RW A IO_CONTROL .. 038

2.2.1.1. GSC+ IO_DC_DATA Register

The IO_DC_DATA register is used to read an IOA’s IODC. The architecturally specified locations of
IODC are defined as follows:

29

 Byte Address Name Description

 0 – 1 IODC_HVERSION Hardware version number

 2 IODC_SPA Soft physical address capability

 3 IODC_TYPE Type of module

 4 – 7 IODC_SVERSION Software version number

These bytes are hardwired, as follows:

0 4
bus=01010

5 11
hvmod=0000001

12 15
 hv_rev

 16
io=0

17
 0

 18
sv=0

19 23
 shift=0

 24
mr=0

 25
wd=1

26
 R

27 31
type=00111

32 35
 sv_rev

36 55
 svmod = 5’h0000C

56 58
 R

 59
mc=0

60 63
 R

where bus is set to an encoded value to indicate GSC+. This value is 5’b01010.
hvmod specifies the module hardware implementation. This value is 7’b0000001.
hv_rev indicates hardware versions. For the first release, this value is 4’b0001, matching

 the initial production revision of the U2 chip.
io set to 0 to indicate that SPA space is in I/O address space.
0 is simply hardwired to 0.
sv indicates if the following shift field is valid. This value is set to 0.
shift specifies the maximum SPA space size in bytes. This value is set to 0.
mr more bit is set to 0 to indicate that only the first 8 bytes of IODC are implemented.
wd word bit is set to 1 to indicate that a full word of address justified data is provided

 on reads from IO_DC_DATA.
R reserved. Reserved fields are always 0 when read.
type specifies the module type. This value is set to 5’b00111 to indicate TP_BCPORT.
sv_rev indicates feature enhancements. For UTurn, this value is 4’b0001.
svmod specifies software interface to module. This value is set to 5’h0000C.
R reserved. Reserved fields are always 0 when read.
mc module category. This value is set to 0.
R reserved. Reserved fields are always 0 when read.

2.2.1.2. GSC+ IO_DC_ADDRESS Register

The IO_DC_ADDRESS register specifies which 32 bit word of an IOA’s IODC is to be returned from
the IO_DC_DATA register. IO_DC_ADDRESS need only be a single bit register corresponding to bit
29 of the 32 bit address passed to the GSC port, as shown below:

0 28
 undefined

 29
 wd

30 31
undefin

If IO_DC_ADDRESS[wd] is set to 1, reads from IO_DC_DATA will return IO_DC_DATA[32:63]. If
IO_DC_ADDRESS[wd] is set to 0, reads from IO_DC_DATA will return IO_DC_DATA[0:31].

This register powers up with bit 29 being set to 0. Its value is unchanged as a result of a CMD_Reset
or a CMD_Clear.

30

2.2.1.3. GSC+ IO_STATUS Register

The GSC+ IO_STATUS register has the following format:

0 11
 HV

12 14
 R

 15
HV

16 21
 estat

 22
 se

 23
 he

 24
 fe

 25
 ry

 26 27
 R

 28 31
 1000

The four least significant bits indicate that this is a lower port (GSC+) register, and that the remote port
bus (Runway) has power available. Since both the upper and lower port busses are powered off of the
same supply, it is safe to assume that if UTurn has power, then the upper port has power.

The ready bit (ry) has no significance for the GSC+ side of UTurn, since there is no GSC+ IO_COM-
MAND register. Its value will always be set to 1’b1.

The se (soft error), he (hard error), and fe (fatal error) bits indicate the severity of a detected error. UTurn
does not implement the se bit; its value is always 0 when read. The estat field is encoded to indicate error
type. Values for this field are presented in the error handling section, along with more discussion of the
errors in general.

This register is set to X’00000048 at power–on or after a CMD_Reset is issued to UTurn. This register
is unaffected by CMD_Clear.

2.2.1.4. GSC+ IO_CONTROL Register

The GSC+ IO_CONTROL register, which controls the forwarding of transactions from GSC+ to Run-
way, has the following format:

0 15
 HV

16 21
 R

 22
 HV

23 24
 mode

25 31
 reserved

The mode field indicates the behavior of the GSC+ block when processing GSC+ transactions bound for
Runway:

Mode Name Value Definition

 Off 0 Opaque.

 Exclude 2 Transparent.

The GSC+ IO_CONTROL Register defaults to Off mode at power–on or when a Runway CMD_Reset
is received. In this mode, GSC+ bus arbitration is disabled for guests (guest bus requests are ignored).

In Exclude mode, all addresses are forwarded. This is considered the normal operating mode for the
GSC+ block. Because all transactions mastered by guests are forwarded, guest–to–guest transactions
cannot be supported.

Since the GSC+ IO_CONTROL register impacts the GSC+ master operation, it resides in the GSC+
clock domain of an IOA. It is accessed by PDC and the OS during configuration. Writes to and reads
from this register are queued, resulting in no out of order execution.

The power–on and CMD_Reset value of the GSC+ IO_CONTROL register is X’00000000 (mode = off).
This register is unaffected by CMD_Clear.

31

2.2.2. GSC+ Auxiliary Register Set (Register Set 1)

The following registers comprise the auxiliary register set:

 Offset Access Modes Class Name Address LSB

 0 R A IO_ERR_RESP .. 040

 1 R A IO_ERR_INFO .. 044

 2 R A IO_ERR_REQ .. 048

2.2.2.1. GSC+ IO_ERR_RESP Register

This register indicates the module which was responsible for responding to a GSC+ operation which
failed. The slave address of the transaction is stored. The format of this register is as follows:

0 31
 sys–resp–address

where sys–resp–address is always a 32 bit GSC+ address.

The data contained in this register is not necessarily valid. Validity is indicated by the rsi bit in the GSC+
IO_ERR_INFO register.

This register is undefined at power–on and is unaffected by a CMD_Clear or CMD_Reset. A write to
this register has no effect.

2.2.2.2. GSC+ IO_ERR_INFO Register

This register indicates the validity of the GSC+ IO_ERR_RESP and IO_ERR_REQ registers. The for-
mat of this register is as follows:

0 6
 undefined

 7
 0

8 13
 R

14 19
 undefined

 20
 0

21 29
 R

 30
 rsi

 31
 rqi

If rqi is 0, the contents of the IO_ERR_REQ register are valid and if rsi is 0, then contents of the
IO_ERR_RESP register are valid. All undefined or reserved fields are zero when read.

This register is set to its default value of x’00000003 at power–on or after a CMD_Reset to the Runway
IO_COMMAND register is issued. This register is unaffected by CMD_Clear. A write to this register
has no effect.

2.2.2.3. GSC+ IO_ERR_REQ Register

This register logs the HPA of the requester of an erroneous GSC+ operation. The format of this register
is as follows:

0 3
 1111

4 13
 System Requester Flex

14 19
 Sys Req Fixed

 20
 rm

21 31
 HV

The value of the System Requester Flex is set to either the Runway Flex value (which is hardwired) if
this I/O Adapter is a GSC+ master of the transaction (on behalf of a Runway client) or the GSC+ Flex
value if this I/O Adapter is a GSC+ slave of the transaction.

32

If this I/O Adapter received this erroneous transaction as a Runway slave, then the fixed field is obtained
from the outbound command queue and is set as follows:

 14
 1

 15
 0

16 18
master_id

 19
 0

where master_id corresponds to the Runway master of the failing transaction.

If this I/O Adapter is a GSC+ slave of the transaction, then the fixed field is set as follows:

 14
 0

15 17
 guest_id

18 19
 00

where guest_id corresponds to the GSC+ guest master of the failing transaction. Note that this is not the
entire fixed field of a GSC+ guest. Bits 18 through 19 typically correspond to the GSC+ guest submo-
dule. Unfortunately, UTurn does not have visibility of the submodule.

The rm bit indicates whether the requestor is on the remote bus (Runway). If this bit is set to 1, then the
system requestor fixed and flex fields are set to Runway values. If this bit is a 0, then the system requestor
fixed and flex fields specify the GSC+ requestor of the erroneous transaction.

The data contained in this register is not necessarily valid. Validity is indicated by the rqi in the GSC+
IO_ERR_INFO register.

This register is undefined at power–on and is unaffected by a CMD_Clear or CMD_Reset. A write to
this register has no effect.

2.2.3. UTurn Read Return RAM Register Sets

The following tables list the 104 registers which allow access to the UTurn Read Return RAM for test
purposes. The 104 registers are broken up into 7 separate register sets, but this is a formality; the register
addresses are sequential. The registers are read only, and provide the contents of the appropriate Read
Returm RAM (RRR) location as shown in the tables. The tables only show the details of a few registers;
the remainder of the table is left as not much af an exercise to the reader. These registers are provided
as a testability feature. Their usefulness is described in more detail in the testability chapter of this docu-
ment. The register values are undefined at power–on and are unaffected by a CMD_Clear or CMD_Re-
set.

2.2.3.1. UTurn Read Return RAM Register Set 1 (Register Set 16)

Offset Access Modes Class UTurn RdRtnRAM Register Name LSB Address

0 R HV RdRtnRAM[0] .. 400

1 R HV RdRtnRAM[1] .. 404

.

.

15 R HV RdRtnRAM[15] .. 43C

33

2.2.3.2. UTurn Read Return RAM Register Set 2 (Register Set 17)

Offset Access Modes Class UTurn RdRtnRAM Register Name LSB Address

0 R HV RdRtnRAM[16] .. 440

1 R HV RdRtnRAM[17] .. 444

.

.

15 R HV RdRtnRAM[31] .. 47C

2.2.3.3. UTurn Read Return RAM Register Set 3 (Register Set 18)

Offset Access Modes Class UTurn RdRtnRAM Register Name LSB Address

0 R HV RdRtnRAM[32] .. 480

1 R HV RdRtnRAM[33] .. 484

.

.

15 R HV RdRtnRAM[47] .. 4BC

2.2.3.4. UTurn Read Return RAM Register Set 4 (Register Set 19)

Offset Access Modes Class UTurn RdRtnRAM Register Name LSB Address

0 R HV RdRtnRAM[48] .. 4C0

1 R HV RdRtnRAM[49] .. 4C4

.

.

15 R HV RdRtnRAM[63] .. 4FC

2.2.3.5. UTurn Read Return RAM Register Set 5 (Register Set 20)

Offset Access Modes Class UTurn RdRtnRAM Register Name LSB Address

0 R HV RdRtnRAM[64] .. 500

1 R HV RdRtnRAM[65] .. 504

.

.

15 R HV RdRtnRAM[79] .. 53C

34

2.2.3.6. UTurn Read Return RAM Register Set 6 (Register Set 21)

Offset Access Modes Class UTurn RdRtnRAM Register Name LSB Address

0 R HV RdRtnRAM[80] .. 540

1 R HV RdRtnRAM[81] .. 544

.

.

15 R HV RdRtnRAM[95] .. 57C

2.2.3.7. UTurn Read Return RAM Register Set 7 (Register Set 22)

Offset Access Modes Class UTurn RdRtnRAM Register Name LSB Address

0 R HV RdRtnRAM[96] .. 580

1 R HV RdRtnRAM[97] .. 584

.

.

7 R HV RdRtnRAM[103] .. 59C

2.2.4. GSC+ Bus Specific Register Set (Register Set 30)

The following registers comprise the GSC+ Bus Specific Register Set:

 Offset Access Modes Class GSC+ Bus Specific Reg Name LSB Address

 0 RW BS GSC+_TRANS_TIMEOUT .. 780

 1 RW BS GSC+_PEND_TIMEOUT .. 784

 3 RW BS GSC+_CONFIG .. 78c

 4 RW BS GSC+_WD_TIMEOUT .. 790

 5 RW BS GSC_PVT_OVERRIDE .. 794

 8 RW BS GSC1.5X_CONFIG .. 7A0

 10 RW BS GSC2X_CONFIG .. 7A8

2.2.4.1. GSC+_TRANS_TIMEOUT Register

The GSC+_TRANS_TIMEOUT register indicates the length of time that the I/O Adapter will wait from
the time it masters a transaction on GSC until the corresponding slave acknowledge (READYL, RE-
TRYL, or PACKL) is asserted by a guest. For UTurn–mastered writes, the timeout counter begins the
cycle after the last data cycle is driven; for reads, the counter begins the cycle after the address cycle.
Because of implementation details, the value in this register actually corresponds roughly to the number
of four–GCLK ”ticks” that can pass before a timeout occurs. Thus, a value of decimal 40 in this register

35

corresponds to a timeout of roughly 160 GCLKs. Another result of the implementation of this register
is that there is a 2 to 10 cycle uncertainty added to the timeout indicated by the value in this register (after
scaling). In general, if a transaction gets anywhere near the timeout value in length, there are significant
system architecture problems. In any case, care should be taken to ensure that the value written into this
register takes into account the 4X multiplication factor and, for small timeout values, the uncertainty
cycles.

Because GSC+ can run in a range of frequencies, initialization of this register may need to take into ac-
count the bus frequency and possibly the type of connected GSC+ guests (bus bridges may have a longer
latencies). It is the responsibility of PDC to initialize this register as part of the I/O configuration process.

The format of the GSC+_TRANS_TIMEOUT register is as follows:

0 15
 0000000000000000

16 31
 GSC+_TRANS_TIMEOUT

The GSC+_TRANS_TIMEOUT register is located in the GSC+ block. Both reads and writes to the reg-
ister are queued resulting in no out of order execution.

Although a value of zero can be written to this register, zero–value timeouts are not recommended for
normal system operation. Changing from a zero–value timout to a non–zero value may require two writes
to the timeout register. A timeout error is highly likely with a zero timeout value. In general, do not write
a zero value to this register.

This register has a power–on value of X’00000FFF (4095 decimal). For a 40 MHz GCLK, this corre-
sponds to a timeout of 410 us after accounting for the 4X scaling factor and the uncertainty cycles; for
a 32 MHz GCLK, the timeout would be 512 us. The maximum configurable value for this register is
X’0000FFFF (65535 decimal). This corresponds to a maximum timeout value of 6.55 ms with a 40 MHz
GCLK or 8.19 ms with a 32 MHz GCLK. The value in the GSC+_TRANS_TIMEOUT register is unaf-
fected by a CMD_Reset or CMD_Clear.

2.2.4.2. GSC+_PEND_TIMEOUT Register

The GSC+_PEND_TIMEOUT register indicates the length of time that the I/O Adapter will wait, from
the time a pended slave acknowledge (PACKL) occurs in response to a UTurn–mastered DIO read until
the corresponding pended DIO read response is issued, before timing out. UTurn will not log an error
until the timeout condition is encountered AND no GSC+ guests are arbitrating for GSC bus ownership
AND UTurn is able to grant the bus to a guest (no OutQ or RRQ entries are valid, InQ is not full, etc).
Because of implementation details, the value in this register actually corresponds to roughly the number
of four–GCLK ”ticks” that can pass before a timeout occurs. Thus, a value of decimal 40 in this register
corresponds to a timeout of roughly 160 GCLKs. Care should be taken to ensure that the value written
into this register takes into account this 4X multiplication factor.

Because GSC+ can run in a range of frequencies, initialization of this register may need to take into ac-
count the bus frequency and possibly the number and type of GSC+ guests (as bus bridges may have long-
er latencies). It is the responsibility of PDC to initialize this register as part of the I/O configuration pro-
cess.

The format of the GSC+_PEND_TIMEOUT register is as follows:

0 15
 0000000000000000

16 31
 GSC+_PEND_TIMEOUT

36

The GSC+_PEND_TIMEOUT register is located in the GSC+ block. Both reads and writes to the regis-
ter are queued resulting in no out of order execution.

Although a value of zero can be written to this register, zero–value timeouts are not recommended for
normal system operation. Changing from a zero–value timout to a non–zero value may require two writes
to the timeout register. A timeout error is highly likely with a zero timeout value. In general, do not write
a zero value to this register.

This register has a power–on value of X’00000FFF (4095 decimal). For a 40 MHz GCLK, this corre-
sponds to a timeout of 410 us after accounting for the 4X scaling factor and the uncertainty cycles; for
a 32 MHz GCLK, the timeout would be 512 us. The maximum configurable value for this register is
X’0000FFFF (65535 decimal). This corresponds to a maximum timeout value of 6.55 ms with a 40 MHz
GCLK or 8.19 ms with a 32 MHz GCLK. The value in the GSC+_PEND_TIMEOUT register is unaf-
fected by a CMD_Reset or CMD_Clear.

2.2.4.3. GSC+_CONFIG Register

This register is used to manipulate various parameters within the GSC+ port. The format and exact defi-
nition of this register is as follows:

0 11
 R

12 13
FwdPCt

 14
FwdP

 15
 U

16 21
 Pulse Grant

 22
RST

 23
PAR

 24
 HE

 25
DIO

26 31
 Gst Arb Disable

where: R Reserved (all zeroes when read).
FwdPCt These bits configure the frequency with which the DMA forward progress

mechanism enabled by the FwdP bit will interrupt a DIO write stream and
allow a DMA transaction to be mastered by a GSC guest. If FwdPCt is set
to 2’b00, a DMA transaction will be allowed after every 4 OutQ entries
processed. If FwdPCt is 2’b01, a DMA transaction is allowed after 8 OutQ
entries are processed. If FwdPCt is 2’b10, a DMA transaction is allowed
after 12 OutQ entries are processed. If FwdPCt is 2’b11, a DMA
transaction is allowed after 16 OutQ entries are processed.

FwdP When set to 1 (default), DMA forward progress mechanism is invoked to
prevent long streams of DIO write transactions from holding off DMA
traffic. If bit is 0, the forward progress mechanism is disabled, and
UTurn’s GSC arbiter will behave the same as the GSC arbiter in the U2
chip.

U Unused, but implemented (value read is value written; default = 0)
Pulse Grant Each bit in this field corresponds to a GSC bus grant bit (BGL[n]); bit

16 corresponds to BGL[0], bit 17 corresponds to BGL[1], and so on.).
When a bit in this field is set, the corresponding BGL[n] bit will be
asserted for only 1 GSC bus cycle when a grant is initially issued (that
is, the grant will be pulsed). Grants corresponding to zeroed bits in this
field (default) will be “level grants”, as currently issued by the U2 chip.

RST When set to 1, indicates this IOA’s GSC+ RESETL pin is asserted for
approximately 10 ms upon UTurn’s receipt of a directed CMD_Reset
on the upper (Runway) port.

PAR When set to 1, disables parity checking on this IOA’s GSC+ AD[] bus.
HE When set to 1, this IOA will not go into hard error mode, although hard

37

errors will still be detected and logged.
DIO When set to 1, this IOA will not allow pended DIO read transactions.
Gst Arb Disable Each bit in this field corresponds to an external bus request bit. (Bit 26

corresponds to BRL[0], bit 27 corresponds to BRL[1], and so on.).
When a bit in this field is set, UTurn ignores the corresponding bus request
input. These bits do not prevent guests from splitting UTurn–mastered
transactions, so guest bus mastership is not prevented in all cases.

The characteristics of UTurn that are controlled by the GSC+_CONFIG register are characteristics that
should not change during normal system operation. It is expected that the GSC+_CONFIG register will
be initialized by PDC and/or operating system “boot” code, and that the value in this register will not
be changed during subsequent system operation. Changes to the value contained in this register that oc-
cur while other system/bus traffic is present can result in odd or errant UTurn operation. Before changing
the value in this register, all bus activity on both sides of UTurn should be halted, and all transaction traffic
internally queued in UTurn should be flushed. Extreme care should be exercised when altering the con-
tents of this register after boot.

The GSC+_CONFIG register is located in the GSC+ block. Reads and writes to this register are queued
resulting in no out of order execution.

The power–on and CMD_Reset value of this register is all zeroes. It is unaffected by a CMD_Clear.

2.2.4.4. GSC+_WD_TIMEOUT Register

The GSC+_WD_TIMEOUT register contains the number of GSC+ GCLK cycles that the I/O Adapter
will wait when there appears to be a hang on the GSC+ bus – that is, when a guest owns the bus without
mastering a transaction. Hang conditions can occur when an external bus grant occurs and the guest fails
to master a transaction or when a guest has issued a transaction and UTurn fails to assert READYL. Be-
cause GSC+ can run in a range of frequencies, this register may require initialization based on the bus
frequency and possibly the type and number of GSC+ guests (as bus bridges may have longer latencies).
It is the responsibility of PDC to initialize this register as part of the I/O configuration process.

The format of the GSC+_WD_TIMEOUT register is as follows:

0 11
 000000000000000000

12 31
 GSC+_WD_TIMEOUT

The GSC+_WD_TIMEOUT register is located in the GSC+ block. Both reads and writes to the register
are queued resulting in no out of order execution.

Although a value of zero can be written to this register, zero–value timeouts are not recommended for
normal system operation. Changing from a zero–value timout to a non–zero value may require two writes
to the timeout register. A timeout error is highly likely with a zero timeout value. In general, do not write
a zero value to this register.

This register has a power–on value of X’0000FFFF (65535 decimal). For a 40 MHz GSC GCLK, this
corresponds to a time of 1.64 ms; for a 32 MHz GCLK, the timeout is 2.05 ms. The maximum value
for this register, X’000FFFFF, corresponds to a time of 26 msec for a 40 MHz GSC GCLK, or 33 msec
for a 32 MHz GCLK. The value in the GSC+_WD_TIMEOUT register is unaffected by CMD_Reset
or CMD_Clear.

38

2.2.4.5. GSC_PVT_OVERRIDE Register

The GSC_PVT_OVERRIDE register contains information related to the electrical configuration of the
GSC pads. The GSC pads are designed to automatically adjust their output drive strength to compensate
for UTURN process, voltage, and temperature (PVT) variations. By reading this register, the numerical
value assigned to the GSC bus drive control circuit by the PVT autoconfiguration logic can be deter-
mined, and convergeance status can be obtained. By writing to this register, the bus drive control circuit
can be manually overridden. Given the newness of this pad design, it was thought prudent to include
a software mechanism to override the auto–configuration in case of unexpected behavior. For chip test-
ing purposes, all pad drivers can be disabled.

The format of the GSC_PVT_OVERRIDE register is as follows:

0 2

000

3

noconverge

4 6

000

7

pvt_test

8 10

000

11 15

calc_pvt_val

16 22

0000000

23

override_en

24 26

000

27 31

override_val

The fields in the GSC_PVT_OVERRIDE register data word are defined as follows.

Field name Field description

noconverge When set, indicates that the PVT circuit failed to converge when attempting to
match the external reference impedance, and that override_val is being used to
configure the PVT circuit in the GSC pads. (If noconverge is set, it may be due
to a missing resistor on UTurn’s PVT sense pin). This is a read–only bit; default
value is 0. This bit can be reset by setting the override_en bit, which causes the
PVT autoconfiguration circuit to “try again”.

pvt_test When set, indicates that the base driver in the GSC pads is disabled; only intended
use is for pad testing. This is a read/write bit; default value is 0 (base driver en-
abled).

calc_pvt_val The value calculated by the PVT circuit for this IOA’s GSC pads. This is a read–
only field; writes to this field have no effect. There is no defined “default” value.

override_en When set to 1, causes override_val to be sent to the GSC pads as the PVT circuit
configuration value. This is a read/write bit; default value is 0 (override disabled,
meaning that calc_pvt_val is sent to the pads to configure the PVT circuit). When
override_en is set, the PVT autoconfiguration circuit operates continuously re-
gardless of whether or not convergeance is achieved (the calc_pvt_val computed
is not sent to the pads with override_en set, but the value can be read by software
for testing or other purposes).

override_val The 5–bit value to be used by this IOA’s GSC pads to configure the PVT circuitry.
A larger value in this field corresponds to greater pad output drive strength (larger
FET sizes to drive signals onto bus wires). Value has no effect if override_en is
0 and noconverge is 0. This is a read/write field; default value is 5’b01101.

As with other GSC registers, the most significant bit of multi–bit fields are numbered 0. Thus, for exam-
ple, calc_pvt_val[0] corresponds to GSC_PVT_OVERRIDE[11], and pvt_override_val[0] corresponds
to GSC_PVT_OVERRIDE[27].

The GSC_PVT_OVERRIDE register is located in the GSC+ block. Both reads and writes to the register
are queued resulting in no out of order execution.

39

The calc_pvt_val field will contain a hardware–dependent value after power–on (could be any 5 bit val-
ue). With this in mind, the entire register’s power–on value is h’00??000D. The register’s value is unaf-
fected by CMD_Reset or CMD_Clear.

2.2.4.6. GSC1.5X_CONFIG Register

System software writes to UTurn’s GSC1.5X_CONFIG register to indicate the individual 8–MByte I/O
address spaces in which writes mastered by UTurn can be performed using the GSC variable length write
transaction. It is necessary that system software determine the capabilities of the guests on a given GSC
bus and correctly configure the GSC1.5X_CONFIG register in view of the guest capabilities. The format
of the data written to UTurn’s GSC1.5X_CONFIG register is as follows.

������#��!� �

� �� ��

The fields in the GSC1.5X_CONFIG register data word are defined as follows.

��!� #�"�
��!� ��'�&�%(�$#

������#��!� ���� ��(�# (��' ���!� �$&&�'%$#�' ($ �# 	 �
,(� ��)# $� ��� ���&�''
'%���� ��)&# +�!! "�'(�& � *�&���!��!�#�(� +&�(� (&�#'��(�$# $# ��� ��
(�� ��'(�#�(�$# ���&�'' �$& � %&$��''$&�"�'(�&�� +&�(� ��!!' +�(��# �# 	
�
,(� ��� ���&�'' '%��� +�$'� �$&&�'%$#��#� ������#��!� ��(�' '�(�

The 1.5X_enable bits correspond to I/O address space chunks as follows.

40

�"* � ��� ���(�)) (�% � �&$$�%*)

� ���� ���� � ��
� ���� ���)'��� � ��+(% ,"## %&* �&�#�)�� ��.
��))�) *&)'��� *!(&+ ! ���� ����

� ���� ���� � ���� ���� ���!%"��##- ���)'��� � +)� ��+*"&%�

� ���� ���� � ��
� ���� ��%�(�# ���)'���

	 ���� ���� � ���� ���� ��%�(�# ���)'���

 ���� ���� � ��
� ���� ��%�(�# ���)'���

� ���� ���� � ���� ���� ��%�(�# ���)'���

� �	�� ���� � �	
� ���� ��%�(�# ���)'���

 �	�� ���� � �	�� ���� ��%�(�# ���)'���

� �
�� ���� � �

� ���� ��%�(�# ���)'���

� �
�� ���� � �
�� ���� ��%�(�# ���)'���

�� ���� ���� � ��
� ���� ��%�(�# ���)'���

�� ���� ���� � ���� ���� ��%�(�# ���)'���

�� ���� ���� � ��
� ���� ��%�(�# ���)'���

�	 ���� ���� � ���� ���� ��%�(�# ���)'���

�
 �
�� ���� � �

� ���� ��%�(�# ���)'���

�� �
�� ���� � �
�� ���� ��%�(�# ���)'���

�� ���� ���� � ��
� ���� ��%�(�# ���)'���

�
 ���� ���� � ���� ���� ��%�(�# ���)'���

�� ���� ���� � ��
� ���� ��%�(�# ���)'���

�� ���� ���� � ���� ���� ��%�(�# ���)'���

�� ���� ���� � ��
� ���� ��%�(�# ���)'���

�� ���� ���� � ���� ���� ��%�(�# ���)'���

�� ���� ���� � ��
� ���� ��%�(�# ���)'���

�	 ���� ���� � ���� ���� ��%�(�# ���)'���

�
 ���� ���� � ��
� ���� ��%�(�# ���)'���

�� ���� ���� � ���� ���� ��%�(�# ���)'���

�� ���� ���� � ��
� ���� ��%�(�# ���)'���

�
 ���� ���� � ���� ���� ��%�(�# ���)'���

�� ���� ���� � ��
� ���� ��%�(�# ���)'���

�� ���� ���� � ���� ���� ��%�(�# ���)'���

	� ���� ���� � ��
� ���� ��%�(�# ���)'���

Note that the GSC1.5X_enable bit corresponding to the final 8 MByte range of I/O addresses is always
0. Broadcast address space falls within this final 8 MByte range. Variable length write transactions to

41

broadcast space are not supported by any GSC devices, and UTurn will not master variable length writes
in this range.

The whole concept of GSC 1.5X support is based on device characteristics that do not change over time
– GSC guest capabilities, GSC bus configuration restrictions, and corresponding UTurn configuration
requirements. It is expected that the GSC1.5X_CONFIG register will be initialized by PDC and/or oper-
ating system “boot” code, and that the value in this register will not be changed during normal system
operation. Changes to the value contained in this register that occur while other system/bus traffic is pres-
ent can result in errant UTurn operation. Before changing the value in this register, all bus activity on
both sides of UTurn should be halted, and all transaction traffic internally queued in UTurn should be
flushed. Realistically, this register should not be changed after boot.

The GSC1.5X_CONFIG register is logically located in the GSC+ HPA register map, but is physically
located in the Runway clock domain of UTurn due to implementation considerations. As with all regis-
ters located in the Runway block, writes to this register occur immediately, whereas reads are queued.

The power–on value of this register is all zeroes. It is unaffected by CMD_Reset or CMD_Clear.

2.2.4.7. GSC2X_CONFIG Register

System software writes to UTurn’s GSC2X_CONFIG register to indicate the individual 8–MByte I/O
address spaces in which the data cycles of variable–length writes mastered by UTurn can be performed
in a fast transfer mode, with data switching at 2X the normal GSC rate. It is necessary that system soft-
ware determine the capabilities of the guests on a given GSC bus and correctly configure the
GSC2X_CONFIG register in view of the guest capabilities. The general progression of this initialization
is documented in a subsequent section. Note that value written to this register has implications for the
value written to the GSC1.5X_CONFIG register. The format of the data written to UTurn’s
GSC2X_CONFIG register is as follows.

���� ���� �

� �� ��

The fields in the GSC2X_CONFIG register data word are defined as follows.

����� ��� ����� ��$�#�"%�!

���� ���� ���� ��% � %��$ ����� �!##�$"! �$ %! � 	 �
)%� ��& � !�
�� ���#�$$
$"���� ��&# �� ��$%�# � '�#�������� �%� (#�%� %#� $��%�! �� %�� ��$*
%� �%�! ���#�$$ ����$ (�%�� � 	 �
)%�
�� ���#�$$ $"��� (�!$� �!##�*
$"! �� � ���� ���� ��% �$ $�%�

The 2X_enable bits correspond to I/O address space chunks in the same fashion as the 1.5X_enable bits.
See the description of the GSC1.5X_CONFIG register for details.

The GSC2X specification requires that all modules providing GSC2X capability (supporting variable–
length writes with data in fast mode) must also support GSC1.5X capability (variable–length writes with
data at normal bus rates). This means that if any bit is set in the GSC2X_CONFIG register, the corre-
sponding bit should also be set in the GSC1.5X_CONFIG register. There may be bits set in the
GSC1.5X_CONFIG register that are not set in the GSC2X_CONFIG register, because support of
GSC1.5X capability does not imply support of GSC2X capability.

42

Note that the GSC2X_enable bit corresponding to the final 8 MByte range of I/O addresses is always
0 for the same reason that bit 31 of the GSC1.5X_CONFIG register is always 0 (broadcast space con-
cerns).

The whole concept of GSC 2X support is based on device characteristics that do not change over time
– GSC guest capabilities, GSC bus configuration restrictions, and corresponding UTurn configuration
requirements. It is expected that the GSC2X_CONFIG register will be initialized by PDC and/or operat-
ing system “boot” code, and that the value in this register will not be changed during normal system op-
eration. Changes to the value contained in this register that occur while other system/bus traffic is present
can result in errant UTurn operation. Before changing the value in this register, all bus activity on both
sides of UTurn should be halted, and all transaction traffic internally queued in UTurn should be flushed.
Realistically, this register should not be changed after boot.

The GSC2X_CONFIG register is logically located in the GSC+ HPA register map, but is physically lo-
cated in the Runway clock domain of UTurn due to implementation considerations. As with all registers
located in the Runway block, writes to this register occur immediately, whereas reads are queued.

The power–on value of this register is all zeroes. It is unaffected by CMD_Reset or CMD_Clear.

2.2.5. GSC+ Performance Counter Register Set (Register Set 31)

The following registers comprise the GSC+ Performance Counter Register Set:

 Offset Access Modes Class GSC+ Perf Count Reg Name LSB Address

 0 RW BS GSC+_PERF_MASK_0 ...7C0

 1 RW BS GSC+_PERF_MASK_1 .. 7C4

 4 RW BS GSC+_PERF_COMP_0 .. 7D0

 5 RW BS GSC+_PERF_COMP_1 .. 7D4

 8 RW0 BS GSC+_PERF_COUNT_0 .. 7E0

 9 RW0 BS GSC+_PERF_COUNT_1 .. 7E4

 15 RW BS GSC+_PERF_CONFIG .. 7FC

In the following descriptions of each of the GSC+_PERF registers, all registers suffixed with 0 are con-
sidered a set and all registers suffixed with 1 are considered a set. As a set, the mask register and comp
register combine to determine the occurrence of events which will affect the value of the corresponding
count register. No register within a set can be affected by registers in the other set.

2.2.5.1. GSC+_PERF_MASK_0 and 1 Registers

The GSC+_PERF_MASK_n registers contains several fields which indicate whether a function is to be
monitored by the performance counters. The format of the GSC+_PERF_MASK registers are as follows:

0 9
 0000000000

10 15
BRL msk

 16
UTrq

17 22
BGL msk

 23
UTgt

 24
Gmstr

 25
LkSpl

 26
AddvL

27 30
Type msk

 31
DoRR

where:
BRL mskmask of GSC+ guest bus requests (BRL[0] corresponds to bit 10)

43

UTrq mask of UTurn’s internal bus request
BGL msk mask of GSC+ guest bus grants (BGL[0] corresponds to bit 17)
UTgt mask of UTurn’s internal bus grant
Gmstr mask of the logical ”NAND” of all BGL lines and LSL
LkSpl mask of inverted version of GSC+ LSL signal
AddvL mask of GSC+ ADDVL signal
Type msk mask of GSC+ TYPE[] bus
DoRR mask of UTurn’s internal ”DMA Read Return in Progress” indicator

All fields are positive true. When a bit is set to 1, the value of the signal or condition corresponding to
that bit is compared to the corresponding value in the GSC+_PERF_COMP_n register. If there is a
match, then the GSC+_PERF_COUNT register is incremented. As an example, if it is desired to count
the number of occurrences of assertion of GSC+ bus request by guest 3 (BRL[3] = 0), bit 20 of
GSC+_PERF_MASK_n should be set to 1, and all other bits should be set to 0.

The GSC+_PERF_MASK_n registers is located in the GSC+ block. Both reads and writes to these regis-
ters are queued resulting in no out of order execution.

These registers have undefined values at power–on, and are unaffected by a CMD_Reset or CMD_Clear.

2.2.5.2. GSC+_PERF_COMP_0 and 1 Registers

The GSC+_PERF_COMP_n registers contains several fields which indicate the value of a function
which is to be monitored by the performance counters. The format of the GSC+_PERF_COMP_n regis-
ters are as follows:

0 9
 0000000000

10 15
BRL cmp

 16
UTrq

17 22
BGL cmp

 23
UTgt

 24
Gmstr

 25
LkSpl

 26
AddvL

27 30
Type cmp

 31
DoRR

where:
BRL cmp value to be compared with GSC+ guest bus requests; 0 = guest requesting

GSC+
 (BRL[0] corresponds to bit 10, BRL[5] corresponds to bit 15)

UTrq value to be compared with UTurn’s internal bus req; 1=UTurn requesting
GSC+

BGL cmp value to be compared with GSC+ guest bus grants; 0 = grant to guest n
 (BGL[0] corresponds to bit 17, BGL[5] corresponds to bit 22)

UTgt value to be compared with UTurn’s internal bus grant; 1 = grant to UTurn
Gmstr value to be compared with the logical ”NAND” of all GSC+ BGL lines and

the
 GSC+ LSL signal

LkSpl value to be compared with an inverted version of the GSC+ LSL signal;
 1 = LSL asserted by a guest

AddvL value to be compared with GSC+ ADDVL signal; 0 = GSC+ ADDVL as-
serted

Type cmp value to be compared with GSC+ TYPE[] bus (same sense as bus signal)
DoRR value to be compared with UTurn’s internal ”DMA Read Return in Prog-

ress”
 indicator; 1 = Pended DMA read return in progress on GSC+ (DRRL as-

serted)

44

When a bit in the GSC+_PERF_MASK_n indicates that a particular signal or condition is to be moni-
tored, the corresponding field in the GSC+_PERF_COMP_n register is compared with the activity on
this IOA. Whenever there is a match, the GSC+_PERF_COUNT_n register is incremented.

The values to be compared for the BRL cmp, BGL cmp, and AddvL fields are low true values, matching
the low true nature of the GSC+ signals BRL[], BGL[], and ADDVL respectively. Thus, to look for the
condition ”BRL[0] asserted”, a value of 0 must be written to bit 10 of GSC+_PERF_COMP_n. Similar-
ly, to count the condition ”BGL[5] not asserted”, a 1 must be written to bit 22 of GSC+_PERF_COMP_n.

As an example, assume that the condition to be counted is the number of 8 word (32 byte) write transac-
tions mastered by GSC+ guest 1. To enable counting of this type of event, the GSC+_PERF_MASK_n
register must have bits 18, 26, and 27–30 set to 1, enabling comparison on BGL[1], ADDVL, and
TYPE[0:3] respectively. All other bits in GSC+_PERF_MASK_n should be set to 0.
GSC+_PERF_COMP_n must the be configured such that bit 18 is set to 0 (corresponding to BGL[1]
asserted), bit 26 set to 0 (corresponding to ADDVL asserted), and bits 27–30 set to 0111 (corresponding
to the type code for an 8 word write). Other bits in GSC+_PERF_COMP_n can be set to either 1 or 0.

The GSC+_PERF_COMP_n registers is located in the GSC+ block. Both reads and writes to these regis-
ters are queued resulting in no out of order execution.

These registers have undefined values at power–on, and are unaffected by a CMD_Reset or CMD_Clear.

2.2.5.3. GSC+_PERF_COUNT_0 and 1 Registers

The GSC+_PERF_COUNT_n registers maintain the count of specific events on an IOA, as programmed
by the GSC+_PERF_COMP/MASK_n registers and the GSC+_PERF_CONFIG register. The format
of the GSC+_PERF_COUNT_n registers are as follows:

0 31
 event count

If the GSC+_PERF_CONFIG count mode is set to 0, then the GSC+_PERF_COUNT_n register incre-
ments whenever a bit in the GSC+_PERF_MASK_n indicates that a field is to be monitored and a com-
parison of the corresponding field in the GSC+_PERF_COMP_n register with the activity on this IOA
yields a favorable result. It will also increment on every GSC+ GCLK if the count mode in the
GSC+_PERF_CONFIG register equals 1.

The GSC+_PERF_COUNT_n registers is located in the GSC+ block. Both reads and writes to these
registers are queued resulting in no out of order execution. Any write to either GSC+_PERF_COUNT
register clears the register, regardless of the data value specified. A read of either register does not affect
its value.

These registers have undefined values at power–on, and are unaffected by a CMD_Reset or CMD_Clear.

2.2.5.4. GSC+_PERF_CONFIG

The GSC+_PERF_CONFIG register affects both GSC+_PERF register sets 0 and 1. The format of the
GSC+_PERF_CONFIG register is as follows:

0 2
 count mode 0

3 5
 count mode 1

6 30
 R

 31
count enb

45

where:
count mode 0 performance counter 0 mode
count mode 1 performance counter 1 mode
R Reserved fields are always zeroes.
count enb count enable (affects both sets of counters)

The performance counter modes are defined as follows:
0: Count GCLK cycles during events determined by the corresponding mask and

 compare registers in this set.
1: Count GCLK cycles
2: Count events determined by this set’s corresponding mask and compare registers
3–7: Undefined

The count enb bit enables incrementing for the GSC+_PERF_COUNT registers. The count mode fields
determine what is to be counted, according to the above description.

The GSC+_PERF_COUNT register is located in the GSC+ block. Both reads and writes to this register
are queued resulting in no out of order execution.

The power–on and CMD_Reset value of the GSC+_PERF_CONFIG register is X’00000000. This regis-
ter is unaffected as a result of a CMD_Clear.

2.3. Runway Broadcast Physical Address Space

Addresses in the range X’FFFC0000 through X’FFFFFFFF are called broadcast physical address (BPA)
space. The first half of the BPA is considered the local broadcast register set. Issuing a write operation
to a register in this range affects every module on Runway. The second region of BPA is considered the
global broadcast register set. Issuing a write operation in this range affects every module on all busses.
UTurn will not implement any global broadcast registers, and will therefore never recognize or forward
global broadcast transactions, such as reset.

Broadcast physical 40–bit addresses to architected I/O registers take the following form:

0 21
 1111.1111.1111.1111.1111.11

22
 g

23 27
 brd_pg

28 33
 regset

34 37
 offset

38 39
 00

where: 1111... indicates a broadcast I/O address.
g set to 0 to indicate local broadcast space
brd_pg indicates the page in the selected broadcast space. (Software must set to b’00000.)
regset indicates the register set within the BPA. The register sets are as follows:

Local Broadcast Register Set: 0
Runway Bus Specific Register Set: 30 decimal

offset indicates the address offset of a given register. Registers are described in more detail
 in the following sections.

2.3.1. Runway Local Broadcast Register Set (Register Set 0)

The register map for the Runway Local Broadcast Register Set within the Runway broadcast physical
address space is as follows:

46

 Offset Access Modes Class Local Register Name LSB Address

 8 W A Runway IO_FLEX .. 020

2.3.1.1. Runway IO_FLEX Register

The format of the Runway IO_FLEX register is as follows:

0 3
 1111

4 13
 flex = 1111111110

14 30
 00000000000000000

 31
enb

The flex field in the Runway IO_FLEX register specifies the programmable portion of the I/O Adapter’s
HPA space on Runway. This value is hardwired. The IO_FLEX register also contains the enable bit
(enb).

When the enable bit is set to 0, indicating disable, UTurn must not forward GSC+ transactions to Runway
(unless they are read responses). However, asynchronous events (such as TOC) must be forwarded.
Since there is a single inbound queue and read responses from HPA registers and PDC are critical, UTurn
will disable arbitration for GSC+ guests. This will ensure that no new transactions (specifically non read
returns) are generated on GSC+. GSC+ transactions issued prior to the disable are processed along with
all read returns. In addition to read responses, UTurn may master the following transactions, when dis-
abled:

� BroadErr in response to a detected Runway control or address
parity error

� DirErr in response to a GSC+ slave_ack failure, GSC+
timeout, or GSC+ parity error on a UTurn mastered
programmed I/O reads.

� CMD_Reset in response to the TOC line being asserted true.

� PFW_Interrupt write in response to PFail_Warning.L line being asserted.

Finally, in disable mode, UTurn will accept and process all Runway transactions, whether bound for
GSC+, PDC, HPA, or BPA space.

The Runway IO_FLEX register is located in the inbound Runway block to facilitate comparisons to slave
transactions.

On power–on, this register will have the value X’FFF80000. This register is unaffected as a result of
a CMD_Reset or CMD_Clear.

2.3.2. Runway Bus Specific Register Set (Register Set 30)

The following register resides in the Runway Bus Specific Register Set in Runway broadcast physical
address space:

 Offset Access Modes Class Runway Specific Register Name

 8 W BS RUNWAY_TIMEOUT

47

2.3.2.1. RUNWAY_TIMEOUT Register

The RUNWAY_TIMEOUT register contains the minimum number of Runway cycles that the mastering
module will wait for a response before it times out. At power–on, this register is initialized to 4096
cycles. As part of configuration, the RUNWAY_TIMEOUT register may be written by software with
a value which more closely corresponds to the worst case response time. It is expected that 24 bits is
the upper bound of what might be required for a timeout cycle count. The register format is therefore
as follows:

0 31

 RUNWAY_TIMEOUT

The RUNWAY_TIMEOUT register is located in the Runway inbound block, since the timeout counter
associated with this register must time Runway inbound read transactions. Due to its location, writes
to this register will occur immediately, bypassing the queues, whereas reads are queued. Therefore, it
is possible that a write to this register could bypass a queued read already in process. To avoid this, soft-
ware should wait for a read response before issuing a subsequent write to RUNWAY_TIMEOUT.

The contents of this register will not change as a result of a CMD_Reset or a CMD_Clear. At power–on,
the value of this register is X’00001000.

2.4. GSC+ Broadcast Physical Address Space

To write to GSC+ Broadcast Address Space, the Runway IO_CONTROL register must be placed in peek
mode and the Runway address bits 0 through 7 must be ones, address bits 8 through 21 must compare
to an IO_IO_LOW(_HV) and corresponding IO_IO_HIGH(_HV) field (as described in section 2.1.2.7,
where bits 8–11 must equal 4’b1111 and bits 12–23 must be between the low/high range specified by bits
20–31 of the low/high registers), address bits 22 though 33 must be set zero, address bits 34 through 37
must be set to the register offset, and bits 38 and 39 are zero.

0 7
 11111111

8 21
 LOW <= field < HIGH

22
 g

23 27
 brd_pg

28 33
 regset

34 37
 offset

38 39
 00

where: 1111... indicates an I/O address.
g set to 0 to indicate local broadcast space
brd_pg indicates the page in the selected broadcast space. (Software must set to b’00000.)
regset indicates the register set within the BPA. (Software must set to b’0000.)
offset indicates the address offset of a given register. Registers are described in more detail

 in the following sections.

When in peek mode, transactions in the address range specified by IO_IO_LOW and IO_IO_HIGH range
are remapped to the local broadcast region before being forwarded to GSC+ (by setting the most signifi-
cant 14 bits of the address to ones). This results in a GSC+ address with the following format:

0 13
 1111.1111.1111.11

14
 g

15 19
 brd_pg

20 25
 regset

26 29
 offset

30 31
 00

where: 1111... indicates a broadcast I/O address.
g set to 0 to indicate local broadcast space

48

brd_pg indicates the page in the selected broadcast space. (will always be set to b’00000.)
regset indicates the register set within the BPA. (This will always be set to b’00000.)
offset indicates the address offset of a given register. Registers are described in more detail

 in the following sections.

2.4.1. GSC+ Broadcast Register Set (Register Set 0)

These converted addresses are used to access the following register in the GSC+ block:

 Offset Access Modes Class Local Register Name

 8 W A GSC+ IO_FLEX

2.4.1.1. GSC+ IO_FLEX Register

The format of the GSC+ IO_FLEX register is as follows:

0 3
 1111

4 13
 flex

14 30
 00000000000000000

 31
enb

The flex field in the GSC+ IO_FLEX register specifies the programmable portion of the I/O Adapter’s
HPA space for this GSC+ port. This value is loaded by PDC and the OS during system configuration.
The IO_FLEX register also contains the enable bit (enb), which is necessary for enabling and disabling
of GSC+ modules from arbitration for bus mastership.

When the enable bit is set to 0, indicating disable, UTurn must disable arbitration for GSC+ guests. How-
ever, as long as no hard or fatal errors are logged, UTurn will still drain the outbound and read return
queues by mastering these transactions on GSC+. The Runway side of the I/O Adapter will not be af-
fected.

The GSC+ IO_FLEX register is located in the GSC+ block to facilitate comparisons to queued transac-
tions.

As with all Broadcast Physical Address Space registers, the GSC+ IO_FLEX is not readable. However,
its contents are reflected in the Runway Hard Physical Address Space GSC+_SHADOW_FLEX register,
which is readable.

On power–on, this register will have the value X’FFF80000. This register is unaffected as a result of
a CMD_Reset or CMD_Clear.

2.5. Address Decode Requirements

Each I/O Adapter within UTurn must recognize five distinct address spaces – Runway’s hard physical
address space, both regions of space bounded by the two sets of IO_IO_LOW and IO_IO_HIGH registers
(which must encompass the GSC+ hard physical address space and the GSC+ broadcast physical space
by facilitating the peek mechanism), Runway’s broadcast physical address space, and PDC. To ensure
that the system can be properly configured, the address spaces recognized by UTurn are prioritized to
handle any case of overlap. The BPA space, HPA space, and PDC space are hardwired (thereby ensuring
no overlap) and they take precedence over the region bounded by IO_IO_LOW and IO_IO_HIGH, which
comes up uninitialized.

49

This address decode precedence is required to guarantee that a system can be reset and new addresses
correctly assigned. The following initialization sequence is suggested as the basis for the address decode
model:

1. A broadcast IO_FLEX transaction is issued over Runway, with the enable bit
cleared, limiting the I/O Adapters’ ability to master a transaction on Runway.

2. A CMD_Reset is written to the IO_COMMAND in the Supervisory Register Set of
every module on Runway, putting the GSC+ IO_CONTROL Register in off mode so
that transactions are not forwarded to the GSC+ bus.

3. One set of IO_IO_LOW and IO_IO_HIGH registers are opened, permitting access to
the GSC+ IO_FLEX register.

4. The Runway IO_CONTROL Register is put into peek mode, permitting writes to the
GSC+ IO_FLEX Register.

5. The GSC+ IO_FLEX Register is loaded disabling the GSC+ guests from bus master-
ship.

6. The Runway IO_CONTROL Register is placed into include mode and the GSC+
IO_CONTROL Register is placed into exclude mode, allowing access to the GSC+
guests.

7. The GSC+ bus is ”walked”, meaning that the GSC+ guests are polled to determine
their address region requirements and they are reset.

8. Finally, the IO_IO_LOW and IO_IO_HIGH registers are loaded with values reflect-
ing the address region required by the GSC+ guests.

50

2.6. Address Space Partitioning

Page Zero

Memory
Address
Space

Runway bus Hard Physical
Address Space

Local Broadcast
Address Space

Global Broadcast
Address Space

X’0000000000

X’0000001000

X’FFF1000000

X’FFFFF80000

X’FFFFFC0000

X’FFFFFE0000

X’FFFFFFFFFF

General I/O Space

X’FFFC000000
EISA Space or

General I/O Space
(7 8–MByte GSC+ devices)

X’FFFFC00000
Primary LASI

X’FFFFE00000
Wax I/O Extensions

X’FFFFF00000

A second LASI alternative maybe at x’FFFF800000

Possible Tenants are:

Graphics: X’FFF4000000 – X’FFF7FFFFFF
Graphics: X’FFF8000000 – X’FFFBFFFFFF

Any 24 8MByte GSC+ devices over the entire range

Any 7 8MB devices X’FFF0600000–X’FFF3FFFFFF

1030 GB

194 MB

60 MB

2 MB

1 MB

.25 MB

.125 MB

.125 MB

4 KB

or

.50 MB
undefined

available for GSC+ HPA

Memory PDC Space
X’EF00000000

X’F0F1000000

4 GB

I/O Space (not dedicated)
X’FF00000000

Unusable I/O Space
60 GB

4 GB

Unused I/O PDC Space
X’F000000000

4 GB

KittyHawk I/O PDC Space
X’F0F0000000

14 MB
X’F0F0200000

4 MB

Unused I/O PDC Space

51

2.7. Architected I/O Writes

UTurn must issue writes to the Runway Specific Register named PFW_INTERRUPT which is imple-
mented by processors. I/O Adapter0 on UTurn_0 is connected to the PFAIL_WARNING.L signal and
it must generate a Runway WRITE_SHORT to the PFW_INTERRUPT register located at address
X’FFFFFC0780. This write to the PFW_INTERRUPT register will generate a powerfail interruption
in processors. The PFAIL_WARNING.L signal must be detected by the Runway inbound block which
will then generate the transaction. UTurn will not assert ResetL on GSC+ when PFAIL_WARNING.L
is detected.

Other architected writes include writes to the monarch processor IO_EIR on behalf of a GSC+ InterruptL
assertion and writes to the monarch processor SRS IO_COMMAND on behalf of a TOC. The interrupt
is received by each I/O Adapter on behalf of its GSC+ bus and queued in the inbound queue so that it
is processed in the order it is received. All TOC assertions are only received by the I/O Adapter with
a client_id encoding of 4. TOC assertions will bypass the queue (with the exception of any pending
write_backs from the cache) and be immediately issued to Runway. This is to ensure its execution, since
TOCs are sometimes issued by the console port user in the event of a hung system. More detail regarding
TOCs and interrupts are provided in the UTurn Specific Register Set section of this chapter.

GeckoBoa (which is a GSC+ guest) may issue a Directed Command Reset to a processor on behalf of
an NIO client. UTurn will forward this transaction without manipulating the address. The assumption
is that the NIO client can be informed of the monarch processor location programmatically.

2.8. Error Handling

UTurn detects three levels of error severity:

� soft error – Does not damage architectural state or operation of the I/O Adapter, but
the error may not be corrected.

� hard error – Damages the architectural state of the I/O Adapter and may compromise
its operation, but the extent of the damage is known and contained. If
the hard error was detected on the Runway side (upper port of the IOA)
then the I/O Adapter must discard subsequent writes from GSC+ guests
and Runway clients and return PATH_ERROR (with corresponding
master_id and trans_id) on subsequent reads from Runway and GSC+
clients, except those reads from HPA of the Runway port or reads from
PDC. If the hard error was detected on the GSC+ side (lower IOA port)
then the I/O Adapter must discard subsequent writes from GSC+
guests and Runway clients and return PATH_ERROR (with correspon–
ding master_id and trans_id) on subsequent reads from Runway and
GSC+ clients, except those reads from HPA of the Runway or GSC+
ports or reads from PDC. The I/O Adapter cannot master transactions
and must be CMD_Reset by software.

� fatal error – Damages the architectural state of the I/O Adapter and the extent of the
damage is not known and may not be contained. If the fatal error was
detected on the Runway side (upper port of the IOA) then the I/O

52

Adapter must discard subsequent writes from GSC+ guests and Runway
clients and return PATH_ERROR (with corresponding master_id and
trans_id) on subsequent reads from Runway and GSC+ clients, except
those reads from HPA of the Runway port or reads from PDC. If the
fatal error was detected on the GSC+ side (lower port of the IOA) then
 the I/O Adapter must discard subsequent writes from GSC+ guests and
Runway clients and return PATH_ERROR (with corresponding mas–
ter_id and trans_id) on subsequent reads from Runway and GSC+
clients, except those reads from HPA of the Runway or GSC+ ports or
reads from PDC. The I/O Adapter cannot master transactions and must
be CMD_Reset by software.

In the previous definitions, a Runway PATH_ERROR is the simultaneous assertion of ADDR_VALID
and DATA_VALID on Runway and a GSC+ PATH_ERROR is the assertion of ERRORL on GSC+.

When a hard or fatal error occurs on either the Runway side or GSC+ side of an IOA, the GSC+ port will
deviate slightly from the above architected definition. Instead of discarding writes and failing to
slave_ack reads on hard or fatal errors, the GSC+ port will simply disable GSC+ arbitration, effectively
disallowing any further transactions. There is one exception to this approach: Should a GSC+ guest split
a UTurn mastered transaction and gain ownership of the GSC+ bus even though a hard or fatal error is
logged, UTurn must continue to grant them the bus. In this case, UTurn will drop any GSC+ guest mas-
tered writes and assert errorl in response to any GSC+ guest mastered reads.

The I/O Adapter must log errors in one of the two IO_STATUS registers, along with an estat field which
indicates the type of failure. The GSC+ and Runway blocks will log copies of the se, he, and fe bits in
their own copies of the IO_STATUS registers. However, when one port (Runway or GSC+) goes hard
or fatal, so does the other port. So, although the corresponding error bit will not be set in both register
sets, both ports will behave as if they were in hard or fatal error mode. This approach allows for the imple-
mentation of distinct error logging registers on the GSC+ and Runway blocks which can then be uniquely
addressed for subsequent interrogation.

The remainder of this section details the transaction type, possible errors, and subsequent I/O Adapter
behavior. Throughout this discussion, the following error types are discussed:

� Unexpected Runway Response I/O Adapter receives a read return with its master id, but
the transaction id does not correspond to any transaction
currently in progress.

� Runway BroadError Trans UTurn receives a BROADCAST_ERROR transaction.

� Runway Control Parity Error a control parity error detected by UTurn.

� Runway Address Parity Error an address parity error detected by UTurn.

� Runway Data Parity Error a data parity error detected by UTurn.

� Runway Mode Phase Error Runway write_short is received, but there are no subse-
quent data cycles.

� Runway timeout Failure of a Runway guest to issue a read response within
the timeout window. Note: UTurn will not detect di-
rected_errors. Therefore, read responses of this nature will
also result in Runway timeouts.

53

� Incompatible transaction size A Runway read return was in error because the size of the
response is less than that of the request. If more data is
expected and instead an address cycle occurs, this new
transaction may not be handled properly. (UTurn won’t
detect the case of the master_id or trans_id changing in the
midst of a data return.)

� Runway PATH_ERROR I/O Adapter detects an assertion of ADDR_VALID and
DATA_VALID.

� TLB fault I/O Adapter is in ERROR (or direct insert) mode and de-
tects a TLB fault. (When in this mode, software is ex-
pected to directly insert TLB entries.) Or I/O Adapter is in
NORMAL (or fetch on miss) mode and the fetched IO
PDIR entry is invalid. (When in this mode, software is
expected to load the IO PDIR with valid entries.)

� GSC+ improper access GSC+ transaction is inconsistent with the target address
(such as a DMA read from an I/O address or a GSC+ write
of greater than 1 word to an I/O address).

� GSC+ internal error UTurn’s GSC+ control circuitry encountered a condition
that indicates either a bus arbitration violation or an inter-
nal logic error, resulting in both UTurn and a guest device
“owning” the GSC bus at the same time.

� GSC+ protocol error GSC+ guest masters a transaction with incorrect protocol,
such as a two word read or write from an odd word ad-
dress.

� GSC+ slave acknowledge GSC+ guest fails to assert READYL, PACKL, or
RETRYL, resulting in a connected transaction timeout.

� GSC+ pend timeout failure of a GSC+ guest to issue a response on a pended
DIO read within time limits, resulting in a pended transac-
tion timeout.

� GSC+ watchdog timeout GSC+ guest owns the bus (either due to explicit grant or
assertion of LSL to split), but no transaction has been mas-
tered within the timeout window.

� GSC+ Parity Error I/O Adapter detects invalid parity on GSC+ address or data
cycle

� GSC+ assertion of ERRORL ERRORL was asserted by guest and detected by I/O
Adapter (Note: that the GSC+ spec requires that ErrorL be
asserted on the second cycle following the cycle in error,
allowing UTurn to associate the error with a particular
transaction.)

� Illegal GSC+ Response A GSC+ pended DIO read return was in error because the
size of the response did not correspond to the request.

54

� Unexpected GSC+ Response A GSC+ pended DIO read return was mastered by a guest,
but no pended DIO read was outstanding.

� GSC Error Transaction A GSC+ guest has issued a GSC Error transaction type to
indicate a failure. (Currently GeckoBoa is the only GSC
module that issues this transaction type, which is also re-
ferred to as a GeckoBoa TOC transaction. However, this
reference is discouraged, as it leads to some confusion with
UTurn’s TOC signal.)

Errors can be subdivided into three categories, those which are generic to a transaction (Unexpected Run-
way Response, Runway BroadError Transaction, GSC error transaction, and GeckoBoa TOC Assertion),
those which are specific to Runway (the next ten listed above), and those which are specific to GSC+
(the remaining from the list above). In all of the following tables, the severity and estat are recorded in
either the Runway block or the GSC+ block IO_STATUS register, depending on which block detected
the error. Therefore, if the Runway IO_ERR_REQ and IO_ERR_RESP are valid, then the sev and estat
field are stored in the Runway IO_STATUS register. When the table indicates that an IO_ERR_REQ or
IO_ERR_RESP register is ”not relevant”, then this means that this register contents has not changed as
a result of this error. When the table indicates that an IO_ERR_REQ or IO_ERR_RESP register is ”not
valid”, then this means that the register’s contents does not reflect this error and this must be indicated
in the IO_ERR_INFO register. The contents of these registers may very well be valid, but they indicate
the requester and responder of a previously detected error on that side of UTurn.

The Runway and GSC+ specific errors are discussed as they relate to specific transaction types – Runway
to GSC+ writes, Runway to GSC+ reads, GSC+ to Runway reads, and GSC+ to Runway writes – in the
following tables. Please note the definition of the following terms, which are used in these tables:

runway master the Runway Flex and Master_ID
rw slave addr the Runway 40bit real physical address (if logged in RW IO_ERR_RESP)

the least significant 32 bits of the Runway real physical address (if logged
 in GSC+ IO_ERR_RESP)

gsc+ master the GSC+ Flex and Guest Module ID (Submodule ID not available)
gsc+ slave adr the I/O Virtual Page Number and word offset issued on the GSC+ bus
errorl GSC+ ERRORL assertion
broaderr IOA drives broadcast error transaction on Runway
dir_err IOA drives directed error transaction on Runway

The following table illustrates I/O Adapter behavior resulting from a generic error.

 Error Sev Signal estat rw req rw resp gsc+ req gsc+ resp

unx rw resp se – 50 not valid not valid not relevant not relevant

broaderror he – 13 not valid not valid not relevant not relevant

gsc err tran he – 16 not relevant not relevant gsc+ master not valid

un gsc resp se errorl 50 not relevant not relevant gsc+ master not valid

gsc internal
error

 he – 2 not relevant not relevant gsc+ master gsc+ slave adr

55

On writes mastered by a processor to the I/O Adapter, PDC, or a slave GSC+ guest, (referred to as the
”Write responder on Runway, requestor on GSC+” in the KittyHawk Error Strategy) the following errors
are possible:

 Error Sev Signal estat rw req rw resp gsc+ req gsc+ resp

ctl_par fe broaderr 5 runway mas-
ter

 rw slave addr not relevant not relevant

addr_par fe broaderr 5 runway mas-
ter

 rw slave addr not relevant not relevant

data_par fe – 5 runway mas-
ter

 rw slave addr not relevant not relevant

rw mode ph fe – 3 runway mas-
ter

 rw slave addr not relevant not relevant

gsc+ slave
 ack

 he errorl 7 not relevant not relevant runway mas-
ter

 rw slave adr

gsc+ errorl he – 4 not relevant not relevant runway mas-
ter

 rw slave adr

� On Runway improper accesses, writes to:
Runway unimplemented HPA discarded / no error logged
Runway read_only HPA discarded / no error logged
GSC+ unimplemented HPA discarded / no error logged
GSC+ write_only HPA discarded / no error logged

On reads mastered by a processor to the I/O Adapter, PDC, or a slave GSC+ guest, (referred to as the
”Read responder on Runway, requestor on GSC+” in the KittyHawk Error Strategy) the following errors
are possible:

 Error Sev Signal estat rw req rw resp gsc+ req gsc+ resp

ctl_par fe broaderr 5 runway mas-
ter

 rw slave addr not relevant not relevant

addr_par fe broaderr 5 runway mas-
ter

 rw slave addr not relevant not relevant

gsc+ slave
 ack

 se dir_err
 errorl

 7 not relevant not relevant runway mas-
ter

 rw slave adr

 gsc+ pend
 timeout

 se dir_err
 errorl

 59 not relevant not relevant runway mas-
ter

 rw slave adr

gsc+ par se dir_err
 errorl

 53 not relevant not relevant runway mas-
ter

 rw slave adr

gsc+ errorl he – 4 not relevant not relevant runway mas-
ter

 rw slave adr

ill gsc+ rsp se dir_err
 errorl

 50 not relevant not relevant runway mas-
ter

 rw slave adr

56

� On Runway improper accesses, reads from:
Runway unimplemented HPA hv return / no error logged
Runway write_only HPA hv return / no error logged
Runway BPA timeout / no error logged
GSC+ unimplemented HPA hv return / no error logged
GSC+ write_only HPA hv return / no error logged
GSC+ BPA path error / no error logged

where: hv return means the value of the data word returned is hardware
version dependent.

timeout means that the IOA does not issue a response to this
read, resulting in a Runway timeout.

On writes mastered from a GSC+ guest to memory or a processor, (referred to as the ”Write requestor
on Runway, responder on GSC+” in the KittyHawk Error Strategy) the following errors are possible:
(note that the GSC error transaction is considered in the generic errors table)

 Error Sev Signal estat rw req rw resp gsc+ req gsc+ res

 ctl_par
(data cycle)

 fe broaderr 53 runway mas-
ter

 not valid not relevant not relevant

 ctl_par
(addr cycle)

 fe broaderr 53 runway mas-
ter

 rw slave addr not relevant not relevant

addr_par fe broaderr 53 runway mas-
ter

 rw slave addr not relevant not relevant

TLB fault he – 61 gsc+ master gsc+ slave adr not relevant not relevant

gsc impr ac he – 62 gsc+ master gsc+ slave adr not relevant not relevant

gsc+ par he errorl 5 not relevant not relevant gsc+ master gsc+ slave adr

gsc+ errorl he – 52 not relevant not relevant gsc+ master gsc+ slave adr

gsc+ proto he errorl 54 not relevant not relevant gsc+ master gsc+ slave adr

gsc+ wdog he errorl 17 not relevant not relevant gsc+ master not valid

On reads mastered from a GSC+ guest to memory or a processor, (referred to as the ”Read requestor on
Runway, responder on GSC+” in the KittyHawk Error Strategy) the following errors are possible:

57

Note: The first 9 errors listed below can also be encountered when the GSC+ guest has specified a clear16
or a partial cache line write. Since these operations require UTurn to master a read_priv on Runway fol-
lowed by the specified write, the following Runway read errors are possible.

 Error Sev Signal estat rw req rw resp gsc+ req gsc+ res

 ctl_par
(data cycle)

 fe broaderr 53 runway mas-
ter

 not valid not relevant not relevant

 ctl_par
(addr cycle)

 fe broaderr 53 runway mas-
ter

 rw slave addr not relevant not relevant

addr_par fe broaderr 53 runway mas-
ter

 rw slave adr not relevant not relevant

data_par he errorl 53 gsc+ master gsc+ slave adr not relevant not relevant

rw timeout he errorl 59 gsc+ master gsc+ slave adr not relevant not relevant

inc tran siz he errorl 50 gsc+ master gsc+ slave adr not relevant not relevant

rw path err he errorl 4 gsc+ master gsc+ slave adr not relevant not relevant

TLB fault he errorl 61 gsc+ master gsc+ slave adr not relevant not relevant

gsc impr ac he errorl 62 gsc+ master gsc+ slave adr not relevant not relevant

gsc+ par he errorl 5 not relevant not relevant gsc+ master gsc+ slave adr

gsc+ errorl he – 52 not relevant not relevant gsc+ master gsc+ slave adr

gsc+ proto he errorl 54 not relevant not relevant gsc+ master gsc+ slave adr

gsc+ wdog he errorl 17 not relevant not relevant gsc+ master not valid

On memory read returns, it is possible for both a data parity error and Runway path error to simultaneous-
ly occur. In this case, the Runway path error is logged in the IO_STATUS estat, and the data parity error
is disregarded.

Note: When the Runway block goes into either hard or fatal error mode, the GSC+ block will fire the
errorl signal only relative to the data cycle if the transaction was a pended DMA read and during any cycle
in the midst of a connected DMA read. Also, the GSC+ master_id is stored as a 6 whenever the error
occurred during an LSL assertion. In this case, the value of the IO_ERR_INFO rqi bit is set to indicate
that this field is invalid. Finally, the GSC+ block will not store the GSC+ slave address during a pended
DIO read return on an ERRORL assertion.

In some cases, the GSC+ block must queue error indications to the Runway block to indicate the need
to fire directed error. Hard or fatal modes are communicated between the two blocks via synchronized
wires, and these will affect the IOA’s ability to handle subsequent Runway or GSC+ transactions.

Also, Runway must queue error read returns to GSC+. This is to prevent deadlock and to ensure a path
to PDC, should a GSC+ guest busy a DIO transaction while waiting for a pended DMA response which
never occurs. In fact, should any pended DMA request get errored (as an example due to TLB fault),
then a dummy pool entry must be made. It will eventually timeout, causing an errored read return to
GSC+.

UTurn does not respond to Runway directed error transactions. The transaction causing the directed error
will ultimately timeout and a timeout error is logged.

58

3. UTurn performance projections

The UTurn chip is a bus converter between a single Runway port and two fully independent 32–bit GSC+
ports. When GSC+ is operated at 33.3 MHz, the UTurn implementation provides for a sustainable aggre-
gate inbound DMA throughput of up to 104 MBytes/sec and a sustainable aggregate outbound DMA
throughput of up to 85 MBytes/sec. Individual guests may sustain throughputs of up to 104 MBytes/sec
inbound and 53 MBytes/sec outbound. If the GSC bus frequency is increased to 40 MHz, maximum
aggregate DMA throughputs increase to 134 and 102 MBytes/sec for inbound and outbound DMA re-
spectively. Maximum single guest throughputs for inbound and outbound DMA transactions are 124
and 60 MBytes/sec respectively at the 40 MHz GSC bus rate. For processor–initiated direct I/O transac-
tions (DIO transactions), the UTurn design is able to sustain an outbound transfer rate of up to 256
MBytes/sec for GSC+ at 40 MHz. The tables that follow list details. Throughput depends on many fac-
tors including bus clock frequency, length of transaction, bus loading, and GSC+ protocol implementa-
tion by guests.

With ”typical” Runway loading (moderate CPU traffic), the following tables give the aggregate (across
all guests) and individual guest throughput numbers that are sustainable through UTurn. Keep in mind
that DMA transactions are initiated by GSC+ guests and are directed to/from memory. DIO transactions
are initiated by a processor (or perhaps by memory in the case of block moves), and are directed to/from
an I/O device. Prefetch is supported only for outbound DMA transactions. UTurn supports pended (split)
GSC+ read transactions in both the DMA and the DIO classes, but for DIO reads UTurn allows only a
single pended read to be outstanding on GSC+ at any given time.

This chapter begins with summary tables of performance data, followed by a rather detailed description
of how the numbers were calculated. The detail calculations result in several intermediate tables of data
which can be used to calculate other system–dependent performance figures. The detail calculations
were only performed for GSC+ frequencies of 33.3 and 40 MHz in most cases. Corresponding derivation
of performance numbers for 32 MHz and/or 50 MHz GSC+ operation is left as an exercise for the reader.

Data transfer performance through UTurn is highly dependent upon the load present on the GSC bus.
GSC guest devices are not necessarily efficient users of bus bandwidth. Latency to memory for con-
nected DMA reads can cause a guest to monopolize the GSC bus for a significant percentage of the time.
The data presented in this chapter attempts to address a variety of bus load conditions, from no load (best
case throughputs) to saturation (worst case throughputs). The data in the first two tables generally reflects
light to moderate loading on the system busses. When trying to consider the many ways a GSC bus might
be used in a given system, the amount of work to compute an exhaustive set of performance tables appears
to have less value than presenting the method for getting one set of answers. Separate performance cal-
culations can then be performed based on configuration of a given system.

59

TABLE: Aggregate DMA Throughput, GSC+ <=> Memory through UTurn

Transaction
class

Data Direction Description Transaction
size (bytes)

Throughput (MBytes/sec) –
Runway / GSC+ frequency =y

100 /
33.3

120 /
33.3

120 /
40

120 /
50

DMA Inbound
(to mem from

Writes (four writes
per guest per bus

32 112 112 134
(to mem from
I/O)

per guest per bus
tenure) 16 96 96 116

Writes (one write
per guest per bus

32 96 96 116
per guest per bus
tenure) 16 76 76 91

Outbound
(f t

Connected reads
N f t h

32 29 33 35
(from mem to
I/O)

 No prefetch 16 16 19 20
I/O)

Pended (split) reads
N f t h

32 77 81 92
 No prefetch 16 51 54 61

Connected reads
ith f t h

32 48 50 58
 with prefetch 16 29 31 35

Pended (split) reads
ith f t h

32 88 88 100
 with prefetch 16 60 60 72

60

TABLE: Aggregate DIO Throughput, Processor <=> GSC+ through UTurn

Transaction
class

Data Direction Description Transaction
size (bytes)

Throughput (MBytes/sec) –
Runway / GSC+ frequency =y

100 /
33.3

120 /
33.3

120 /
40

120 /
50

DIO Outbound
(f t

Variable length
it 2X d

32 213 213 256 320
(from proc to
I/O)

writes, 2X mode 24 200 200 240 300
I/O)

16 177 177 213 266

12 133 133 160 200

8 100 100 120 150

Variable length
it 1 5X d

32 118 118 142 177
writes, 1.5X mode 24 114 114 137 171

16 106 106 128 160

12 100 100 120 150

Fixed length writes
i bl l th

8 f 1 88 88 106 133
or variable length
writes in 1.5X

8 66 66 80 133
writes in 1.5X
mode 4 f 1 66 66 80 100

4 44 44 53 66

Inbound
(t f

Connected reads 8 11 13 14 16
(to proc from
I/O)

4 6 6 7 8
I/O)

Pended reads 8 9 10 11 12

4 5 5 6 7

1 The ”fast” DIO write transfer mode is supported for multiple writes to the same device or, in the case
of 8 byte fast transfers, to multiple devices when the devices signal ready during the first data cycle (no
parity error checking prior to signaling ready). The typical guest target for this transfer mode is graphics.

61

TABLE: Individual Guest DMA Throughput, GSC+ <=> Memory through UTurn

Transaction
class

Direction Description Transaction
size (bytes)

Throughput (MBytes/sec) –
Runway / GSC+ frequency =y

100 /
33.3

120 /
33.3

120 /
40

120 /
50

DMA Inbound
(to mem from

Writes (four
writes per guest

32 104 104 124
(to mem from
I/O)

writes per guest
per bus tenure) 16 85 85 102

Writes (one
write per guest

32 76 76 91
write per guest
per bus tenure) 16 53 53 64

Outbound
(f t

Connected reads
N f t h

32 31 34 37
(from mem to
I/O)

 No prefetch 16 17 19 21
I/O)

Pended (split)
reads

32 29 32 35
reads
 No prefetch 16 16 18 20

Connected reads
ith f t h

32 41 42 49
 with prefetch 16 24 25 29

Pended (split)
reads

32 46 48 55
reads
 with prefetch 16 28 29 33

62

TABLE: Individual Guest DIO Throughput, Processor <=> GSC+ through UTurn

Transaction
class

Direction Description Transaction
size (bytes)

Throughput (MBytes/sec) –
Runway / GSC+ frequency =y

100 /
33.3

120 /
33.3

120 /
40

120 /
50

DIO Outbound
(f t

Variable length
it 2X d

32 213 213 256 320
(from proc to
I/O)

writes, 2X mode 24 200 200 240 300
I/O)

Outbound 16 177 177 213 266Outbound
(from proc to
I/O)

12 133 133 160 200
I/O)

8 100 100 120 150

Variable length
it 1 5X

32 118 118 142 177
writes, 1.5X
mode

24 114 114 137 171
mode

16 106 106 128 160

12 100 100 120 150

Fixed length
it i

8 f 1 88 88 106 133
writes or vari-
able length writes

8 66 66 80 133
able length writes
in 1.5X mode 4 f 1 66 66 80 100

4 44 44 53 66

Inbound
(t f

Connected reads 8 11 13 14 16
(to proc from
I/O)

4 6 6 7 8
I/O)

Pended reads 8 9 10 11 12

4 5 5 6 7

1 The ”fast” DIO write transfer mode is supported for multiple writes to the same device or, in the case
of 8 byte fast transfers, to multiple devices when the devices signal ready during the first data cycle (no
parity error checking prior to signaling ready). The typical guest target for this transfer mode is graphics.

63

3.1. External Assumptions

GSC+ Frequency
Range: 24 – 50 MHz
 Minimum design goals (UTurn exceeds these in current systems):
 1 guest at up to 50 MHz
 5 guests at up to 40 MHz
 6 guests at up to 33.3 MHz
GSC+ Data width: 32 bits
GSC+ Transfer sizes: 1,2,3,4,8,16,32 bytes, plus UTurn–mastered variable–length writes (1–8 words)
GSC+ cycle types:
 Address Master asserts ADDVL, drives address on AD[] bus and transaction type on TYPE[] bus
 Turn Master de–asserts ADDVL, tri–states AD[] bus, keeps bus ownership
 Data Source of data drives data on AD[]; sink of data may handshake with

READYL or RETRYL (For pended DMA read return, UTurn asserts
READYL in the first data cycle of the return)

 Restore Master de–asserts all control lines and tri–states AD[] bus; bus ownership relinquished
 Notify UTurn drives DRRL and one of BGL[n], informing guest n of

imminent DMA read return
DMA and DIO Read protocol: Address, Turn, (1–8)Data, Restore
DMA and DIO Pended Read protocol: Address, Restore, Notify, (1–8)Data, Restore
DMA Write protocol: Address, (1–8)Data, Restore
DIO Fast Write protocol: Address, (1–2)Data, Address, (1–2)Data,..., Address, (1–2)Data, Restore
Arbitration: Fair (round robin) amongst guests;

Read returns and DIO transactions at higher priority level
GSC+ maximum tenure (timeout value): Software programmable
 DIO transactions, connected (UTurn–mastered)
 Maximum programmable timeout = 262140 GSC+ GCLK cycles (7.86 ms at 33.3 MHz)
 DMA transactions (guest mastered)
 Maximum timeout per transaction = 1.05e6 GSC+ GCLK cycles (31.5 ms at 33.3 MHz)
Maximum number of mastering GSC+ guests: 6
Maximum latency to GSC+ bus ownership: Very system specific

Memory latency: see Table ”Memory Latencies for Tower–based Systems”

For optimum performance, the only wait states introduced for guest–mastered DMA transactions on
GSC+ should be those to accommodate memory latency in the case of reads. The worst case latency for
the performance alternatives evaluated will assume that maximum bus tenure per module is the minimum
number of bus cycles required for a particular transaction.

Note that in this chapter, 1 megabyte per second (1 MB/s) is 10e6 bytes per second, or 1 byte per microse-
cond. Multiply by 1.05 to get the number of 2e20 ”megabytes per second”.

3.2. Internal Timing Assumptions

The UTurn design assumes full synchronization between the GSC+ and Runway domains. Runway and
GSC+ clocks are fully independent.

64

All outbound traffic (from Runway to GSC+) will use the following timing:
 4.0 Runway cycles to queue
 1.5 GSC+ cycles to synchronize
 1.5 GSC+ cycles to dequeue
 –––––––
Total: 4.0 Runway cycles
 3.0 GSC+ cycles

All inbound traffic (from GSC+ to Runway) will use the following timing:
 0.5 GSC+ cycle to queue
 3.0 Runway cycles to synchronize
 2.0 Runway cycles for queue internal pipeline delay to demux and prep entry
 8.0 Runway cycles to dequeue, translate address, and perform various checks
 6.5 Runway cycles to arbitrate and win the Runway bus (minimum)
 –––––––
Total: 20.5 Runway cycles
 0.5 GSC+ cycles (Rounds up to 1 cycle; partial cycles can’t be exploited in the bus protocol)

The timing for a prefetch hit is a special case. The round trip delay for a prefetch hit is:
 0.5 GSC+ cycle to queue
 3.0 Runway cycles to synchronize
 2.0 Runway cycles for internal pipeline delay
 6.0 Runway cycles to dequeue and update pool entry
 8.0 Runway cycles to determine prefetch hit and indicate valid data return (outbound)
 1.5 GSC+ cycles to synchronize
 1.5 GSC+ cycle to dequeue and drive data to GSC pads
 –––––––
Total: 19.0 Runway cycles
 3.5 GSC+ cycles (Rounds up to 4 cycles; partial cycles can’t be exploited in the bus protocol)

The following memory latency numbers, provided by the Tower team in October, 1994, are used in this
report. (Tower is the master memory controller currently used in all systems that have Runway as the
processor/memory bus.)

TABLE: Memory Latencies for Tower–based Systems

Runway
frequency

Average Memory Latency (Minimum) Average Total Latency (including Runway
address and data cycles)q y

Runway cycles Time (ns) Runway cycles Time (ns)

80 MHz 25.5 cycles 256.3 ns 30.5 cycles 318.8 ns

100 MHz 25.5 cycles 205.0 ns 30.5 cycles 255.0 ns

120 MHz 25.5 cycles 170.8 ns 30.5 cycles 212.5 ns

3.3. GSC+–only performance

The following table quantifies the maximum sustainable bandwidth on a GSC+ bus. The minimum num-
ber of cycles per transaction are considered at various GSC+ GCLK frequencies to determine the maxi-

65

mum throughput. In this table (and throughout this document), ”DMA” refers to transactions mastered
by GSC guest devices. ”DIO” refers to transactions mastered by UTurn. GSC modules may be designed
to master multiple transactions per bus ownership (bus tenure). This can result in a significant improve-
ment in write transaction bandwidth, as shown in the table.

TABLE: GSC+ theoretical maximum sustainable throughput (MBytes/sec)

Transaction type Transaction
size

GSC+
cycles
()

Maximum sustainable throughput (MBytes/sec);
GSC+ GCLK frequency =

Bytes Words

y
(avg) 24 MHz 32 MHz 33.3 MHz 40 MHz 50 MHz

DMA or DIO
it (DMA t

1–4 1 <= 1 1 3 <= 32 <= 43 <= 44 <= 53 <= 66
write (DMA to

memory, DIO to
8 1 2 1 4 48 64 66 80 100

memory, DIO to
I/O) – 1 write

b t
16 4 6 64 85 88 106 133

per bus tenure 32 8 10 76 102 106 128 160

DMA or DIO
it (DMA t

1–4 1 <= 1 1 2.25 <= 42 <= 56 <= 59 <= 71 <= 88
write (DMA to

memory, DIO to
8 1 2 1 3.25 59 78 82 98 123

memory, DIO to
I/O) – 4 writes

b t
16 4 5.25 73 97 101 121 152

per bus tenure 32 8 9.25 83 110 115 138 172

DMA or DIO
d (DMA f

1–4 1 <= 1 1 4 <= 24 <= 32 <= 33 <= 40 <= 50
read (DMA from

memory, DIO
8 1 2 1 5 38 51 53 64 80

memory, DIO
from I/O) – con-

t d d
16 4 7 54 73 76 91 114

nected reads 32 8 11 69 93 96 116 145

1 Not considered viable candidates for bulk DMA transfers

In the sections that follow, the effects of bus loading, bus and memory latency, arbitration, and protocol
implementation will be considered.

3.4. DMA Write Performance Through UTurn’s IOAs

3.4.1. Guest–initiated (DMA) writes

UTurn buffers writes from GSC+ guests. The inbound queueing structure is deep enough and Runway
generally fast enough that for most expected system configurations UTurn will be able to accept 8 word
writes from GSC+ guests and forward them to memory or processors at the peak rate that they can be
issued on GSC+. For 4 word writes, throughput depends on the type of page being updated in memory.
Pages are classified as either ”safe” or ”fast” by system software that configures UTurn’s Runway–side
translation lookaside buffer (TLB). (The TLB provides address mapping information required for trans-
lating 32–bit GSC addresses to 40–bit Runway addresses.) If a 4 word write is directed to a ”fast” page,
UTurn can buffer and retire 4–word writes at maximum GSC transfer rates. For 4–word writes to ”safe”
pages, and for 1 or 2 word writes to any page type, UTurn must perform an atomic cache line update se-
quence on Runway. This read–modify–write sequence requires approximately 60 Runway cycles per
write transaction. In these cases, write throughput is limited by Runway. Guest modules are strongly
urged not to use these smaller write transactions for bulk data transfer. System performance impacts can
be substantial.

66

The following tables summarize DMA write performance expectation for various transaction sizes and
bus frequency combinations. First, aggregate DMA write throughput is calculated. A guest is assumed
to perform one write transaction per bus tenure (that is, each guest relinquishes bus ownership after per-
forming a single write transaction). Guests can be designed to perform multiple writes per bus tenure,
improving single–guest and aggregate DMA write bandwidth (fewer dead cycles on the bus). This gener-
ally affects the latency to bus access by other devices, however. Guests should always be designed such
that they can be configured to perform only one DMA write transaction per bus tenure. Due to UTurn’s
implementation, average write transaction length is 1 cycle longer than the minimum write transaction
length allowed by the GSC protocol. UTurn adds an extra cycle whenever bus ownership changes from
one guest to another.

TABLE: GSC+ DMA writes – aggregate sustainable DMA write throughput
(one DMA write per guest bus tenure)

Runway
l d

Transfer
i (b

Memory
P t

Average
l

Runway / GSC+ frequency (in MHz) =
load size (by-

tes)
Page type cycle

count
80 / 33.3 100 / 33.3 120 / 33.3 120 / 40

tes) count
Thruput
(MB/sec)

Thruput
(MB/sec)

Thruput
(MB/sec)

Thruput
(MB/sec)

Best/ Typ/
W t

32 either 11G 96 96 96 116
Worst 16 fast 7G 76 76 76 91

Best 16 safe 62R + 2G 19 23 27 28

Typ 16 safe 70R + 2G 17 21 24 25

If guests are designed to allow multiple write transactions per bus tenure, aggregate DMA write through-
put can be improved as shown in the following table. Writes within a given bus tenure are performed
back–to–back with no intervening dead cycles. The table shows the total number of bytes transferred
and the total cycles for a given number of write transactions per bus tenure. Only GSC–limited writes
are considered, since no GSC speedups will improve performance of 16–byte writes to safe pages.

67

TABLE: GSC+ DMA writes – aggregate sustainable DMA write throughput
(One, two, and four DMA writes per guest bus tenure; GSC–limited performance cases

only)

Transfer
size (by-

Memory
page

Transac-
tions per

Total
bytes

Total
GSC

Runway / GSC+ frequency (in MHz) =
size (by-

tes)
page
type

tions per
bus ten-

ure

bytes
trans-
ferred

GSC
cycle
count

80 / 33.3 100 / 33.3 120 / 33.3 120 / 40
ure ferred

per ten-
ure

count
Thruput
(MB/sec)

Thruput
(MB/sec)

Thruput
(MB/sec)

Thruput
(MB/sec)

32 fast/safe 1 32 11 96 96 96 116

16 fast 1 16 7 76 76 76 91

32 fast/safe 2 64 20 106 106 106 128

16 fast 2 32 12 88 88 88 106

32 fast/safe 4 128 38 112 112 112 134

16 fast 4 64 22 96 96 96 116

The single–guest sustainable DMA write throughput is less than the aggregate rate due to GSC arbitration
requirements and associated overheads. The GSC specification requires that after relinquishing bus own-
ership, a guest must see its bus grant signal released before it can re–assert a bus request. Between this
protocol requirement and UTurn’s implementation, an additional 4 GSC cycles of arbitration overhead
are added each time a guest relinquishes and then attempts to regain bus ownership. For optimum single–
guest DMA write performance, guests should be designed such that they can optionally perform multiple
write transactions per bus tenure. This capability will hurt the performance of other guests on the same
bus segment, so caution should be exercised when enabling the capability. Guests should always have
the ability to be configured to perform only 1 transaction per bus tenure.

Taking the extra arbitration cycles into account, a single guest DMA write throughput table can be
constructed. In the table, cycle counts are specified in either GSC cycles (G) or Runway cycles (R), de-
pending on where performance is ultimately limited. The table assumes that a guest de–asserts its bus
request during the last data cycle of a write, as allowed by the GSC specification. If bus request is de–as-
serted later, throughput will be reduced in the GSC–limited cases.

TABLE: GSC+ DMA writes – single guest sustainable DMA write throughput
(one DMA write per guest bus tenure)

Runway
l d

Transfer
i (b

Memory
P t

Average
l

Runway / GSC+ frequency (in MHz) =
load size (by-

tes)
Page type cycle

count
80 / 33.3 100 / 33.3 120 / 33.3 120 / 40

tes) count
Thruput
(MB/sec)

Thruput
(MB/sec)

Thruput
(MB/sec)

Thruput
(MB/sec)

Best/ Typ/
W t

32 either 14G 76 76 76 91
Worst 16 fast 10G 53 53 53 64

Best 16 safe 62R + 2G 19 23 27 28

Typ 16 safe 70R + 2G 17 21 24 25

68

If a guest is designed to allow 4 write transactions per bus tenure, single guest DMA write throughput
can be improved as shown in the following table. Writes within a given bus tenure are performed back–
to–back with no intervening dead cycles. The table shows the total number of bytes transferred and the
total cycles for four write transactions. Only GSC–limited writes are considered, since no GSC speedups
will improve performance of 16–byte writes to safe pages.

TABLE: GSC+ DMA writes – single guest sustainable DMA write throughput
(One, two, or four DMA writes per guest bus tenure; GSC–limited performance cases only)

Transfer
size (by-

Memory
page

Transac-
tions per

Total
bytes

Total
GSC

Runway / GSC+ frequency (in MHz) =
size (by-

tes)
page
type

tions per
bus ten-

ure

bytes
trans-
ferred

GSC
cycle
count

80 / 33.3 100 / 33.3 120 / 33.3 120 / 40
ure ferred

per ten-
ure

count
Thruput
(MB/sec)

Thruput
(MB/sec)

Thruput
(MB/sec)

Thruput
(MB/sec)

32 fast/safe 1 32 14 76 76 76 91

16 fast 1 16 10 53 53 53 64

32 fast/safe 2 64 23 92 92 92 111

16 fast 2 32 15 71 71 71 85

32 fast/safe 4 128 41 104 104 104 124

16 fast 4 64 25 85 85 85 102

3.5. DMA Read Performance Through UTurn’s IOAs

3.5.1. Connected DMA reads; no prefetch

A connected DMA read is the simplest form of read transaction that a GSC+ guest can initiate. The trans-
action is connected on GSC+ in that the guest issues an address and then, without relinquishing owner-
ship of the bus, waits for the data to be returned by the GSC+ host. In Kitty Hawk, the host (UTurn) must
issue a read transaction across the Runway bus to memory and receive the read data back from memory
before returning this data to the waiting guest. As will be seen, the latency from the GSC+ read address
cycle to the first cycle of data is substantial in a Kitty Hawk system. For this section, prefetching by the
host is not considered (it will be in a later section).

Calculation of individual–guest and bus aggregate throughput for guests performing connected read
transactions requires quantification of the latency to data across UTurn and Runway. UTurn internal de-
lays, Runway arbitration delays, and memory access times must all be accounted for.

69

As noted earlier in this chapter, UTurn’s internal design will impose the following delays between the
read address cycle on GSC+ and issuance a corresponding Runway read transaction:

 0.5 GSC+ cycle to queue
 3.0 Runway cycles to synchronize
 4.0 Runway cycles for queue internal pipeline delay to demux and prep entry
 8.0 Runway cycles to dequeue, translate address, and perform various checks
 6.0 Runway cycles to arbitrate and win the Runway bus (minimum)
 –––––––
Total: 21.0 Runway cycles
 0.5 GSC+ cycles

In the best I/O performance case, there are no additional Runway cycles required on a read request due
to a busy bus. The most common Runway transactions – cache line read requests, read returns, and writes
of various flavors – average 3 cycles in length. If a typical UTurn arbitration scenario forces UTurn to
wait for one Runway transaction, 3 Runway clocks will be added to the arbitration time. For a worst case,
assume that a processor is in the middle of a write transaction and a memory controller read return is also
queued, resulting in an additional 7 Runway cycle arb delay.

Memory latencies were listed in an earlier table, and are reproduced here. The values in the table do not
reflect any of the Runway arbitration delay computed in the preceding paragraph.

TABLE: Memory Latencies for Tower–based Systems

Runway
frequency

Average Memory Latency (Minimum) Average Total Latency (including Runway
address and data cycles)q y

Runway cycles Time (ns) Runway cycles Time (ns)

80 MHz 25.5 cycles 256.3 ns 30.5 cycles 318.8 ns

100 MHz 25.5 cycles 205.0 ns 30.5 cycles 255.0 ns

120 MHz 25.5 cycles 170.8 ns 30.5 cycles 212.5 ns

For read returns, mastered by Tower on Runway, the minimum arbitration latency is 0 cycles, since Tower
contains the Runway arbiter and can ensure no delay in many cases. For the typical case, Tower must
wait for half of a processor or UTurn initiated transaction – 2 cycles roughly. For the worst case, Tower
waits for an entire processor or UTurn cache line write – 5 cycles. There are certainly cases which exceed
this, but these are the expected cases.

The UTurn read request transaction arbitration delay and Tower read return arbitration delays are summa-
rized in the following table.

TABLE: Runway arbitration delays for reads from memory

Runway case Additional UTurn arbitra-
tion delay

Runway Tower arbitration
delay (for read return)

Total Runway arbitration
delays

Best 0 Runway cycles 0 Runway cycles 0 Runway cycles

Typical 3 Runway cycles 2 Runway cycles 5 Runway cycles

Worst 7 Runway cycles 5 Runway cycles 12 Runway cycles

70

The UTurn internal delay cycles incurred between the end of the Runway read return transaction to the
first data cycle on GSC+ are as follows:

 4.0 Runway cycles to queue
 1.5 GSC+ cycles to synchronize
 1.5 GSC+ cycles to dequeue
 –––––
Total: 4.0 Runway cycles
 3.0 GSC+ cycles

Summing the UTurn internal delays for each read (combining delays for the request and the data return
portions), the total UTurn internal delay is 25 Runway cycles and 3.5 GSC+ cycles. Only integer GSC
cycle counts are sensible in this analysis, so the total UTurn internal delay is effectively 25 Runway cycles
and 4 GSC cycles. When the Runway arbitration delays and memory latency values are added in, a total
delay from the address cycle of the read transaction on GSC+ to first data on GSC+ can be calculated.

TABLE: Latency from address cycle on GSC+ to first data cycle on GSC+ (DMA reads) – equation

 Case Delay Delay components
 ––––– –––––––––––––––––––––– –––
 best 0R+25.5R+5R+25R+4G R_arb_best + mem_access + R_xfer + int_delay
 typical 5R+25.5R+5R+25R+4G R_arb_typical + mem_access + R_xfer + int_delay
 worst 12R+25.5R+5R+25R+4G R_arb_worst + mem_access + R_xfer + int_delay

TABLE: Runway/memory latency to first GSC+ data cycle for connected reads – time and cycles

Case Runway / GSC+ frequency combination

80 MHz / 33.3 MHz 100 MHz / 33.3 MHz 120 MHz / 33.3 MHz 120 MHz / 40 MHz

Time
(ns)

GSC+
cycles

Time
(ns)

GSC+
cycles

Time
(ns)

GSC+
cycles

Time
(ns)

GSC+
cycles

Best 814 28 675 23 583 20 563 23

Typical 877 30 725 25 625 21 605 25

Worst 964 33 795 27 683 23 663 27

71

Now, combining this latency data with GSC+ transaction length data, a per device (and aggregate)
throughput value can be calculated.

TABLE: Cycle count and aggregate read throughput from a GSC+ bus through UTurn for connected
DMA reads

Case Xfe cycles
in

Runway/GSC+ frequency combination
r

size
in

basic 80 MHz / 33.3 MHz 100 MHz / 33.3 MHz 120 MHz / 33.3 MHz 120 MHz / 40 MHz
size basic

trans-
action

UTurn
/

Rway
delay

Total
cycles

Thru-
put

(MB/s)

UTurn
/

Rway
delay

Total
cycles

Thru-
put

(MB/s)

UTurn
/

Rway
delay

Total
cycles

Thru-
put

(MB/s)

UTurn
/

Rway
delay

Total
cycles

Thru-
put

(MB/s)

Best 16 7 28 35 15 23 30 17 20 27 17 23 30 21

32 11 28 39 27 23 34 31 20 31 34 23 34 37

Typ 16 7 30 37 14 25 32 16 21 28 19 25 32 20

32 11 30 41 26 25 36 29 21 32 33 25 36 35

Worst 16 7 33 40 13 27 34 15 23 30 17 27 34 18

32 11 33 44 24 27 38 28 23 35 30 27 38 33

In summary, aggregate read throughput using connected DMA reads is primarily affected by the size of
transaction chosen – 32 byte transfers result in a 70–80% read throughput gain over 16 byte transfers.

To calculate sustainable performance for an individual guest with a variety of other guests active on the
bus, GSC+ arbitration latency needs to be calculated. Best, typical and worst cases will be evaluated.
For each case, transaction mixes of all connected reads, all writes/pended reads, and 50% reads / 50%
writes are considered. 16 byte and 32 byte transfer size effects are also considered. The performance
impact on DMA read throughput due to GSC host–mastered (DIO) transaction traffic is expected to be
small (< 5%) in transaction scenarios involving disk and network accesses. DIO transaction traffic is not
considered in this DMA read performance analysis.

Best case for an individual guest involves consecutive transactions from the same guest. Starting at bus
idle, the first GSC+ transaction of a sequence always incurs at least 3 GSC+ cycles of overhead for ar-
bitration (request and grant cycles; UTurn takes 2 cycles minimum to return a grant after seeing a request).
Subsequent transactions from the same guest, however, may be performed without arbitration overhead.

For the typical case, a requesting guest waits for completion of a transaction in progress, then is granted
the bus. The estimated latency required to gain ownership in this case to be 1/2 the number of GSC+
clocks that an average transaction is on the bus (including any GSC+–visible Runway or memory laten-
cy). The ”total cycles” entry of the ”typ” rows from the preceding table is used as the number of GSC+
cycles per bus tenure for connected reads, and the ”total cycles” column of the max sustained throughput
table is used as the transaction cycle count for writes and pended reads (discussed later).

For the individual guest worst case, GSC+ is ”very busy”, and a guest must wait on average the length
of two transactions by other masters before it becomes master. The ”total cycles” entry of the ”worst”
rows from the preceding table is used as the number of GSC+ cycles per bus tenure for reads, and the
”total cycles” column of the max sustained throughput table per bus tenure for writes and pended reads.

72

TABLE: GSC+ guest arbitration delay

Case Trans-
f

Arbitration delay (GSC+ cycles); Runway/GSC+ frequency =
fer
size

100 MHz / 33.3 MHz 120 MHz / 33.3 MHz 120 MHz / 40 MHz
size

Con-
nected
reads

Writes /
Pended
reads

50/50 Con-
nected
reads

Writes /
Pended
reads

50/50 Con-
nected
reads

Writes /
Pended
reads

50/50

Best 16 0 0 0 0 0 0 0 0 0

32 0 0 0 0 0 0 0 0 0

Typical 16 16 3 10 14 3 9 16 3 10

32 18 5 12 16 5 11 18 5 12

Worst 16 68 12 40 60 12 36 68 12 40

32 76 20 48 70 20 45 76 20 48

Now, by combining this GSC+ arbitration delay with the transaction lengths calculated earlier, an ex-
pected individual guest throughput figure can be calculated.

TABLE: Single device connected DMA read transaction lengths and resulting throughputs
 (traffic initiated by other GSC+ guests assumed to be 50% connected DMA reads, 50% DMA writes)

Case Trans-
fer

Cycle
s in

Runway / GSC+ frequency combination
fer
size

s in
basic
trans

100 MHz / 33.3 MHz 120 MHz / 33.3 MHz 120 MHz / 40 MHz
trans-
action GSC

arb
delay
cycle

s

UTur
n/

Rway
delay

Total
GSC
cycle

s

Thru-
put,

MB/s

GSC
arb

delay
cycle

s

UTur
n/

Rway
delay

Total
GSC
cycle

s

Thru-
put,

MB/s

GSC
arb

delay
cycle

s

UTur
n/

Rway
delay

Total
GSC
cycle

s

Thru-
put,

MB/s

Best 16 7 0 23 30 17 0 20 27 19 0 23 30 21

32 11 0 23 34 31 0 20 31 34 0 23 34 37

Typi-
cal

16 7 10 25 42 12 9 21 37 14 10 25 42 15
cal

32 11 12 25 48 22 11 21 43 24 12 25 48 26

Wors
t

16 7 40 27 74 7 36 23 66 8 40 27 74 8
t

32 11 48 27 86 12 45 23 79 13 48 27 86 14

3.5.2. Pended DMA reads; no prefetch

A GSC+ guest may elect to ”pend” a read transaction if the host device supports this capability, dividing
the read into two separate GSC+ transactions – a request phase and a response phase. The request phase
is a single GSC+ cycle of address and transaction size information accompanied by assertion of a ”pend
acknowledge” control line. The address cycle is followed by a restore cycle as the guest relinquishes
ownership allowing other bus traffic to proceed. Some time later, the GSC+ host initiates a read return

73

transaction to supply the read data requested by the guest. A pended read (request and response com-
bined) consumes one more GSC cycle than a minimum length connected read (assuming the same
memory latency) due to the notification cycle required by the protocol at the beginning of the read return.
The GSC+ definition supports only a single outstanding pended read transaction per guest at any given
time. Thus, for 4 guests, there may be up to 4 outstanding pended DMA reads at any given time, but only
one per guest. This limitation stems from the fact that there is no transaction ID or transaction sequence
number defined on GSC+, ordering from memory through UTurn is not guaranteed for DMA read data
returns (even to the same guest), and the read return protocol does not require the host to return an address
that can be matched by the guest.

Not all guests on a given bus segment will necessarily implement pended DMA reads. With this in mind,
individual guest DMA read performance tables will be generated for two different bus configurations.
In one case, all DMA reads are pended, maximizing aggregate throughput. In another (probably more
typical) case, there will be a mix of guests performing pended and connected reads.

UTurn internal latencies and Runway/memory latencies for pended reads will be identical to those calcu-
lated in the connected read case. The only individual guest performance difference between connected
and pended reads is the fact that the host (UTurn) must arbitrate for GSC+ before performing the read
return transaction to supply the data in the pended read case. The GSC+ arbitration latency for the read
return phase of the transaction must be calculated. GSC+ arbitration, as implemented in UTurn, priori-
tizes pended DMA read returns over all other bus traffic. Best, typical, and worst cases for GSC+ read
return arbitration delay are considered. First, consider a bus configuration where other GSC guests are
performing an equal mix of DMA writes, connected DMA reads, and pended DMA reads.

For the best case, no other guests are arbitrating for GSC+ and no other entries blocking UTurn’s read
return queue when the read data is available for return to the requester. The arbitration overhead is 1
GSC+ cycle for the host to indicate ”data coming” to the guest.

For the worst case, GSC+ is busy, and the host must wait on average half the number of cycles in an aver-
age–length GSC+ transaction before it can master a read return. Transactions ahead of a particular read
return in UTurn’s read return queue may add to this latency. To get an average transaction length, assume
connected read, read request, read response, and write transactions to be equally likely to impede the read
return of interest. The average length value used for a connected read comes from the aggregate through-
put table for connected DMA reads calculated earlier; the cycle counts reflect the 120MHz Runway/33.3
MHz GSC frequency combination.

The typical case falls somewhere between the best and worst cases. For simplicity, assume the typical
latency to be half way between the best and worst cases.

74

TABLE: GSC+ host (UTurn) arbitration delay for issuance of read returns
(Other guests performing DMA writes, connected DMA reads, and pended DMA reads)

Case Transac-
ti i

GSC+ transaction length (GSC+ cycles) UTurn GSC+
bit t i ltion size Connected

read
Pended
read re-
quest

Pended
read return

Write Average arbitration la-
tency for read

returns

Best 16 27 2 6 7 11 1

32 31 2 10 11 14 1

Typical 16 28 2 6 7 11 3

32 32 2 10 11 14 4

Worst 16 30 2 6 7 12 6

32 34 2 10 11 15 8

Summing the arbitration delay from the preceding table and the internal and external delay components
from the connected read analysis, a total latency can be calculated for an individual read.

TABLE: Latency from address cycle on GSC+ to first return data cycle – pended DMA read case

 Case Size Delay (R=Runway;G=GSC+) Delay components
––––– –––– ––––––––––––––––––––––––– ––
 best 16/32 0R+25.5R+5R+25R+4G+1G R_arb_b+mem_access+R_xfer+int_delay+G_arb_b
 typ 16 5R+25.5R+5R+25R+4G+3G R_arb_t+mem_access+R_xfer+int_delay+G_arb_t
 32 5R+25.5R+5R+25R+4G+4G
 worst 16 12R+25.5R+5R+25R+4G+6G R_arb_w+mem_access+R_xfer+int_delay+G_arb_w
 32 12R+25.5R+5R+25R+4G+8G

TABLE: Runway/memory/GSC+ arbitration latency numbers – pended DMA reads without prefetch

Case Trans-
ti

Pended DMA read return delay; Runway / GSC+ frequency =
action
size

80 MHz / 33.3 MHz 100 MHz / 33 MHz 120 MHz/33.3 MHz 120 MHz / 40 MHz
size

Time
(ns)

GSC+
cycles

Time
(ns)

GSC+
cycles

Time
(ns)

GSC+
cycles

Time
(ns)

GSC+
cycles

Best 16 / 32 844 29 705 24 613 21 588 24

Typical 16 967 33 815 28 715 24 680 28

32 997 34 845 29 745 25 705 29

Worst 16 1144 39 975 33 863 29 813 33

32 1204 41 1035 35 923 31 863 35

For an individual guest that is limited to a single outstanding pended DMA read transaction on GSC+
at any given time with no prefetch support, the maximum throughput will be limited by memory latency
through UTurn and across Runway. (The combination of prefetch and pended read transactions to ad-
dress memory latency reduction is considered in a later section.) Since UTurn internal delays for the

75

pended read are the same as for the connected read, and since for the pended read UTurn must re–arbitrate
for GSC+ before returning data, the throughput of a GSC+ guest supporting only a single outstanding
pended read request will be slightly lower than a guest supporting only connected reads. GSC+ is avail-
able for other activity while the pended read is in progress, but the single device performance will be
limited. By combining the pended DMA read return delay data in the preceding table with the base trans-
action length and GSC guest arbitration delay from the connected read case considered earlier, we can
determine the DMA read performance expected for a given guest. The GSC guest arbitration delay table
is copied below.

TABLE: GSC+ guest arbitration delay

Case Trans-
f

Arbitration delay (GSC+ cycles); Runway/GSC+ frequency =
fer
size

100 MHz / 33.3 MHz 120 MHz / 33.3 MHz 120 MHz / 40 MHz
size

Con-
nected
reads

Writes /
Pended
reads

50/50 Con-
nected
reads

Writes /
Pended
reads

50/50 Con-
nected
reads

Writes /
Pended
reads

50/50

Best 16 0 0 0 0 0 0 0 0 0

32 0 0 0 0 0 0 0 0 0

Typical 16 16 3 10 14 3 9 16 3 10

32 18 5 12 16 5 11 18 5 12

Worst 16 68 12 40 60 12 36 68 12 40

32 76 20 48 70 20 45 76 20 48

Outbound data transfer performance for any one guest issuing pended DMA read transactions (without
prefetch) is now calculated, based on the data in the preceeding tables.

TABLE: Individual GSC+ guest pended DMA read performance through UTurn
(single pended transaction per guest, connected reads allowed by other guests)

Case Xfer
i

cycles in
basic

Runway/GSC+ frequency combination
size basic

transac- 100 MHz / 33.3 MHz 120 MHz / 33.3 MHz 120 MHz / 40 MHztransac-
tion Arb/

Rway
delay

Total
cycles

Thruput
(MB/s)

Arb/
Rway
delay

Total
cycles

Thruput
(MB/s)

Arb/
Rway
delay

Total
cycles

Thruput
(MB/s)

Best 16 8 24 32 16 21 29 18 24 32 20

32 12 24 36 29 21 33 32 24 36 35

Typ 16 8 38 46 11 33 41 13 38 46 13

32 12 41 53 20 36 48 22 41 53 24

Worst 16 8 73 81 6 65 73 7 73 81 7

32 12 83 95 11 76 88 12 83 95 13

Connected reads issued by other guests have by far the greatest impact on an individual guest’s pended
DMA read throughput. The impact is certainly seen at moderate to heavy loading conditions, where sev-

76

eral guests might be issuing connected DMA reads while one guest is attempting to only perform pended
DMA reads. It is useful to see the impact of elimination of connected DMA reads on the expected single–
guest pended DMA read throughput. Such a table is useful in cases where the total number of connected
DMA reads is very small, due perhaps to low bandwidth requirements for guests with less GSC function-
al capability.

The following tables are a repeat of the above pended DMA read performance analysis, but connected
reads from other guests are not considered.

TABLE: GSC+ guest arbitration delay – connected reads from other guests disallowed

Case Tran
f

Arbitration delay (GSC+ cycles); Runway/GSC+ frequency =
sfer
size

100 MHz / 33.3 MHz 120 MHz / 33.3 MHz 120 MHz / 40 MHz
size

Writes Pended
reads

50/50 Writes Pended
reads

50/50 Writes
Pended
reads

50/50

Best
(d l)

16 0 0 0 0 0 0 0 0 0
(no delay) 32 0 0 0 0 0 0 0 0 0

Typical
(0 5X avg

16 3 4 4 3 4 4 3 4 4
(0.5X avg
trans length) 32 5 6 6 5 6 6 5 6 6

Worst
(2X avg

16 12 14 13 12 14 13 12 14 13
(2X avg
trans length) 32 20 22 21 20 22 21 20 22 21

TABLE: GSC+ host (UTurn) arbitration delay for issuance of read returns – connected reads disallowed

Case Transac-
ti i

GSC+ transaction length (GSC+ cycles) UTurn GSC+
bit t i ltion size Pended

read re-
quest

Pended
read return

Write Average arbitration la-
tency for read

returns

Best
(1 l b d l)

16 2 6 7 5 1
(1 cycle arb delay) 32 2 10 11 8 1

Typical
(0 5 * (b t t))

16 2 6 7 5 2
(0.5 * (best+worst)) 32 2 10 11 8 3

Worst
(0 5X avg trans

16 2 6 7 5 3
(0.5X avg trans

length) 32 2 10 11 8 4

77

Summing the arbitration delay from the preceding table and the internal and external delay components
from the connected read analysis, a total latency can be calculated for an individual read.

TABLE: Latency from address cycle on GSC+ to first return data cycle – pended DMA read case

 Case Size Delay (R=Runway;G=GSC+) Delay components
––––– –––– ––––––––––––––––––––––––– ––
 best 16/32 0R+25.5R+5R+25R+4G+1G R_arb_b+mem_access+R_xfer+int_delay+G_arb_b
 typ 16 5R+25.5R+5R+25R+4G+2G R_arb_t+mem_access+R_xfer+int_delay+G_arb_t
 32 5R+25.5R+5R+25R+4G+3G
 worst 16 12R+25.5R+5R+25R+4G+3G R_arb_w+mem_access+R_xfer+int_delay+G_arb_w
 32 12R+25.5R+5R+25R+4G+4G

TABLE: Runway/memory/GSC+ arbitration latency numbers

Case Trans-
ti

Pended DMA read return delay; Runway / GSC+ frequency =
action
size

80 MHz / 33.3 MHz 100 MHz / 33 MHz 120 MHz/33.3 MHz 120 MHz / 40 MHz
size

Time
(ns)

GSC+
cycles

Time
(ns)

GSC+
cycles

Time
(ns)

GSC+
cycles

Time
(ns)

GSC+
cycles

Best 16 / 32 844 29 705 24 613 21 588 24

Typical 16 937 32 785 27 685 23 655 27

32 967 33 815 28 715 24 680 28

Worst 16 1054 36 885 30 773 26 738 30

32 1084 37 915 31 803 27 763 31

Outbound data transfer performance for any one guest issuing pended DMA read transactions without
prefetch, assuming that connected DMA reads from other guests are disallowed, is given in the following
table. The ”Typ” entries from this table are the data values used for the pended DMA read throughput
listed in the individual guest thoughput summary table at the beginning of this chapter.

78

TABLE: Individual GSC+ guest pended DMA read performance through UTurn
(single pended transaction per guest, connected reads by other guests disallowed)

Case Xfe cycles
in

Runway/GSC+ frequency combination
r

size
in

basic 80 MHz / 33.3 MHz 100 MHz / 33.3 MHz 120 MHz / 33.3 MHz 120 MHz / 40 MHz
size basic

trans-
action

Arb/
Rway
delay

Total
cycles

Thru-
put

(MB/s)

Arb/
Rway
delay

Total
cycles

Thru-
put

(MB/s)

Arb/
Rway
delay

Total
cycles

Thru-
put

(MB/s)

Arb/
Rway
delay

Total
cycles

Thru-
put

(MB/s)

Best 16 8 29 37 14 24 32 16 21 29 18 24 32 20

32 12 29 41 26 24 36 29 21 33 32 24 36 35

Typ 16 8 32 40 13 27 35 15 23 31 17 27 35 18

32 12 33 45 23 28 40 26 24 36 29 28 40 32

Worst 16 8 36 44 12 30 38 14 26 34 15 30 38 16

32 12 37 49 21 31 43 24 27 39 27 31 43 29

Computation of aggregate throughput between a GSC+ bus and memory requires characterization of the
amount of parallelism provided by both the GSC+ bus specification and by the resources available inside
UTurn. The UTurn design goal is to allow the maximum sustainable aggregate bandwidth for all com-
binations of inbound and outbound DMA transfers (guest–initiated) by adequately sizing internal data
structures. Memory latencies for reads are hidden by pipelining read transactions. Aggregate through-
put is close to the maximum sustainable throughput table presented earlier, except that for each bus mas-
tership change there is an additional GSC cycle of overhead due to arbitration. Thus, the aggregate
throughput must be calculated assuming that read transactions take 2 cycles longer than the minimum
(adding 1 arb cycle for the request phase and 1 for the response phase). Writes also take 1 cycle longer
than minimum due to arbitration overhead. The following table assumes that a guest performs only one
transaction per bus tenure. Guests are allowed to perform multiple write and connected read transactions
per bus tenure, and can eliminate arbitration overhead cycles (increasing aggregate throughput) by doing
so. The down side is that longer average arbitration latencies may result on a per–guest basis.

TABLE: Aggregate GSC+ Guest–Initiated (DMA) Data Transfer Performance Through UTurn
(read transactions are pended; no prefetch)

Transfer
type

Transfer
size

GSC+
cycles

Maximum sustained bandwidth (MBytes/sec); GSC+ frequency
=yp y

24 MHz 32 MHz 33.3 MHz 40 MHz

Write 16 7 54 73 76 91

32 11 69 93 96 116

Read 16 9 42 56 59 71

32 13 59 78 82 98

The number of entries in UTurn’s inbound and read return queues must be chosen to balance the amount
of simultaneous activity allowed to proceed (benefiting performance) while keeping implementation rea-
lities in mind. Sustaining maximum aggregate bandwidth in the face of all possible combinations of de-
vices, bus loadings, and transaction sequences is not an easy task, but focus on several key combinations

79

– the 90% cases – will ensure this performance levels for commonly used transactions. Now, consider
the extent of the resources inside UTurn required to sustain high throughput, specifically the depth of the
inbound queue and the read return queue in the context of the DMA calculations. The outbound queue
will be addressed along with DIO concerns.

To estimate the size of the inbound queue, we should first look at the maximum amount of time that the
head of the inbound queue might be obstructed, allowing GSC+–initiated traffic to accumulate behind
it. There are two somewhat special transaction cases that can occur in normal operation (although with
relative infrequency). These are TLB miss handling sequences and read–modify–write (RMW) se-
quences. The RMWs are necessary to accommodate sub–half–cache–line writes to memory. Both of
these transactions cause the head of the inbound queue to be plugged while a memory read and a memory
write are completed. To get a size estimate for the inbound queue, we first need to calculate the total
number of cycles that elapse from the time a GSC+ transaction that results in a TLB miss or a RMW
until the inbound queue location that this particular GSC+ transaction was stored in is available for anoth-
er GSC+ transaction. The cycle count includes the following components:

Delay component GSC+ cycles Runway cycles

UTurn internal delay for inbound transactions .5 21

UTurn Runway arbitration delay (typical) 3

Runway read request 1

Memory latency 25.5

Memory Runway arbitration delay (typical) 2

Read return transfer time 4

(Store/update line and return to queue head) or (update TLB entry) 6

UTurn Runway arbitration delay (typical) 3

Runway write line transaction 5

Return inbound queue entry to GSC+ domain 1.5

Totals 2 70.5

To determine the number of inbound queue locations that are required to keep GSC+ busy at peak GSC+
data transfer rates, the Runway cycles need to be translated into GSC+ cycles. UTurn’s design restricts
the range of Runway (ckrw) to GSC (GCLK) frequency ratios between 2:1 and 4:1. (Runway at, say,
100 MHz and GSC+ GCLK at 25 to 50 MHz). As an absolute worst case, assume the 2:1 ratio (80 MHz
Runway and 40 MHz GSC+ GCLK, for example). With this ratio, the 70.5 Runway cycles shown in
the preceding table translate to 36 GSC+ clocks, and the total inbound queue accumulation time is 38
GSC clocks. Now, consider the following reasonable transaction sequence. A sub–half–line write to
memory is followed by DMA pended read requests from 3 GSC+ modules and an even mix of 16 and
32 byte DMA writes from the remaining GSC+ module(s). Within the 38 GSC+ clock period of time
required to account for the RMW, read requests from each of the 3 reading guests (9 cycles total), two
16–byte writes (6 cycles each, 12 cycles total), and one 32–byte write (10 cycles) can actually complete
on GSC+, with 7 cycles ”left over” to start a second 32 byte read. An inbound queue depth of 8 is required
to allow these 7 transactions to proceed at GSC+ peak rate while the eighth queue location is tied up with
the RMW.

80

When considering the size of the read request ”pool” area required for outstanding reads to memory on
Runway, it is important to keep in mind that only one outstanding read request per guest is allowed with
today’s GSC+ definition and UTurn implementation. Since the maximum number of GSC+ guest DMA
masters that UTurn accommodates on a GSC+ bus is 6, there can be no more than 6 simultaneously out-
standing read requests to memory on Runway, and thus the pool need not be any larger than 6 entries.

For support of prefetch, there is a prefetch ”pool” area very similar to the read request pool. Prefetch is
supported with only a single prefetch buffer per GSC+ device (that is, per bus request/bus grant signal
pair). Since only 6 guests are supported, only 6 prefetch pool entries are required.

3.5.3. Connected DMA reads with prefetch

The DMA prefetching capability defined for GSC+ and implemented in UTurn attempts to exploit the
observation that most DMA traffic initiated by a GSC+ guest will be relatively large blocks of data that
are contiguous in a physical address sense, and are thus easily described by an initial address and a byte
count. For data that is being read from memory by a GSC+ guest, this observation leads to definition
of a mechanism in which any devices that sit between the GSC+ guest and memory can be fetching data
ahead along a particular address stream in order to minimize the memory latency. A GSC guest master
issues a prefetch hint by asserting XQL along with ADDVL in the address cycle of a DMA read. Several
different prefetch alternatives have actually been considered for UTurn. The type that has been chosen
to implement is deterministic prefetch. The implication is that if UTurn receives a prefetch indication
from a guest, the guest will at some point in the near future request the next sequential block of data in
the DMA stream. Address and guest ID matching are still required at the time of actual request, but
UTurn can deterministically prefetch on behalf of the guest without the concerns that speculative prefetch
presents regarding stale data and data retirement.

The goal of prefetch is to minimize effective memory access time. Prefetched data can be supplied direct-
ly to a requesting guest, eliminating the bus–stalling waits that occur with connected reads when memory
latency is long, and minimizing the need for busy/retry sequences or pended read transactions as a way
to increase effective bus utilization.

The design challenges with prefetch include selection of a sufficient number of prefetch buffers, control
of prefetches in progress and matching of requests to those prefetches, and addressing issues of coherence
and correctness.

Support of prefetch tends to benefit individual guest maximum throughput, whereas pended read transac-
tions tend to improve aggregate GSC+ bus throughput. Prefetch performance benefits derive from the
reduced average read access time for prefetched data. The effectiveness of prefetch in UTurn will ulti-
mately be limited if more than one DMA stream is interleaved per guest, or if traffic on Runway prevents
UTurn from issuing prefetch transactions at a rate commensurate with GSC+ read requests.

An observation to be made at this point is that UTurn will always prefetch cache line quantities from
memory. For Runway/Tornado, a cache line is 32 bytes. Transactions on GSC+, however, may be 16
byte quantities. This means that UTurn may indeed prefetch data that the guest has not explicitly re-
quested. The guest may only wish to access the first half of the next line (the next 16 bytes of data), but
UTurn must prefetch the entire line. Rules can (and must) be imposed on both guests and related software
to ensure that this prefetch case does not lead to errant system operation.

To quantify prefetch performance, assume that a single DMA stream is active per GSC+ guest, and that
each guest is correctly issuing the prefetch hint. All DMA read data, with the exception of the the first

81

access in a stream, will be supplied out of a prefetch buffer in UTurn. The succeeding analysis will also
consider whether or not the time to prefetch across Runway exceeds the interarrival time for GSC+ re-
quests, making Runway performance the limiter.

First, assume that GSC+ read request interarrival time does not exceed (Runway + memory) latency –
this assumption will be revisited momentarily. Now, due to UTurn internal synchronization requirements
and location of the prefetch buffers in the Runway clock domain, UTurn internal latency is incurred even
on a prefetch hit. This latency is based on the internal UTurn delays considered earlier for connected and
pended reads, and is a total of 19 Runway cycles and 3.5 GSC+ (round up to 4) cycles. This latency
is inserted between the GSC+ read address cycle and the first GSC+ data cycle. Of this delay, one of the
GSC+ cycles overlaps the turn cycle defined for GSC+ connected reads; the remaining (19R + 3G) cycles
are visible to the GSC+ guest. Because of this delay, the individual guest theoretical maximum band-
width for connected DMA reads can not be sustained through UTurn using only prefetching. Moving
the prefetch buffers into the GSC+ clock domain to increase DMA read performance is possible, but
makes UTurn internal design highly irregular and was considered an unreasonable risk.

In addition to UTurn–internal queueing and synchronization latencies, UTurn’s GSC arbitration logic
adds a dead cycle on GSC every time mastership changes between guests. This cycle is in addition to
the restore cycle that follows the last read data cycle as part of every read transaction.

Accounting for UTurn–internal latencies and GSC arbitration overhead, a table of minimum sustainable
interarrival times for guest–mastered (DMA) reads can be assembled. Note that a guest may elect to mas-
ter multiple connected reads per bus tenure, in which case these interarrival times could be reduced by
something less than one GSC cycle on average.

TABLE: Minimum sustainable interarrival times for GSC+ DMA reads

Trans-
fer size

GSC+
cycles

extra
arb

l

UTurn in-
ternal delay

l

Read interarrival times (ns) ; Runway/GSC+ frequency (in MHz)
=y

cycle
y

cycles 80 / 33.3 100 / 33.3 120 / 33.3 120 / 40 120 / 50

16 7G 1G 19R + 3G 568 520 489 434 379

32 11G 1G 19R + 3G 688 640 609 534 459

Now, the assumption of (Runway + memory) latency versus GSC+ read interarrival time must be ex-
plored. It is assumed that UTurn–initiated memory read requests can be pipelined on Runway. The worst
case scenario, then, is when GSC+ access patterns come closest to exposing each GSC+ read to the (Run-
way + memory) latency. This will occur when back–to–back requests on GSC+ are along the same DMA
stream. To calculate the Runway prefetch time, we must sum the Runway request and response arbitra-
tion latencies, the memory access time, and the actual Runway transfer time. The following table uses
arbitration assumptions documented earlier to calculate time delays for various Runway frequencies.
Memory latency values were noted earlier (25.5 Runway cycles). UTurn internal delay for sourcing the
prefetch read request and for storing the return data is 11 Runway cycles (7 for request, 4 for storage).

82

TABLE: Runway/memory prefetch read time
 Total read time, ns
 Case Delay Delay components 80 MHz 100MHz 120MHz
 ––––– –––––––––––––––––– ––––––––––––––––––––––––––– –––––––– –––––––– –––––––
 best 0R+25.5R+5R+11R R_arb_b+mem_access+R_xfer+int 519 415 346
 typical 5R+25.5R+5R+11R R_arb_t+mem_access+R_xfer+int 582 465 388
 worst 12R+25.5R+5R+11R R_arb_w+mem_access+R_xfer+int 657 535 446

Comparing the interarrival time and Runway/memory latency tables, note that any time the Runway read
time exceeds the GSC+ read interarrival time for a given Runway/GSC+ frequency, Runway is the per-
formance limiter. The tables show that a worst case load on Runway limits throughput when 16 byte
reads are being performed and either Runway frequency is low or GSC+ frequency is high; otherwise,
GSC+ is the limiter. Based on the data from the preceding two tables, the maximum single–stream DMA
read bandwidth sustainable through UTurn is now calculated, assuming a single prefetch buffer per DMA
stream and use of connected reads on GSC+. To get the minimum read arrival times (in GSC+ cycles)
in the table below, the times shown in the preceding two tables are compared and the largest time value
is converted to GSC+ cycles. Throughput is then calculated based on this cycle count.

TABLE: GSC+ connected read with prefetch – aggregate sustainable DMA read throughput (single
prefetch buffer and single DMA stream active per guest; single DMA read per guest bus tenure)

Runway Transfer
i

Cycle counts and throughputs; Runway / GSC+ frequency =
case size 80 / 33.3 MHz 100 / 33.3 MHz 120 / 33.3 MHz 120 / 40 MHz

Cycle
count

Thruput
(MB/
sec)

Cycle
count

Thruput
(MB/
sec)

Cycle
count

Thruput
(MB/
sec)

Cycle
count

Thruput
(MB/
sec)

Best 16 19 28 18 29 17 31 18 35

32 23 46 22 48 21 50 22 58

Typical 16 20 1 26 1 18 29 17 31 18 35

32 23 46 22 48 21 50 22 58

Worst 16 22 1 24 1 18 1 29 1 17 31 18 1 35 1

32 23 46 22 48 21 50 22 58

1 Throughput limited by Runway prefetch rate.

Note that DMA read throughput is independent of Runway loading if 32 byte GSC+ read transactions
are used.

The single–guest sustainable DMA read throughput is less than the aggregate rate due to GSC arbitration
requirements and associated overheads. The GSC specification requires that after relinquishing bus own-
ership, a guest must see its bus grant signal released before it can re–assert a bus request. Between this
protocol requirement and UTurn’s implementation, an additional 4 GSC cycles of arbitration overhead
are added each time a guest relinquishes and then attempts to regain bus ownership. For optimum single–
guest DMA read performance, guests should be designed such that they can optionally perform multiple
read transactions per bus tenure. This capability will hurt the performance of other guests on the same
bus segment, so caution should be exercised when enabling the capability. Guests should always have
the ability to be configured to perform only 1 transaction per bus tenure.

83

Taking the extra arbitration cycles into account, a single guest connected DMA read throughput table can
be constructed. All values in this table are limited by GSC interarrival times, and are not affected by any
of the expected Runway latency scenarios noted earlier.

TABLE: GSC+ connected read with prefetch – single guest sustainable DMA read throughput (one
DMA read per guest bus tenure)

Runway Transfer
i

Cycle counts and throughputs; Runway / GSC+ frequency =
case size 80 / 33.3 MHz 100 / 33.3 MHz 120 / 33.3 MHz 120 / 40 MHz

Cycle
count

Thruput
(MB/
sec)

Cycle
count

Thruput
(MB/
sec)

Cycle
count

Thruput
(MB/
sec)

Cycle
count

Thruput
(MB/
sec)

Best/
Typ/

16 23 23 22 24 21 25 22 29
Typ/
Worst 32 27 39 26 41 25 42 26 49

3.5.4. Pended DMA reads with prefetch

When pended DMA read transactions are combined with memory prefetching, the single stream memory
latency impact can be minimized while aggregate bus throughput is improved. In this section, data from
the pended–only and prefetch–only sections will be joined to assess the benefit of implementing both.
With prefetch being employed to minimize the impact of memory latency on a single DMA stream, and
with pend capability facilitating initiation of several simultaneous DMA reads, an interesting I/O system
performance range is implementable. As seen earlier, the throughput for a single DMA stream is actually
slightly worse when pended read transactions are utilized on GSC+, independent of prefetch capability,
due to the need for UTurn to arbitrate for GSC+ to issue the read return. The benefits of combining pre-
fetch and pended reads are really seen, however, when a total system performance picture is drawn. Since
GSC+ is not locked up while waiting for data even from the prefetch buffer, other transaction traffic such
as inbound DMA data or outbound DIO data (graphics or other) can flow through UTurn and across
GSC+, improving overall system throughput. In addition, there are a limited number of prefetch buffers,
and if the number of outbound DMA streams active exceeds the available prefetching resources in UTurn
(or if a particular DMA device is not capable of indicating prefetch hints), the memory latency will be
exposed to that DMA stream. Connected reads in this case plug up the entire GSC+ bus for a significantly
longer time, whereas pended reads simply allow that much more time for other GSC+ bus activity to
proceed. A combination of the two clearly benefits overall system performance.

To calculate the single guest pended DMA read throughput when prefetching is in use, the basic pended
read cycle count is combined with UTurn–internal latencies and expected GSC arbitration delays. The
UTurn–internal latencies for pended readswith prefetch are longer than those for connected reads with
prefetch by the amount of GSC arbitration latency encountered in the DMA read return phase. This addi-
tional arbitration latency was calculated for pended reads without prefetch. GSC arbitration latencies
for the request phase will be identical to those calculated for pended reads without prefetch. In this sec-
tion, only bus configurations of guests issuing pended reads will be considered. Combining transaction
lengths and delays, a table of single–guest throughput values can be generated.

First, we calculate the UTurn–internal latency for a pended read of prefetched data, which is the sum of
the UTurn–internal delay for a prefetch hit plus the arbitration delay for the read return portion of the read.

84

Earlier, it was noted that the UTurn–internal latency for a prefetch hit is 19 Runway cycles plus 4 GSC
cycles. One of these cycles overlaps a bus tristate cycle required by the bus protocol, so the net additional
delay due to UTurn internal logic is 19 Runway cycles and 3 GSC cycles. The arbitration delay for the
data return was calculated when pended reads without prefetch were analyzed. This table is reproduced
here (note the assumption that all other guests are performing either DMA writes or pended DMA reads;
connected DMA reads will cause the arbitration delays to be longer).

TABLE: GSC+ host (UTurn) arbitration delay for issuance of read returns – connected reads disallowed

Case Transac-
ti i

GSC+ transaction length (GSC+ cycles) UTurn GSC+
bit t i ltion size Pended

read re-
quest

Pended
read return

Write Average arbitration la-
tency for read

returns

Best
(1 l b d l)

16 2 6 7 5 1
(1 cycle arb delay) 32 2 10 11 8 1

Typical
(0 5 * (b t t))

16 2 6 7 5 2
(0.5 * (best+worst)) 32 2 10 11 8 3

Worst
(0 5X avg trans

16 2 6 7 5 3
(0.5X avg trans

length) 32 2 10 11 8 4

Now, combine the GSC+ host arbitration delay numbers with the fixed UTurn internal delay cycles to
come up with the number of additional delay cycles (in excess of the minimum required by the protocol)
between the address cycle and the return notification cycle of a pended DMA read that encounters a pre-
fetch hit.

TABLE: UTurn–internal latency – pended DMA reads with prefetch

Case Trans-
ti

Pended DMA read return delay; Runway / GSC+ frequency =
action
size

80 MHz / 33.3 MHz 100 MHz /
33.3MHz

120 MHz /
33.3MHz

120 MHz / 40 MHz

Cycle
counts

GSC+
cycles

Cycle
counts

GSC+
cycles

Cycle
counts

GSC+
cycles

Cycle
counts

GSC+
cycles

Best 16 / 32 19R+4G 12 19R+4G 11 19R+4G 10 19R+4G 11

Typical 16 19R+5G 13 19R+5G 12 19R+5G 11 19R+5G 12

32 19R+6G 14 19R+6G 13 19R+6G 12 19R+6G 13

Worst 16 19R+6G 14 19R+6G 13 19R+6G 12 19R+6G 13

32 19R+7G 15 19R+7G 14 19R+7G 13 19R+7G 14

The pended read protocol allows a pended read request to be issued by a guest immediately following
receipt of a pended read data return to that guest. UTurn will support this timing as long as the guest
asserts its bus request earlier than the last data cycle of the read return (and as long as other higher–priority
bus modules are not requesting the bus). Thus, the arbitration delays encountered in the single–guest

85

connected read case are not present for pended reads. By combining the transaction length information
and the UTurn–internal delay data, single–guest performance for pended DMA reads with prefetch can
be calculated.

TABLE: Individual GSC+ guest performance through UTurn –pended DMA reads with prefetch
(single pended transaction per guest, connected reads by other guests disallowed)

Case Xfe cycles
in

Runway/GSC+ frequency combination
r

size
in

basic 80 MHz / 33.3 MHz 100 MHz / 33.3 MHz 120 MHz / 33.3 MHz 120 MHz / 40 MHz
size basic

trans-
action

Arb/
Rway
delay

Total
cycles

Thru-
put

(MB/s)

Arb/
Rway
delay

Total
cycles

Thru-
put

(MB/s)

Arb/
Rway
delay

Total
cycles

Thru-
put

(MB/s)

Arb/
Rway
delay

Total
cycles

Thru-
put

(MB/s)

Best 16 8 12 20 26 11 19 28 10 18 29 11 19 33

32 12 12 24 44 11 23 46 10 22 48 11 23 55

Typ 16 8 13 21 25 12 20 26 11 19 28 12 20 32

32 12 14 26 41 13 25 42 12 24 44 13 25 51

Worst 16 8 14 22 24 13 21 25 12 20 26 13 21 30

32 12 15 27 35 14 26 41 13 25 42 14 26 49

Aggregate bandwidth for the case of pended reads with prefetch will depend upon the amount of queue
space available in UTurn, the UTurn–internal latency on a prefetch hit, and the number of outstanding
pended reads that modules present in a particular I/O system might generate concurrently. The maximum
aggregate GSC+ pended DMA read bandwidth can be maintained through UTurn with 4 – 5 guests gener-
ating pended reads. Because of UTurn’s bus traffic prioritization algorithm, which prioritizes read returns
at the highest level always, read requests and read responses are not interleaved optimally. Steady–state,
this results in a ”bursty” bus behavior wherein all guests issue requests back–to–back, and after the first
response is ready, all responses to issued requests are issued back–to–back. This results in sub–optimal
bus cycle utilization for busses with only 2 or 3 requesting guests. The following table estimates the
aggregate pended DMA read throughput (with prefetch enabled) as a function of the number of guests.
A ”typical” UTurn–internal delay cycle count is assumed; arbitration on GSC for read returns will likely
only have to wait for a DMA read request in progress, and UTurn’s expected arb delay in this case is just
under 2 GSC cycles. In order to achieve the levels of aggregate performance indicated, guests must be
able to own the bus for the minimum number of cycles in the request phase. One cycle after a grant is
issued, the guest must drive an address cycle, and the guest must release its bus request during the address
cycle as allowed by the GSC+ specification. If the guest waits until the cycle after the bus request to
de–assert its bus request, or if the guest waits an additional cycle after being granted the bus to drive an
address, the maximum throughput numbers shown will be reduced by up to 20%.

Each throughput value shown in the table is calculated based on an expected request burst / response burst
combination. The total length of such a combination is calculated by starting with the number of UTurn–
internal delay cycles and dividing this by the length of a pended DMA read request (assumed to be 3
cycles for this table – 2 required by the protocol, and 1 due to arbitration request–to–grant delay inside
UTurn). The result of this division is the number of requests that can issued on GSC before the first read
data is ready to be returned. If the number of guests is small, the total number of cycles in a request/re-
sponse burst is limited by the number of guests, since each guest can only issue one pended read at a time.
The total cycles in a burst takes into account the requests, any dead time to the first response, and all cycles

86

requires to complete responses for all outstanding requests. The throughput shown in the table will be
shared equally among the active guests.

TABLE: Aggregate DMA read performance through UTurn –pended DMA reads with prefetch
(single pended transaction per guest, connected reads by other guests disallowed)

Num-
b f

Xfer
i

Runway/GSC+ frequency combination
ber of
guests

size 80 MHz / 33.3 MHz
UTurn–internal delay: 13

Gclks

100 MHz / 33.3 MHz
UTurn–internal delay: 12

Gclks

120 MHz / 33.3 MHz
UTurn–internal delay: 11

Gclks

120 MHz / 40 MHz
UTurn–internal delay: 12

Gclks

Total
bytes
read

Total
cycles

Thru-
put

(MB/s)

Total
bytes
read

Total
cycles

Thru-
put

(MB/s)

Total
bytes
read

Total
cycles

Thru-
put

(MB/s)

Total
bytes
read

Total
cycles

Thru-
put

(MB/s)

1 16 16 21 25 16 20 26 16 19 28 16 20 32

32 32 25 42 32 24 44 32 23 46 32 24 53

2 16 32 27 39 32 26 41 32 25 42 32 26 49

32 64 35 60 64 34 62 64 33 64 64 34 75

3 16 48 33 48 48 32 50 48 31 51 48 32 60

32 96 45 71 96 44 72 96 43 74 96 44 87

4 16 64 39 54 64 38 56 64 37 57 64 38 67

32 128 55 77 128 54 79 128 53 80 128 54 94

5 16 80 45 59 80 44 60 80 44 60 80 44 72

32 160 65 82 160 64 88 160 64 88 160 64 100

6 16 96 53 60 80 44 60 80 44 60 80 44 72

32 192 77 83 160 64 88 160 64 88 160 64 100

3.6. DIO writes

UTurn can master two different types of writes on GSC – fixed length writes and variable length writes.
UTurn will master fixed length writes in one of two sizes: 1–4 bytes (single word write) and 8 bytes
(2–word write). UTurn can master variable length writes with data payloads of 1 to 8 words. UTurn
supports the fast DIO write timing documented in the GSC specification, and can thus support the maxi-
mum theoretical DIO write performance on the GSC bus. DIO write sequences can be arbitrarily long,
supporting lengthy graphics write sequences. The table below documents DIO write performance for
fixed–length writes of various sizes and ”modes”. Only the 4–byte (single word) ”fast” case is shown
due to the special design considerations for fast READYL acknowledge and accounting for restrictions
involving changes in the target guest for back–to–back writes. These concerns can be more easily cov-
ered in the double word write case.

87

TABLE: UTurn–mastered (DIO) write performance – Fixed length writes

Transfer
type

Transfer
size (by-

t)

Transfer
”mode”

GSC+
cycles

Maximum sustained bandwidth (MBytes/sec);
GSC+ frequency =yp y

tes)
y

24 MHz 32 MHz 33.3 MHz 40 MHz 50 MHz

Write 8 either 3 64 85 88 106 133

4 fast 2 48 64 66 80 100

4 reg. 3 32 42 44 53 66

UTurn can master variable–length writes (writeVs), and can transfer the data either one word per GSC
cycle (1.5X mode) or 2 words per cycle (2X mode). Performance for variable–length writes at various
GSC bus frequencies is shown in the following table. Note that this table assumes long streams of writes
and READYL acknowledgement timing that will not limit performance. GSC bus arbitration overhead
is not considered, nor is the effect of DMA traffic or other non–DIO write activity.

TABLE: UTurn–mastered (DIO) write performance – Variable length writes

Transfer
mode

Transfer
size (by-

t)

GSC+
cycles

Maximum sustained bandwidth (MBytes/sec);
GSC+ frequency =y

tes)
y

24 MHz 32 MHz 33.3 MHz 40 MHz 50 MHz

2X 32 5 153 204 213 256 320

28 5 134 179 186 224 280

24 4 144 192 200 240 300

20 4 120 160 166 200 250

16 3 128 170 177 213 266

12 3 96 128 133 160 200

8 2 1 96 128 133 160 200

4 2 1 48 64 66 80 100

1.5X 32 9 85 113 118 142 177

28 8 84 112 116 140 175

24 7 82 109 114 137 171

20 6 80 106 111 133 166

16 5 76 102 106 128 160

12 4 72 96 100 120 150

8 3 64 85 88 106 133

4 2 1 48 64 66 80 100

1 Assumes optimum READYL timing and consecutive transactions to same guest

3.7. DIO reads

Reads mastered by UTurn on GSC (DIO reads) can be performed in either a connected or a pended mode,
depending on the capabilities of the guest and on the state of UTurn. UTurn can only master single word

88

and double word reads on GSC. The DIO read path is a low throughput path, and should not be used
for bulk data transfer. As with DMA reads, performing a DIO read in a pended fashion has slightly poorer
performance than an equivalent connected read, but pended DIO reads allow more bus cycles to be avail-
able for use by other devices when a guest is slow to supply data in response to a read request. Guest
devices can vary widely in their read data access times. A GSC guest that is a bus converter to another
bus (to EISA, say) could have to wait for a read to complete on a lower, slower bus before being able to
respond to a read request. Reading a GSC guest internal register, however, may be a relatively fast opera-
tion.

In this performance analysis, the guest is assumed to respond to a read request with minimum internal
delay. Specifically, the access time for the read data is assumed to occur during the bus turn–around cycle,
meaning that the guest can drive data back to UTurn on the second cycle following the address cycle of
the read. At a system level, the DIO read throughput provided to a given Runway–based processor by
UTurn includes the Runway read_short transaction time, the UTurn–internal latency for the read transac-
tion, the GSC read transaction time, and any arbitration delays encountered on GSC or Runway due to
bus loading or design restrictions. The following table summarizes the bus cycles consumed in a DIO
read initiated by a given processor on Runway and directed to a GSC guest.

For Runway arbitration delay values, use the same numbers as were used in the DMA read performance
calculation (Best = 0 additional cycles; typical = 3 cycles; worst = 7 cycles). For GSC arbitration delay
values, use an averaged version of the arb delay calculated for pended DMA read returns (averaged be-
tween transaction sizes within a given performance case, yielding best = 1, typical = 3, and worst = 7).

Delay component Runway cycles GSC+ cycles
(1 word read)

GSC+ cycles
(2 word read)

Runway read request arb delay 0 / 3 / 7

Runway read request 1

UTurn internal delay to receive and queue request 6

Synchronize read request to GSC domain 1.5 1.5

De–queue and arb for GSC 1.5 1.5

GSC arbitration delay (best/typical/worst) 1 / 3 / 7 1 / 3 / 7

GSC read (single word) 3 4

UTurn internal delay to queue, sync, and dequeue read
return

21 .5 .5

UTurn Runway arbitration delay (best/typical/worst) 0 / 3 / 7

Read return transfer time 1

Processor delay before next read request 2

Totals 31 / 37 / 45 7.5 / 9.5 / 13.5 8.5 / 10.5 /
14.5

Using this data, a performance table can now be assembled for various GSC and Runway frequency com-
binations. Partial GSC cycle counts are rounded up before being used in the table. These numbers are
both single guest and multiple guest values with respect to a single processor. Current and planned pro-
cessors can only have one I/O read outstanding at a time.

89

TABLE: Connected DIO read throughputs – single guest and aggregate per processor
(throughput between a given processor and one or more GSC guests)

Case Transfer
size

Fixed cycle
counts

Arb delay
cycles

Total cycles Runway / GSC+ frequency (in MHz) =
size counts cycles

100 / 33.3 120 / 33.3 120 / 40

Thruput
(MB/s)

Thruput
(MB/s)

Thruput
(MB/s)

Best 8 31R + 8G 1G 31R + 9G 13 15 16

4 31R + 7G 1G 31R + 8G 7 8 8

Typical 8 31R + 8G 3R+3G 34R + 11G 11 13 14

4 31R + 7G 3R+3G 34R + 10G 6 6 7

Worst 8 31R + 8G 7R+7G 38R + 15G 9 10 11

4 31R + 7G 7R+7G 38R + 14G 5 5 6

Pended DIO reads are really intended for efficient GSC bus utilization. Performing a DIO read in a
pended fashion adds a minimum of 3 GSC cycles to the completion time for a read; a more typical value
will be 5 extra cycles. A performance table is generated below for the minimum delay pended DIO read
case, but keep in mind that the real benefit of pended DIO reads is to free GSC bus cycles when a guest
knows it will take a very long time to get the data for a read issued by UTurn. By pending the read, the
bus cycles are made available for other GSC traffic.

TABLE: Pended DIO read throughputs – single guest and aggregate per processor
(throughput between a given processor and one or more GSC guests)

Case Transfer
size

Total cycles
from con

Extra
cycles due

Total cycles
in pend case

Runway / GSC+ frequency (in MHz) =
size from con-

nected DIO
cycles due

to pend
in pend case

100 / 33.3 120 / 33.3 120 / 40nected DIO
read case

to pend

Thruput
(MB/s)

Thruput
(MB/s)

Thruput
(MB/s)

Best 8 31R + 9G 3G 31R + 12G 11 12 14

4 31R + 8G 3G 31R + 11G 6 7 7

Typical 8 34R + 11G 5G 34R + 16G 9 10 11

4 34R + 10G 5G 34R + 15G 5 5 6

Worst 8 38R + 15G 5G 38R + 20G 8 8 9

4 38R + 14G 5G 38R + 19G 4 4 5

3.8. Conclusions

Three DMA performace points can be made based on the preceding calculations. First, use of 32 byte
transfers is the single most effective way to get more bus bandwidth for any traffic level. Second, guests
should support pended DMA reads, allowing aggregate bus bandwidth to be maximized. This is particu-
larly important when several guests with similar performance requirements are active simultaneously on

90

GSC+. Third, prefetch should be implemented for use with DMA read transactions to maximize individ-
ual guest read throughput. Prefetch support is particularly important for guests performing connected
DMA reads; performance for that guest is optimized, and generally more bus cycles remain available for
other guests.

Two DIO transaction performance conclusions should be highlighted. First, 2–word (8–byte) transac-
tions should be used whenever possible to maximize performance. Second, don’t expect much perfor-
mance for DIO read transactions (connected or pended).

91

92

4. Synchronization

The UTurn chip permits completely asynchronous clock relationships between the Runway bus and the
GSC bus. Parts of UTurn operate in each of these clock domains. Please refer to the UTurn block dia-
gram in the introduction chapter of this ERS. The dashed line in this diagram denotes the boundary be-
tween the domains. As this diagram shows, the following blocks straddle the boundary between Runway
and GSC clocking: The DMA Read Return Queue, the Outbound Command Queue, the Inbound Queue,
the Prefetch and DMA Read Return RAM, and the Inbound RAM.

The last four structures are implemented as dual port RAMs. The control logic for these RAMs will be
able to insure that the same address will never be applied to both ports of the RAMs simultaneously.

The DMA Read Return Queue is implemented as a two port register file using scannable standard cell
flip–flops. The small size of this structure (8 x 11) minimizes the area penalty incurred by using flip–
flops.

The three queues listed above require synchronization. A Pipelined Synchronizer FIFO is used here.
(For detailed information, refer to ”Pipelined Synchronizer/FIFO Invention Disclosure” by Vince Ca-
vanna and Pradip Shankar.) Variations of this synchronizer have been used multiple times in various HP
ASICs. The design achieves synchronization with minimal holdoff. The fact that it utilizes a FIFO
makes it a natural fit for this application.

Briefly described, the synchronizer uses a FIFO to compensate for the latency inherent in all synchroniz-
ers. As long as the input pointer is kept sufficiently ahead of the output pointer, then holdoff will be
minimal. The pointers are maintained in gray code format. These gray coded input and output pointer
values are the entities that actually span the synchronization boundary. A chain of cascaded synchronous
registers is used for this purpose. The delayed version of the pointer from the opposite side is used to
decide whether a given operation can occur.

There are several other single bit control signals which cross the clock domains in each direction. Stan-
dard synchronizer techniques are used to achieve an acceptably low probability of synchronizer failure,
while keeping latency at a minimum.

93

94

5. Outbound (Runway–to–GSC+) Transaction/Data Flow

The outbound portion of the block diagram consists of two duplicate decode blocks which contain a num-
ber of registers and comparators, an outbound command queue where transaction information (such as
address, operation, and size) is stored in order, an outbound data return queue where transaction informa-
tion corresponding to data read returns resulting from a previously mastered Runway read is stored in
order, an HPA register block, a cache buffer for private read returns, and the cache coherency queue.
Data corresponding to write commands is stored in the command queue with the command. The data
corresponding to data read returns is stored in an internal ”RAM”.

Because there are two Runway clocks for every single UTurn internal Runway clock, the outbound Run-
way block receives two cycles worth of Runway activity in a single internal state. Runway transactions
require either a single external Runway cycle or multiple external Runway cycles to complete, as shown
in the following table.

Transaction Type Cycle Count

All Coherent Transactions (TTYPE[2] == 1) One Cycle

Read_Short One Cycle (guaranteed ”idle” cycle follows)

Dir_Error / Broad_Error One Cycle

DMA_Sync / Cache_Sync One Cycle

Write_Short >= Two Cycles

Cache–to–Cache Copy >= Five Cycles

Memory Read Return >= Four Cycles

 Thus one internal state can contain a single Write_Short, or part of a Cache–to–Cache Copy or Memory
Read Return Transaction or it could encompass two different transactions. The guaranteed ”idle” cycle
after a read short is not required to be a Runway idle cycle but it must NOT be a read short or write short
to this IOA.

5.1. Timing

5.2. Blocks

The following sections describe the functional blocks required for outbound traffic, when UTurn is a
slave to Runway.

5.2.1. Left and Right Side Decode Blocks

NOTE: The LEFT Runway cycle occurs BEFORE the RIGHT Runway cycle.

The left and right side decode blocks in the Runway receive block each receive one external Runway
cycle worth of address and transaction information, corresponding to the two external Runway cycles
within a single internal cycle, and determine the possible destination for the information. Possible des-
tinations include the outbound data queue, the outbound command queue, RAM, a temporary queue

95

entry (for multi–cycle transfers), a temporary RAM buffer (for multi–cycle transfers), the HPA register
block, the cache and the TLB. The results of the decode blocks go to the master control block which will
steer the data/commands to the appropriate destination.

Also for every Runway cycle, a comparison to the pool and prefetch buffer Trans_ID registers is neces-
sary to determine if this the first data cycle of a data read return destined for this I/O Adapter. This com-
parison will occur in the pool/prefetch block itself, independent of the left and right side decode blocks.
The result of this comparison is additional input to the master control block to determine the appropriate
destination for the data.

96

By processing the left and right side of an internal cycle in parallel, the receive logic can keep up with
Runway bandwidth, as long as the destination of the left side and right side blocks are unique. The fol-
lowing diagram illustrates the left and right side decode blocks with appropriate destinations.

addr_cmdq

addr_hpa

addr_io_cmd pool/pref hit

trans type

ld_cache

ld_cc_q

runway_in_left[0:63] runway_in_right[0:63]

pool/pref hit

trans_type

ld_cache

ld_cc_q

addr_cmdq

addr_hpa

addr_io_cmd

Internally, each decode block will be identical containing the following:

� Address Decode Logic

� Cache Address Comparator

� IO_Flex Comparator

� Address Bounds (IO_IO_Low and IO_IO_High) Comparator (two sets)

� Parity Checker

� Master_Id Comparator

� Transaction_Type Decode

5.2.2. Pool Buffers

There are eight pool buffers, the maximum number of outstanding requests is six (one for each GSC+
guest) and the maximum number of outstanding prefetch requests is six prefetch buffers (one for each
GSC+ guest). There are only 8 pool buffers because each IOA is limited to eight outstanding transactions
due to the 8 transaction IDs available. These buffers are stored by the Inbound Runway block and dumped
to the Outbound Runway block. The Runway Trans_ID is used as an address to select the pool entry.
. When a Runway cache–to–cache copy or memory read return is observed, the I/O Adapter compares
the Master_ID and checks the valid bit of the pool entry indicated by the Trans_ID. If the Master_ID
matches this I/O Adapter and the pool valid bit is set then the read return is destined for us.

Each entry is 45 bits wide and is organized as follows(The first entry is a normal pool entry, the second
is a prefetch entry):

97

 30k 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ

0 26
 Not Used

27. .29
GSC+
Word
IN
Cache
Line
[4:2]
=GSC+
ADDR
[4:2]

30 31
GSC+
Trans
Type
[2:3]

32 34
GSC+
Guest
ID
[0:2]

35
D
I
A
G-
N
O
S
T
I
C

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

36
N
O
T
U
S
E
D

ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ

37
N
O
T
U
S
E
D

38
C
A
C
H
E

39
T
L
B

40
C
O
N-
N
E
C
T

41
T
I
M
E-
O
U
T

42
T
I
M
E
D
_
O
U
T

43
T
I
M
E
D
_
E
N
A
B

ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ

44
N
O-
T
U
S
E
D

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

45
N
O
T
U
S
E
D

46
R
A
M
A
D
D
R

47
P
O
O
L
=
0

48
IN
U
S
E

0 29
 30 Bit GSC+ ADDR

30 31
GSC+
Trans
Type
[2:3]

32 35
GSC+
Guest
ID
[0:2]

35
D
I
A
G-
N
O
S
T
I
C

36
R
E-
T
U
R
N
E
D

37
R
E
Q
B
Y
G
S
C
+

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

38
N
O
T
U
S
E
D

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

39
N
O
T
U
S
E
D

40
C
O
N-
N
E
C
T
E
D

41
T
I
M
E-
O
U
T

42
T
I
M
E
D
_
O
U
T

43
T
I
M
E
D
_
E
N
A
B

44
E
R
R
_
D
U
R
_
P
R
E

45
D
I
S
C
A
R
D

46
R
A
M
A
D
D
R

47
P
R
E-
F
E
T
C
H
=
1

48
IN
U
S
E

Where:

GSC+ Word IN Cache Line – indicates which word in the cache line is the desired word – these bits are
simply read and put in the command queue. The GSC+ block uses these bits. These bits are equivalent
to the GSC+ bus address bits of [4:2].

GSC+ Trans Type – indicates the transaction type on GSC+ . These bits are put into the command queue.

GSC+ Guest ID[0:2] – this is the GSC+ Guest ID of the original transaction request.

DIAGNOSTIC – This is a diagnostic pool entry, this bit will be passed along into the RRQ entry so that
the GSC block will know that this read return is not REALLY destined for a GSC guest.

CACHE – indicates data return destination is the cache.

TLB – indicates data return destination is the TLB.

CONNECTED – indicates the data return will be indicated by the Connected flag to GSC+. Data will
be returned immediately – bypasses read return queue.

NOTE: CACHE and CONNECTED can both be set – this is used for semaphore data and indicates that
the data should be put in both cache and the Read Return RAM to be returned to the GSC+ guest. This
is the ONLY time that multiple bits of (CACHE, TLB, CONNECTED) can be set.

TIMEOUT – is used to determine if a timeout has occurred for this transaction.

TIMED_OUT – indicates a timeout has occurred for this transaction.

98

TIMED_ENAB – indicates that the read request has been seen on Runway and that the timeout process
can begin.

ERR_DUR_PRE – indicates that there was a error during the data return for prefetch read. This error
will get returned to the GSC guest if the guest tries to request the prefetched data.

DISCARD – indicates to outbound block to discard data when it returns because it is no longer needed.
Only used for discarding prefetched data. See section on prefetching on inbound chapter. Outbound
block will simply discard data and clear the INUSE bit.

RAMADDR – This is the LSB of the RAM address. The GSC+ Guest ID makes up the rest of the address.

POOL(0)/PREFETCH(1) – this bit indicates what this entry is being used for – either a POOL entry or
a PREFETCH entry.

INUSE – This bit indicates that this entry is currently being used and the contents are valid. If data is
received and the trans_ID matches a pool entry that is NOT is use, the data will be discarded and a unex-
pected data return error will be logged.

30 Bit GSC+ ADDR – this is the prefetch address. It is compared against the next request from that guest
to verify that the guest did in fact request this address location.

RETURNED – indicates that the prefetch data has been returned from Runway.

REQUESTED ON GSC+ – indicates that when the data is returned the request should be moved from
the Pool to the command queue.

Each IOA only has eight trans_IDs available. The trans_IDs have a one–to–one mapping to the pool
entries. When data is returned the trans_ID is used to address the pool entries. If the pool entry is ”IN-
USE” then the data must be stored in the appropriate place. The following table shows where the data
is stored:

Pool(0) /
Prefetch(1)

CACHE TLB CON-
NECT
ED

Data re-
turned

Requested
ON
GSC+_

DATA DEST. Outb
RRQ
entry

0 0 0 0 X X OUTBND RAM
[{GSC+GUEST_ID,RAMADDR}]

YES

0 0 0 1 X X OUTBND RAM
[{GSC+GUEST ID, RAMADDR}]
Will fire Connected bit

NO

0 0 1 0 X X TLB NO

0 1 0 0 X X CACHE NO

0 1 0 1 X X OUTBND RAM and CACHE
[(GSC+GUEST_ID,RAMADDR)]

NO

1 0 0 0 set data
returned

0 OUTBND RAM
[{GSC+GUEST_ID,RAMADDR}]

NO

1 0 0 0 X 1 OUTBND RAM
[{GSC+GUEST_ID,RAMADDR}]

YES

Most responses will be queued in the Outbound Read Return Queue(RRQ), and the corresponding data
will be stored in the Outbound RAM. However, responses intended for the TLB, cache, or connected

99

GSC+ responses, will bypass the Data Return Queue and the Outbound RAM and go directly to the TLB,
cache, or GSC+, respectively. This is done to prevent deadlock.

Corresponding to each prefetch buffer are bits which indicate if the data has already been returned and
is in the read return RAM, if the GSC+ transaction has been formally issued (requested), and finally
if the buffer contents are valid (INUSE). An Outbound Read Return Queue entry will not be formed until
the requested bit is set (indicating that the GSC+ request has been issue) and the outstanding bit is clear
(indicating that the return data is valid in the Outbound RAM). It is the responsibility of the outbound
control block to change the returned bit from false to true, once the data is valid in the RAM. The out-
bound control block must also change the inuse bit from true to false, once an entry corresponding to
this prefetch is stored in the Read Return Queue. This is an indication to the inbound control block that
the buffer (and its corresponding Trand_ID) is now available to reuse for a subsequent transaction.

5.2.3. Outbound Command Queue

The Outbound Command Queue is a synchronizer/fifo, which is loaded in the internal Runway domain
and dumped in the GSC+ domain. All Runway transactions for which this I/O Adapter is a slave will
be loaded in this queue in the order they are received from the Runway Bus. The queue is 26 entries deep,
sized to accommodate a critical 3D graphics transaction size. Once the queue has 19 valid entries, UTurn
will indicate STOP_IO. As it may require 3 cycles for UTurn to drive the STOP_IO line plus up to 4
cycles for this flow control to take effect throughout the system, 7 additional buffers ensure that the queue
will not be overrun. It is only possible to completely fill the OUTQ if write shorts(or read shorts) are
arriving as fast as possible(address cycle every other Runway cycle) and if the address cycle arrives on
the ”right” side of the decode block. If the address cycle is on the left cycle the OutQ can only be filled
with 25 entries.

There are three types of OutQ entries, they are, listed in the order they appear in the following table:

1) GSC DIO, PDC or GSC HPA register access
2) Runway HPA read, TLB command (U–turn)
3) Test entry – used for internal testing by PDC

Each entry is 120 bits wide and is organized as follows:

100

1 6 3 1 1 1 1 1 1 8 1 1 1 1 1 1 1 1 32

 64

0
=
0
(
G
S
C
+
)

1 6
Runway
TransID

7 9
Run-
way
MstrID

10
P
D
C

11
IO
–
B
R
O
A
D

12
R
E
A
D/
N
W
R

13
8
B
Y-
T
E
S

14
T
E
S
T
=
0

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

15
N
O-
T
U
S
E
D

16 23
Runway Byte En-
able

24
R
F
E

25
R
H
E

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

26
N
O-
T
U
S
E
D

27
M
A
Y
B
E
D
I
O

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

28
C
O-
A
L
E
S
C
E

ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ

29
A
L
L
_
B
E
S

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

30
A
D
D
R
15
X

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

31
A
D
D
R
2
X

32 63
32 bit
ad-
dress

64 127
64 bit
data

1
=
I
N
B
N
D

1 6
Runway
TransID

7 9
Run-
way
MstrID

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

10
N
O
T
U
S
E
D

ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ

11
N
O
T
U
S
E
D

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

12
N
O
T
U
S
E
D

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

13
N
O
T
U
S
E
D

14
T
E
S
T
=
0

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

15
N
O-
T
U
S
E
D

16
H
P
A
R
E
A
D

17
T
L
B
–
C
M
D

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

18
19
N
O
T
U
S
E
D

20 23
CMD
TYPE

ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ

24
N
O-
T
U
S
E
D

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

25
N
O-
T
U
S
E
D

26
E
R
R
_
R
T
N
0

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

27
N
O-
T
U
S
E
D

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

28
N
O
T
U
S
E
D

ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ

29
N
O
T
U
S
E
D

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

30
N
O
T
U
S
E
D

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

31
N
O
T
U
S
E
D

32 63
32 bit
ad-
dress

ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ

64
127
Not
Used

1
=
I
N
B
N
D

1 –3
Not
Used

4 Conn
5 Lock
6 Pre-
fetch

7 9
GSC
Guest
ID

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

10
N
O
T
U
S
E
D

ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ

11
N
O
T
U
S
E
D

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

12
N
O
T
U
S
E
D

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

13
N
O
T
U
S
E
D

14
T
E
S
T
=
1

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

15
N
O-
T
U
S
E
D

16 19
GSC Byte
Enable

20 23
GSC
TYPE

ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ

24
N
O-
T
U
S
E
D

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

25
N
O-
T
U
S
E
D

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

26
N
O-
T
U
S
E
D

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

27
N
O-
T
U
S
E
D

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

28
N
O
T
U
S
E
D

ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ

29
N
O
T
U
S
E
D

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

30
N
O
T
U
S
E
D

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

31
N
O
T
U
S
E
D

32 63
32 bit
ad-
dress

ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ

64
127
Not
Used

Where:

Bit 0: (1/0) – indicates destination of this entry (INBND block/GSC+) – also called the “u–turn” bit

Runway TransID indicates the transaction ID (in the case of a Read_Short or Read_Burst, where the
Trans_ID must be redriven on the corresponding read responses from the I/O Adapter)

Runway MstrID indicates the transaction master ID (in the case of a Read_Short, where the Master_ID
must be redriven on the corresponding read responses from the I/O Adapter)

Runway Byte Enable specifies which of the 8 bytes within the addressed double word are being read or
written (in the case of a Read_Short or Write_Short)

PDC indicates that this is an access to PDC address space

IO–BROAD indicates to the GSC+ block that this is an access to broadcast IO address space (address
falls between IO_IO_LOW[_HV] and IO_IO_HIGH[_HV] and IOA is in PEEK mode).

READ/NWR indicates to the GSC+ block if this is a read short or a write short transaction

8BYTES is set whenever the Runway Byte Enable field indicates that this transaction is a double word
(8 Byte) transaction.

101

TEST indicates this is a DMA test entry – this will be used to form a ”GSC” inbound DMA request

RHE indicates that the Runway side is in hard error mode.

RFE indicates that the Runway side is in fatal error mode.

ERR_ RTN0 is used to force a read of HPA registers to return all 0’s. This was originally intended to
be for reading unimplemented registers but is now only used to return 0s on a read of the IO_STATUS
register if the read is done while a command reset is in progress.

MAYBEDIO – This is a predecode for the GSC master state machine, indicating that the entry is not a
“u–turn”, not a PDC access, not a broadcast and we are not in hard or fatal error mode.

COALESCE is set if an entry is a DIO write and its address is sequential with the address of the preceding
OutQ entry.

ALL_BES is set if an entry is a DIO write and one or two full words of data are valid.

ADDR15X is set if an entry is a DIO write and its address falls into an I/O address space enabled for GSC
1.5X mode writes (variable length writes).

ADDR2X is set if an entry is a DIO write and its address falls into an I/O address space enabled for GSC
2X mode writes (variable length writes with data at twice the normal GSC rate).

32 bit address is the least significant 32 bits of the Runway 40 bit address.

64 bit data is used for Write Shorts, and contains the data being written

FOR UTURN =1 and TEST =0:

HPAREAD , TLBCMD, and TYPE are used as a 6 bit field to inform the Runway inbound block what
to xtion to execute. These bits are encoded as follows:

HPAREAD TLBCMD TYPE
1 0 1xxx HPA normal read – address field indicates which register
1 1 1000 TLB Read – entry = OutQ[32:51]
1 1 1001 TLB TAG Read – entry = OutQ[32:51]
0 1 1100 TLB Purge Cmd – entry = OutQ[64:83]
0 1 1010 TLB Insert Cmd – entry = OutQ[64:83]
0 1 1001 TLB Direct Write – entry = OutQ[64:83]

FOR UTURN =1 and TEST =1:

The Connected, Lock, Prefetch, GSC guest ID, Byte Enable, GSC Type, and Addr fields are used to form
a ”GSC DMA” entry in the inbound queue. These bits represent the Connect, LOCK, PREFETCH, GSC
guestId, GSC byte enables, GSC trans type, and the GSC address (respectively) in the inbound queue.

5.2.4. Outbound Read Return Queue

The Outbound Read Return Queue is also a synchronizer/fifo, which is loaded in the internal Runway
domain and dumped in the GSC+ domain. This queue stores all Cache–to–Cache Copies and Memory
Read Returns information corresponding to reads mastered by this I/O Adapter. The queue is 6 entries
deep which will accommodate one outstanding transactions from each of the six guests permitted per
GSC+. This queue should never be in danger of overflowing, as each GSC+ guest can only have one

102

outstanding request at a time and this entry is not loaded until the guest makes the request. Therefore
a prefetch request will remain in the pool/prefetch block until the GSC+ guest has actually made the re-
quest for the data..

Each entry is 11 bits wide and is organized as follows:

0 2
 GSC+ Guest ID

 3
RAM Address

4 5
GSC Type[2:3]

6 8
GSC+ Word in Line

 9
 Error

 10
 Diagnostic

Where

GSC+ Guest ID indicates which GSC+ guest this read response is destined for

RAM Address points to the internal RAM location where the return data is stored; this bit is com-
bined with the GSC+ GuestID to form the address of the RAM location (cache line).

GSC Type[2:3] reflect the address cycle value of the least significant two bits of the GSC+ Transaction
Type field and indicate the amount of data to be returned (one, two, four, or eight words)

GSC+ Word in Line indicates the first word that was actually requested within the cache line.

Error – indicates that an error occured while preforming the read of the requested data.

Diagnostic – used for returning data to the ”GSC guest” during a PDH induced diagnostic DMA read.
This bit will tell the GSC state machine to ”return” the data and also write the data into the inbound RAM.

5.2.5. Connected Read Returns

Since many GSC+ guest mastered reads are connected (meaning that the GSC+ bus is occupied by the
mastering guest until the return data is issued by the I/O Adapter), a mechanism is required to bypass
the Outbound Data Queue for these read returns. On a connected read return, data will be stored in a
location based on the requesting GSC guest and an internal RAM address bit, and a signal will fire to
indicate that the data is valid on chip. The “data valid” signal must be synchronized from the internal
Runway clock doamin to the GSC+ domain.

5.2.6. Outbound and Prefetch RAM

There are 12 RAM locations associated with returning data, two for each GSC+ guest. Each RAM loca-
tion is 256 bits wide but in fact is organized 128 bits wide so the RAM can be thought of as 26x128.
The RAM is stored 128 bits (1/2 cache line) at a time. It is the responsibility of the multi–cycle state
machine to coordinate the left side and right side data cycles to form a full 128 bit unit to store to the RAM.
Data can be stored temporarily in 64 bit units in the temporary RAM buffer, and its corresponding entry
information is stored in temporary queue entry until all data is valid on chip.

Since each GSC+ guest ”owns” two locations in the RAM, the GSC+ guest ID forms the MSBs of the
RAM address. The LSB of the RAM is controlled by the Pool/Prefetch block. The LSB address will
simply alternate for each data return for a given GSC+ guest.

5.2.7. HPA Register Block

The HPA registers will be distributed among three blocks, Runway outbound, GSC+, and Runway in-
bound. The HPA registers in the Runway outbound block include the address range registers

103

(IO_IO_LOW and IO_IO_HIGH), the IO_FLEX register, the IO_FLEX_MAP register, and the local and
global IO_COMMAND registers. (Reference the architectural chapter for a detailed explanation on the
functionality of these registers.

The Runway HPA registers are loaded by the outbound block and dumped by the inbound block. Because
the outbound block must decode both reads and writes of these registers, the writes will occur immediate-
ly but the read data will be queued in the outbound command queue. The GSC+ block will forward these
queue entries to the inbound queue, where the inbound block can drive the response onto Runway. When
the outbound block receives a register access for a register in the GSC+ or inbound block, the transaction
is forwarded as a queue entry in the outbound command queue, the Bit location HPA Reg indicates to
the GSC+ block that this command queue entry is an access to the HPA registers.

The outbound control block will detect errors and fire error lines indicating the error type. It is the re-
sponsibility of the Error block to coalesce and decode the error lines from the inbound block and the
outbound block. The error block will create the entries for IO_STATUS, and IO_ERROR registers.
The inbound block will also use this information to drive ERROR transactions onto Runway. Additional
information such as master_id and transaction_id must be logged if the inbound block is to drive a DI-
RECTED_ERROR transaction.

5.2.8. Cache (Private Read Returns)

Because the KittyHawk Memory System only stores in cache line quantities, on partial cache line writes,
the I/O Adapter is required to perform a full cache line private read. The data return resulting from this
read is stored in the cache buffer inside the I/O Adapter. Once the cached data is valid on chip, the corre-
sponding partial cache line write can proceed, followed by a Runway WRITE_BACK to cast out the line.

It should be noted that this mechanism is also required for GSC+ guest mastered semaphores. However,
on a semaphore, the return data must be stored in both cache and the predesignated connected read return
buffer. Once the return is issued to the GSC+ guest, the guest will master a write to the cache line address,
and ultimately a Runway WRITE_BACK will follow.

5.2.9. Cache Coherency Queue

The I/O Adapter is required to eavesdrop Runway coherent transactions and respond with status. Be-
cause two cycles of Runway information is received on every one internal Runway state, two cache line
comparisons occur simultaneously (in the left and right side decode blocks), and the results are either
driven out to the UTurn CC block or stored in the queue. A comparison consists of determining if the
cache address is equal to the address of the received transaction, checking if bit 2 of the received transac-
tion type is true, checking if the cache line buffer on chip contains a valid entry, and seeing that there are
no errors on the received transaction. In most cases the cache will not contain private data and a COH_OK
response can be given immediately. However, in the event of a cache line hit, UTurn will delay giving
a COH_OK response until the cache line is no longer held private.

UTurn WILL ALWAYS respond COH_OK it is just a matter of when. Delaying the COH_OK response
when there is cache hit will not impact performance because UTurn will own lines private for a very short
time (sub–cache line writes). The only exception to this is when LSL is indicated on GSC+, UTurn will
interpret this as a semaphore access, in this case UTurn can own a cache line private for a long time –
however the system is locked up anyway due to the LSL bit.

Because cache tag compares occur on the fly, there will be no need to queue outstanding coherent checks
due to backlog. However queueing is required when the I/O Adapter has a hit on line held private. Count-

104

ers are used to count how many COH_OK responses are queued up. This COH_OK responses are sent
out as soon as the cache line is no longer private. There are 2 counters needed – one counts the responses
before a delay is required (to wait for not private) and the other counts the responses after the delay. Each
of the counters is larger than the minimum requirement.

There are a couple of corner cases involved with the cache comparisons. First, it is possible that the left
side transaction contains a read private from this I/O Adapter, and the right side transaction contains a
coherent transaction with the very same address as this read private. Therefore, whenever a read private
on Runway is received which matches this I/O Adapter’s master ID, the comparison registers in the left
side and right side decode blocks must be loaded immediately to affect all subsequent accesses. Addi-
tionally, the left side and right side addresses must be compared to one another. When CCC responses
are delayed until not private, UTurn must wait until the last data cycle of the write back has been put on
the Runway bus before allowing the COH_OK responses to be put on the bus.

5.3. Transaction and Data Flow

The following sections describe the state machine control required for transactions and data flow in the
outbnd block, when UTurn is a slave to Runway.

5.3.1. Multi–Cycle Transactions

Write_Shorts Cache–to–Cache Copies, and Memory Read Returns require more than one Runway exter-
nal cycle, and in some cases more than one internal cycle(which is = to 2 external Runway cycles). As
an example, the Write_Short transaction will span at least two external Runway cycles, with no inserted
idle states. Internally, the transaction may be contained within one internal cycle or it may cross an inter-
nal cycle boundary, with the Address phase occurring during the latter half of the first internal cycle and
the Data phase occurring during the first half of the second internal cycle.

Within a single transaction, the transaction / address information will be held in a temporary queue regis-
ter until the data is valid on chip. Write_Short and Read_Short transactions will result in a command
queue entry being formed. For Write shorts the queue entry contains the data coalesced with the command
to be written into the command queue in one 128 bit quantity.

For read returns (and c2c_writes) data will be coalesced into writeable size blocks of 128 bits, corre-
sponding to two external Runway cycles which could span a single internal Runway cycle or be distrib-
uted across the right and left halves of subsequent internal Runway cycles. As the final data block is
stored in internal RAM, the temporary queue register is loaded into the tail of the read return queue.

The following state machine illustrates the progression through a multi–cycle transaction:

idle

b0

b64 b128

finalstore + wtfor1

finalstore

wait

wait

wtfor4wtfor3

wtfor3
wait

wtfor2

wtfor2

wtfor1

wtfor2

105

where finalstore means that transaction address and data are stored in their destination (whether it be the
read return queue and RAM, the outbound command queue, or HPA), wtfor1 means that one data cycle
is pending in which case the machine must return to idle where it can receive the remaining data from
this transaction as well as any data or address of a subsequent transaction, wtfor2 means that two data
cycles are pending, wtfor3 means that three data cycles are pending, and wtfor4 means that four data
cycles are pending.

NOTE: Some of the transitions (like b64 to b128 can only occur if there are idle cycles within transac-
tions) This is an issue still being discussed.

5.3.2. Single Cycle Transactions

The idle state in the previous state diagram is also the state where single cycle transactions may be han-
dled entirely. The following table illustrates all possible combinations of two different transactions with-
in a single internal Runway cycle. Both of these cycles are decoded in parallel by the left side and right
side decode blocks, to determine the destination of the address and data. As long as the destination of
the left side and right side cycles are unique, there will be no conflict and the I/O Adapter can process
two transactions at one half of the external Runway frequency and keep up with the external bandwidth.

Left Side Cycle Right Side Cycle Resulting State (if not idle)

Nop / Idle / Don’t Care Nop / Idle / Don’t Care

Nop / Idle / Don’t Care Coherency Check

Nop / Idle / Don’t Care Read_Short

Nop / Idle / Don’t Care Dir_Error / Broad_Error

Nop / Idle / Don’t Care DMA_Sync / Cache_Sync

Nop / Idle / Don’t Care Write_Short (First Cycle) wait–for–1

Nop / Idle / Don’t Care Cache–to–Cache Copy (First
Cycle)

wait–for–4

Nop / Idle / Don’t Care Memory Read Return (First
Cycle)

wait–for–3

Coherency Check Nop / Idle / Don’t Care

Coherency Check Coherency Check

Coherency Check Read_Short

Coherency Check Dir_Error / Broad_Error

Coherency Check DMA_Sync / Cache_Sync

Coherency Check Write_Short (First Cycle) wait–for–1

Coherency Check Cache–to–Cache Copy (First
Cycle)

wait–for–4

Coherency Check Memory Read Return (First
Cycle)

wait–for–3

Read_Short / Read_Burst Idle (guaranteed)

106

Left Side Cycle Resulting State (if not idle)Right Side Cycle

Dir_Error / Broad_Error Nop / Idle / Don’t Care

Dir_Error / Broad_Error Coherency Check

Dir_Error / Broad_Error Read_Short

Dir_Error / Broad_Error Dir_Error / Broad_Error

Dir_Error / Broad_Error DMA_Sync / Cache_Sync

Dir_Error / Broad_Error Write_Short (First Cycle) wait–for–1

Dir_Error / Broad_Error Cache–to–Cache Copy (First
Cycle)

wait–for–4

Dir_Error / Broad_Error Memory Read Return (First
Cycle)

wait–for–3

DMA_Sync / Cache_Sync Nop / Idle / Don’t Care

DMA_Sync / Cache_Sync Coherency Check

DMA_Sync / Cache_Sync Read_Short

DMA_Sync / Cache_Sync Dir_Error / Broad_Error

DMA_Sync / Cache_Sync DMA_Sync / Cache_Sync

DMA_Sync / Cache_Sync Write_Short (First Cycle) wait–for–1

DMA_Sync / Cache_Sync Cache–to–Cache Copy (First
Cycle)

wait–for–4

DMA_Sync / Cache_Sync Memory Read Return (First
Cycle)

wait–for–3

Write_Short (Last Cycle) Nop / Idle / Don’t Care

Write_Short (Last Cycle) Coherency Check

Write_Short (Last Cycle) Read_Short

Write_Short (Last Cycle) Dir_Error / Broad_Error

Write_Short (Last Cycle) DMA_Sync / Cache_Sync

Write_Short (Last Cycle) Write_Short (First Cycle) wait–for–1

Write_Short (Last Cycle) Cache–to–Cache Copy (First
Cycle)

wait–for–4

Write_Short (Last Cycle) Memory Read Return (First
Cycle)

wait–for–3

Cache–to–Cache Copy (Last
Cycle)

Nop / Idle / Don’t Care

Cache–to–Cache Copy (Last
Cycle)

Coherency Check

Cache–to–Cache Copy (Last
Cycle)

Read_Short

Cache–to–Cache Copy (Last
Cycle)

Dir_Error / Broad_Error

107

Left Side Cycle Resulting State (if not idle)Right Side Cycle

Cache–to–Cache Copy (Last
Cycle)

DMA_Sync / Cache_Sync

Cache–to–Cache Copy (Last
Cycle)

Write_Short (First Cycle) wait–for–1

Cache–to–Cache Copy (Last
Cycle)

Cache–to–Cache Copy (First
Cycle)

wait–for–4

Cache–to–Cache Copy (Last
Cycle)

Memory Read Return (First
Cycle)

wait–for–3

Memory Read Return (Last Cycle)Nop / Idle / Don’t Care

Memory Read Return (Last Cycle)Coherency Check

Memory Read Return (Last Cycle)Read_Short

Memory Read Return (Last Cycle)Dir_Error / Broad_Error

Memory Read Return (Last Cycle)DMA_Sync / Cache_Sync

Memory Read Return (Last Cycle)Write_Short (First Cycle) wait–for–1

Memory Read Return (Last Cycle)Cache–to–Cache Copy (First
Cycle)

wait–for–4

Memory Read Return (Last Cycle)Memory Read Return (First
Cycle)

wait–for–3

In the case where one half of the transaction is a Nop, Idle cycle, or a Don’t Care (meaning that the transac-
tion was destined for another Runway module), then the second half of the internal cycle is guaranteed
not to conflict with the first. If either half of the transaction is a coherency check, then again there should
not be a conflict, as coherency checks are performed in parallel, and if queued, can be stored two at a time.
Error transactions will be logged in a separate block, so conflicts will only occur if two errors occur within
one internal cycle. In this case, the highest priority error will be logged. Sync transactions are similar
to coherency checks, in that they can be processed in parallel and responded to immediately or queued
two at a time. Because data corresponding to writes, cache–to–cache copies, and memory read returns
will be stored in temporary RAM registers during data cycles, they could only conflict with another data
cycle from a different transaction within the same internal cycle, which does not contain an address head-
er, such as a memory read return. To prevent this conflict, two temporary RAM registers will reside per
left and right side block. This will provide enough storage for back to back data cycles of different trans-
actions, or back to back 16 byte data cycles within the same transaction, as the RAM will fill 128 bits
at a time, requiring two internal cycles.

5.3.3. Prefetch Returns

If a prefetch return is no longer outstanding (meaning the data is in RAM) and the GSC+ guest just for-
mally requested it, then the contents of the prefetch buffer need to be added to the outbound data read
return queue. Because it is a GSC+ request which triggers the queueing, as opposed to a Runway request,
this case introduces some specific timing concerns.

While the I/O Adapter is busy receiving valid addresses or data every Runway cycle, it will be unable
to process the prefetch return. As soon as the path to the outbound data return queue is available, the
outbound block must queue the prefetch return and mark the prefetch buffer invalid. The inbound block
is not able to fill the buffer with a subsequent prefetch until it observes the invalid bit.

108

6. Inbound (GSC+ to Runway) Transaction Flow

6.1. Basic Description of Inbound Operation

The operation of the IOA processing transactions from GSC+ to Runway (inbound) is described below.
All guest mastered GSC+ transactions are processed by the GSC+ block’s slave state machine. The data
for the transaction (if any) is stored in the Inbound RAM (InRAM), while the transaction information
(GSC+ address, GSC+ transaction type, GSC+ guest id, GSC+ byte enables, GSC+ LSL line, connected
read indication, prefetch indication) is stored in the Inbound Queue (InQ) for synchronization into the
Runway clock domain (see the synchronization chapter of this ERS for more details). Since transactions
are placed into the InQ in the order that they were issued on GSC+, and the queue maintains FIFO order-
ing, the ordering of transactions is preserved.

There are two possible types of transactions in the InQ. These two types of transactions have two differ-
ent uses of the inbound queue fields differentiated by an ENTRY TYPE bit in the queue. The first is for
transactions mastered from a GSC+ guest (memory read, memory write, semaphore, ...). The ENTRY
bit is a zero for these GSC+ mastered transactions. The second is for data returns of reads of IOA internal
HPA registers (IO_PDIR_BASE, IO_CONTROL,....), or data returns by a GSC+ guest in response to
a processor generated IO read or PDC read. Transactions used to manipulate the IO TLB (TLB purge,
insert, direct write) also use the ’data return’ format. For data returns and TLB manipulation transactions
the ENTRY bit is a one (1). Both types of transactions are placed in the InQ by the GSC+ receiver. GSC+
guest mastered transactions originate on GSC+, whereas HPA register reads, PDC reads, and TLB trans-
actions originate on Runway and arrive via the Outbound Command Queue (OutQ). These two different
types of transactions result in different types of entries in the InQ. See the section on hardware blocks
for more detail.

Finally, there are also transactions fabricated by the IOA as the result of an external event (transfer of
control, power fail warning), or an IOA detected error (Runway, GSC+, or IOA internal). These transac-
tions are generated by assertion of a signal, and do not have a corresponding transaction in the InQ.

Data returns in the InQ come in two flavors. Both types have transaction information (Runway MAS-
TER_ID, TRANS_ID, data return type) in the InQ. Data returns from IO reads (i.e. from GSC+ guests)
have the data in the InRAM location assigned to InQ location. However, data returns from Runway side
IOA internal HPA register reads are contained in the HPA registers, not in the InRAM. The appropriate
register is read, and the data transferred directly to the Runway driver register when the data return trans-
action reaches the top of the InQ.

Once a guest mastered GSC+ transaction has reached the top of the InQ, a Runway address must be gen-
erated. Notice the address translation is necessary for two reasons. First, to provide the address bits nec-
essary to extend a 32 bit IO virtual address (GSC+ address) to a 40 bit memory physical address (Runway
address). Second, to provide the virtual index address bits necessary for processors to snoop their caches
and maintain cache coherency. There are two ways in which the 40 bit physical address can be generated,
either by ’0’ or ’F’ extending the GSC+ address, or by looking up the address translation in the TLB (see
the section below on address translation mechanisms).

For coherent transactions to be issued on Runway (so processors can check their caches), a virtual index
must be read from the TLB, or generated when the system is running in REAL addressing mode. REAL
addressing mode is only used for system boot up before the IO PDIR (IO Page DIRectory, the table in
memory which has all the mappings of IO addresses to physical memory addresses) exists, and for acces-

109

sing the IO PDIR. In REAL mode, a virtual index is generated, but requires that the page be equivalently
mapped (eight bits of the GSC+ address ARE the virtual index). Note that since the IO PDIR is used
to service TLB misses, and since there is no dedicated TLB entry for the IO PDIR, the entire IO PDIR
is required to be be placed in an equivalently mapped area in memory AT ALL TIMES and FOR ALL
MODES.

In the normal address translation mode, once the transaction reaches the head of the InQ, operation pro-
ceeds as follows. The TLB is accessed using the IO virtual page number portion of the GSC+ address
(part as address into the TLB, part as tag to determine if we actually got a TLB hit). If the TLB entry
is present, then the Runway physical page number, the virtual index bits, the page type bits, and a TLB
entry valid bit are read from the TLB. The transaction to be used on Runway is determined by the com-
bination of the transaction type at the top of InQ, the GSC+ LSL line (LOCK internal to UTurn), and
the page type bits. See the section below on Transaction map (GSC+–>Runway). This transaction is
loaded into the Runway DRIVE REGISTER along with the Runway address, the virtual index bits, and
any data associated with the transaction (WRITE transaction for example). Once the Runway DRIVE
REGISTERS are loaded, the transaction is ready to go out onto Runway. Driving the transaction out is
handled by the full speed Runway interface. See the section below on the 2 TO 1 INTERFACE.

If the transaction issued on Runway will have a response (i.e. a READ transaction where a data is ex-
pected), then the transaction information is stored in the Pool, so that the return data can be matched with
the original transaction, and returned to the correct guest on GSC+. The TIMEOUT bit is cleared when
the transaction is placed into the Pool. The TIMEOUT bit is set once the timeout counter produces a
carry, and a transaction times out on the next carry from the timeout counter. This guarantees at least
one timeout period has passed (possibly as much as two), and we consider that transaction to have timed
out, and an error is logged. The timeout period is determined by the value loaded into the Run-
way_TIMEOUT HPA register.

If the TLB entry is not present, and if the IO_CONTROL_HV_MODE register has IO PDIR read–on–
TLB–miss enabled (NORMAL mode), the IO PDIR is read to get the TLB entry. This is accomplished
by adding the IO_PDIR_BASE register to the GSC+ address bits [31:12], and reading the IO PDIR entry
at that location. Note that the page in memory containing the IO PDIR must be equivalently mapped since
we would be unable to generate a virtual index otherwise. The IO PDIR read is issued onto Runway, and
the transaction information is stored in the Pool, along with a special flag indicating that this read is to
satisfy a TLB miss. Once the data for the IO PDIR read comes back, it will be written immediately to
the TLB. The return data will NOT go through the OutQ, nor through the InQ, but rather sidetracked
directly to the TLB. This is necessary as all transactions in the InQ are being held up due to the lack of
a TLB entry for the transaction at the head of the queue. Now the transaction at the head of queue can
be generated, and driven out as described above.

GSC has a prefetch hint to enable better performance (reduced latency) for DMA reads. The prefetch
is requested by assertion of the XQL line on GSC+. This is a deterministic prefetch, which means that
if a GSC+ guest asserts XQL, it will at some time in the near future come back and request that address.
The IOA accommodates prefetching by allowing eight total outstanding transactions. This is limited by
the number of transaction IDs on Runway implemented by the Tornado processor. Runway defines six
bits of transaction ID, but Tornado only implements three TRANS ID bits. Note, the limit on outstanding
transactions is only relevant to transactions expecting responses (i.e. reads), and does not limit the num-
ber of outstanding write transactions. Because of the limit on transaction IDs, the IOA may have eight
outstanding read transactions at any one time, hence our Pool is only eight entries deep. This limits a
GSC+ bus with six guest to six normal reads, and two prefetch reads. Similarly, a GSC+ bus with four
guests could have four normal reads, and four prefetch reads outstanding at one time. Note these exam-

110

ples assume GSC+ guests because to have ANY outstanding read transactions requires that they be split
reads (only possible by GSC+ guests).

Due to the GSC+ limitation of only one prefetch outstanding per guest, bus converters below GSC+ will
not get performance benefits from prefetching unless only ONE DMA stream is active at a time. Two
simultaneous DMA streams will cause thrashing of the single outstanding prefetch per guest limitation.
See the section on prefetch for more details on obtaining maximum benefit from prefetching and the dif-
ferences between deterministic and speculative prefetch.

If a GSC guest asserts XQL along with a DMA read transaction address cycle, the InQ entry created to
forward the read request to Runway will have its NEXT bit set. When a read request with NEXT asserted
reaches the top of the InQ, the read is issued on Runway as described above. If the transaction size is 16
bytes or 32 bytes, and the sequential bit read from the TLB allows prefetching, then the address is increm-
ented, the prefetch read is issued and the transaction information stored in the Pool. Some additional
information is stored in the Pool for a prefetch read. These bits indicate the GSC prefetch address, the
GSC+ guest ID, and the state of the prefetch (prefetch issued on Runway, prefetch data returned from
Runway, read corresponding to prefetch requested on GSC+, or discard prefetch after data returned). The
GSC address stored in the Pool is compared against the read address, and the guest ID from the Pool is
compared with guest ID to determine whether the prefetch has been formally requested (i.e. now a normal
read) or if the prefetch should be discarded. NOTE: prefetching will only be performed for reads of 16
or 32 bytes with XQL asserted on pages with the TLB sequential bit set. See the section on prefetching
for more details.

Note that each UTurn is allocated two master IDs, so each IOA has its own master ID to uniquely identify
which IOA to return the data to. Recall, Runway defines six bits of transaction ID, but the TORNADO
processor only intends to implement three of these ID bits. In order to be compatible with both TORNA-
DO and any future processor upgrades (i.e. PCX–U), the IOA does the following with transaction IDs.
When the IOA sources transactions, we only use the lower three transaction ID bits; the upper three trans-
action ID lines are always driven to zeros (0). When the IOA is responding to a read sourced on Runway
(either a read of an IOA internal register, or read of a GSC guest) we will return all six bits of the transac-
tion ID sourced on Runway. This allows the IOA to operate with the trans–ID–limited–TORNADO,
and the full–trans–id–PCX–U.

6.2. Coherent IO

The IOA implements coherent IO. Coherent IO provides many advantages. First, it allows outbound
DMA to get the most current data, possibly extracting it from a processor cache, without requiring the
processor to flush all DMA data from its cache prior to starting the DMA. Similarly for inbound DMA,
the IOA is able to put data into memory, forcing stale data out of the processors without requiring proces-
sors to purge their caches. These two features allow much less restrictive speculative prefetch rules for
processors wanting to do speculative execution (PCX–U).

Additionally, for partial cache line writes from the IO world, the IOA is able to acquire a private copy
of the cache line, modify the appropriate part of the cache line, and then write it back. This prevents
the memory controller from having to implement read–modify–write. Similarly, for semaphore opera-
tions from the IO world, the IOA performs a read_priv, return data to GSC guest, modify in cache, and
write back sequence to guarantee atomicity. Note this only applies to semaphores (or atomic read/write
combinations) which are contained within one and only one cache line.

Note in the first case of coherent IO above, the IOA just uses coherent Runway transactions to get the
DMA data to/from all necessary locations (main memory, processor caches). In the second case, the IOA

111

actually has a cache (albeit very small – just one location) and uses coherent Runway transactions to ac-
complish read–modify–write and semaphore operations within that one cache line. The point here is
that coherent IO does NOT require a cache, just use of coherent transactions. The IOA does both: using
coherent transactions to read/write the most current data values, and using a cache to provide atomic ac-
cess of memory for read–modify–writes and semaphores.

6.3. Cache location and control

Each IOA has one cache location used to perform read–modify–writes and semaphores. When a short
write to memory (all 1, 2, 3, 4, 8, and some 16 byte writes) or the read part of a read/write semaphore,
or a clear transaction is issued on GSC+, the inbound side issues a read private on Runway and sets the
CACHE bit in the Pool. This indicates that the returned data should be placed into the cache once re-
ceived by the outbound side. Note that for reads and clears, the data is also placed into the outbound read
return queue (since the GSC+ guest is expecting return data).

With the cache line of data held privately, the inbound side is then able to modify the part of cache line
corresponding to the write or clear transaction issued by the GSC+ guest. This is supported by extensive
byte steering logic around the cache location. This byte steering logic allows the inbound side to load
any 1, 2, 3 or 4 bytes within a word, or any word, or any aligned double word, or any aligned four words
in the cache line. Recall that writes are REQUIRED to be quantity aligned in the PA world.

The cache line is then returned to memory via a write back Runway transaction. Note that UTurn NEVER
issues a cache to cache copy. For simplicity, UTurn will delay cache coherent check responses that HIT
on the cache location until AFTER the write back, then respond with COH_OK. This keeps UTurn co-
herently ’legal’, but allows us the simplicity of never having to do cache to cache copies. This has mini-
mum impact on the system performance since UTurn rarely owns cache lines (privately), and once owned
privately the cache line is quickly modified and returned. See the section on cache coherency in the out-
bound chapter for more details.

In addition to the storage for the cache location, and the steering logic for loading the cache location, there
is also a small state machine for remembering the state of the cache line. The UTurn cache can be in any
one of four states. The cache location starts out in the CACHE_INVALID state (i.e. nothing in cache).
Once a read private is requested by the inbound side, the cache state advances to the WAIT_ON_DATA
state (i.e. read issued on Runway, UTurn owns the cache line, but data has not yet been returned to place
in the cache). When the data is returned on Runway, and loaded into the cache, the cache state advances
to the CACHE_VALID state (i.e. UTurn owns cache line, data is valid in the cache). The inbound side
is now able to modify the data (or some bytes of the cache line), and write the cache line back to memory.
Once written back, the cache state returns to CACHE_INVALID.

There is one additional cache state which is used when a GSC read ’looks’ like the first half of a sema-
phore (i.e. read, connected with LSL asserted), but the next transaction is NOT the second half of the
semaphore (i.e. write with LSL asserted but to some OTHER address). In this case UTurn issues a read
private, and while waiting for the data to return from memory, the GSC+ guest releases the LSL line.
This indicates that this was NOT a semaphore, and the cache state advances to the INVALID_WAIT state.
This is necessary since the inbound side can NOT issue a second read private until the data from the first
one has been returned (this would confuse cache coherency checking and Pool entries). The INVAL-
ID_WAIT allows the data to return, then the data is discarded and UTurn no longer owns the cache line.
Note this is a strange coherency case where UTurn ’owns’ a cache line, then no longer ’owns’ it without
a write back. This is allowable since UTurn never dirtied the cache line, but this presents a problem if
a directory based cache coherency scheme were ever implemented on Runway. The cache location is
considered to be held private while in either the WAIT_ON_DATA or the CACHE_VALID state.

112

6.4. Two to One Runway Interface

The target frequency for Runway is 120 MHz, whereas the majority of logic in a synthesized standard
cell IOA design is able to run at only about half this frequency. This requires that the interface between
the Runway bus and the Runway side of IOA handle the 2 to 1 frequency difference.

On the inbound side of the IOA this is a relatively simple problem. The transaction from the top of the
InQ is loaded into a set of temporary registers along with the address generated from the TLB, and any
data associated with the transaction. This is all done at the half Runway frequency. Once all the informa-
tion for the transaction is loaded into these temporary registers, the R_start_arb signal is asserted and
the full frequency Runway side takes over.

The full frequency portion arbitrates for the Runway bus, and once it has won arbitration drives the trans-
action out onto Runway by dumping the values in the temporary registers in order. Notice that the full
frequency side need only know how to arbitrate, and then just dumps the transaction onto the bus without
knowing anything about the transaction except its length. This works because Runway has no mecha-
nism for the transaction destination to pace the deliver of data. We just put it out there, and the destination
MUST accept it. Once the transaction has been completed, the full frequency side asserts an inter-
face_ready signal indicating that the register are ready for the next transaction.

6.5. TLB Operation

The TLB in the IOA provides three important functions. First, it provides the address translation mecha-
nism necessary for taking a 32 bit GSC+ address and generating a 40 bit Runway address. Second, it
provides the virtual index necessary for processors to snoop their caches to do coherency checking for
the coherent transactions used by the IOA. Finally, it provides the page type bits used to map GSC trans-
actions to Runway transactions (FAST DMA page, SAFE DMA page), used to enable/disable prefetch-
ing, and used to enable/disable assertion of LSL from causing assertion of STOP_MOST (STOP_MOST
enabled page, or STOP_MOST disable page),

Entries in the TLB can be written in two different ways. Operating system software can preload the TLB
entry to prevent the additional latency required when a TLB miss occurs. Alternately, the IOA can read
from the IO PDIR when a miss occurs, and then write the missing entry into the TLB. These two mecha-
nisms provide both the minimum latency (preloaded TLB entry) and the robust solution (IOA can service
TLB misses on its own). Note that the IO PDIR table MUST be placed in an equivalently mapped region
in memory since there is no TLB entry for the reads of IO PDIR on a TLB miss.

The TLB address translation method is determined by the value in the IO_CONTROL_HV_MODE reg-
ister. The ability to preload TLB entries is accomplished using the IO_TLB_ENTRY_M,L registers for
the data, and then invoked by sending the appropriate command to the IO_COMMAND register. See
the section on Initializing the TLB and Manipulating TLB Entries (below) in this chapter.

6.5.1. TLB Address Translation Modes

Three different TLB address translation modes are supported. REAL mode (the default mode of opera-
tion) is for system initialization before the TLB is initialized and turned on. In REAL mode all coherent
accesses use a virtual index that assumes equivalently mapped pages. REAL mode has some special re-
quirements, see the section on Real mode, below. ERROR mode is available for small systems where

113

the TLB contains valid address translations, but there is no IO PDIR in memory (since the memory con-
sumption of the IO PDIR could be significant in a small system). Since there is no IO PDIR, all active
address translations MUST be valid in the IOA’s TLB for ERROR mode. Finally, NORMAL mode
where if an active address translation is not in the IOA’s TLB, the entry will be fetched from the IO PDIR.
NORMAL mode requires that all active address translations be present in the IO PDIR, and the IO PDIR
must be memory resident in an equivalently mapped region. The address translation modes are selected

114

offset

Runway
ADDR

offsetphysical page numbervirtual index

IO TLB

block IDchain ID

chain ID mask

chain ID field extract

block id
 compare

3528270

19

36 37

0 20

TLB
address

29 30 31

valid

8

page type,
sequential

TLB hit

7
GSC+
ADDRESS

(IOA internal
 numbering)

3938

not used

zeros

prefetch
increment

115

through the IO_CONTROL_HV_MODE HPA register. See the section on architectural register for more
information.

6.5.1.1. Translation of GSC IO space addresses

Note that regardless of which of the above address translation modes is selected, a GSC address with bits
0 through 3 set (the GSC IO address space, address Fxxx_xxxx) is ’F’ extended and passed to Runway
without ever accessing the TLB. This allows writes from an GSC guest to an address in the IO address
space to remain in the IO address space on Runway (writes to the processor IO_EIR for example). Recall
that writes to an IO address on Runway (using the write short transaction) do NOT require a virtual index
since no coherency check is made for transactions to the IO address space.

Note that the only transaction allowed on GSC to an IO address space is a WRITE1 transaction. All other
GSC guest sourced transactions to IO space are illegal and will result in the logging of a Runway side
hard error (GSC improper access).

Because GSC IO space addresses do NOT use the TLB, some TLB entries are NOT available depending
on the value of the IO_CHAIN_ID_MASK. See the section below on IO_CHAIN_ID_MASK values
and usable GSC addresses.

6.5.1.2. Real Mode

In REAL mode coherent transactions are used, and addresses are ’0’ or ’F’ extended as necessary. With
’F’ extension, IO space addresses on GSC+ are mapped to IO space addresses on Runway, and non–IO
addresses are mapped to the equivalently mapped addresses on Runway. The equivalently mapped virtu-
al index necessary for cache snooping is taken directly from GSC+ address bits [19:12].

Note that in REAL mode there are no page type bits to assist in mapping GSC transactions to Runway
transactions since there is no IO PDIR, nor are there entries in the TLB. The IOA defaults to the SAFE
DMA with STOP_MOST enabled page type, with prefetching disabled for REAL mode. This allows
the use of DMA, though with reduced performance if writes of half cache lines (4 word or 16 bytes) are
used. The SAFE DMA with STOP_MOST enabled page allow the use of semaphores and EISA locked
transaction sequences if requested on GSC. See the section on transaction mapping GSC+–> Runway
for more details.

Note that if it is desirable to operate in REAL mode, but it is also necessary to control the page type bits,
a ’fake’ REAL mode can be employed. With this scheme an IO PDIR is created where ALL the entries
are equivalently mapped (the same address mapping that would result if the TLB were operated in REAL
mode), but now the page type and prefetch bits can be programmed. This may be desirable if
STOP_MOST needs to be disabled for performance reasons, or if prefetching wants to be turned on.
However, there is a downside to doing this. The IO PDIR will have to exist unless software wants to
CAREFULLY manage the TLB in ERROR mode (see below). The size of the IO PDIR determines the
size of the address space in physical memory which is accessible by the IO subsystem at any one time.
 See the section on Normal mode below for more details on the interaction between IO_PDIR size,
IO_CHAIN_ID_MASK values, and IO addressable memory.

6.5.1.3. Error Mode

The second, ERROR mode is for system operation where there is no IO PDIR. This mode is provided
for small systems where 256 active translations are sufficient, and the memory consumed by the IO PDIR
is unnecessary. Here addresses are translated using the TLB (except IO addresses which require ’F’ ex-

116

tension), and coherent transactions are used, but if there is a TLB miss, the IOA goes into hard_error
mode. In ERROR mode, it is expected that all active address translations have been written to the TLB
BEFORE any DMA using that address translation is initiated. The only mechanism for placing address
translations into the TLB for ERROR mode is via the TLB direct write command. TLB entries can be
removed by overwriting the entry (TLB direct write), or by purging the TLB entry (TLB purge).

6.5.1.4. Normal Mode

 Finally, NORMAL mode where addresses are translated using the TLB (except IO addresses which are
again ’F’ extended), coherent transactions are used, and on a TLB miss the IOA reads the entry from the
IO PDIR. Note that in NORMAL mode the IO PDIR MUST contain a valid, and correct TLB entry before
any DMA is initiated. Otherwise a TLB miss will read the IO PDIR for the entry, place the entry into
the TLB, and then attempt the transaction again. If the TLB entry just placed into the TLB does NOT
have the VALID bit set, then when the TLB is accessed, the IOA will detect ANOTHER TLB miss, recog-
nize this as a hard error, and log it. Note that in NORMAL mode, address translations can be pre–loaded
into the TLB by either TLB direct writes, or with a TLB insert. Alternately, in NORMAL mode, the IOA
TLB will fetch the desired address translation from the IO PDIR automatically when the first DMA trans-
action causes a TLB miss. TLB entries can be removed by overwriting the entry (TLB direct write, or
TLB insert), or by purging the TLB entry (TLB purge). Recall that the IO PDIR must be placed in a equiv-
alently mapped portion of resident memory. This is required as there is no TLB entry for the IO PDIR.

Note that the IO PDIR will have to be sized depending on the desired IO addressable memory. For exam-
ple, if IO_CHAIN_ID_MASK = FF00_0000 (the maximum), then the IO addressable memory is a 32
bit address space (the maximum). If MASK = 0FF0_0000, then the IO addressable memory is reduced
to a 28 bit address space, and the IO_PDIR size is reduced by a factor of 16. Similarly, if this IO PDIR
is too large to tolerate, then MASK = 00FF_0000 could be used (just as a contrived example), then the
IO PDIR size is reduced by another factor of 16, but the IO addressable memory would be reduced further
to a 24 bit address space. Note that due to the ability to program the TLB, the destination in memory
for DMA can be ANYWHERE in physical memory, but ONLY a region the size of the IO addressable
space is ’touchable’. The IO addressable space in physical memory can be scattered anywhere in physical
memory (mapped in 4K byte blocks), but the TOTAL AT ANY ONE TIME cannot exceed the IO address-
able size

6.5.2. Initializing the TLB and Manipulating TLB Entries

Before the TLB can be used, the registers affecting TLB operation, and the actual TLB RAM entries must
be initialized. Initialization depends on the address translation mode selected, discussed above. The de-
tails of initialization for each address translation mode are discussed below, but first lets explain the TLB
manipulation commands used both to initialize the TLB (at system boot–up) and to place or delete entries
in the TLB. The three TLB commands are accessed via the HPA_IO_COMMAND register discussed
in the Architectural Requirements chapter. ALL TLB operations (including the following TLB com-
mands) require that the IO_CHAIN_ID_MASK HPA register be written BEFORE any of these com-
mands are executed (see the section below on TLB initialization for more details). The three commands
are: TLB_Purge, TLB_Insert, and TLB_Direct_Write.

� TLB_Purge removes the TLB entry specified by the 20 bit page_num field in the
HPA_IO_COMMAND register. The TLB entry is only purged if the TLB entry in
RAM is valid and matches the tag portion of the page_num field (i.e. a full match is
required for the 20 bit page_num field).

� TLB_Insert causes the TLB to fetch the TLB entry specified by the 20 bit page_num
field in the HPA_IO_COMMAND register from the IO_PDIR table in memory.

117

Note TLB_Insert requires that the IO_PDIR table in memory is valid, and the
IO_PDIR_BASE HPA register in the IOA has been initialized to point to the
IO_PDIR table. Note that part of the 20 bit page_num field specified with the
TLB_Insert command is used to point to the TLB RAM location, and part is used as
the tag for the TLB entry, and all of the page_num field is added to the
IO_PDIR_BASE register to find the TLB entry in the IO_PDIR table in memory.

� TLB _Direct_Write causes the TLB entry loaded in IO_TLB_ENTRY_M,L HPA
registers to be written to the TLB location specified by the 20 bit page_num field in
IO_COMMAND. The TAG portion of the TLB entry is part of the page_num field.
TLB_Direct_Write is the ONLY method for initializing the TLB RAM at power on
(see below). TLB_Direct_Write can be used to place entries into the TLB for NOR-
MAL mode, and is the only method for placing entries into the TLB for ERROR
mode. The sequence of transactions required to perform a TLB direct write are: 1)
write the desired TLB entry into IO_TLB_ENTRY_M,L 2) write the TLB direct
write command to the IO_COMMAND register along with the 20 bit page number
field 3) read the Runway IO_STATUS register and check that status indicates ready
(i.e. TLB write has completed). Only AFTER the read of IO_STATUS indicates
’ready’ may IO_TLB_ENTRY_M,L registers be re–loaded. If they are re–loaded too
early the TLB entry written may be the old value, the new value, or some mix of the
two. Obviously this should be avoided.

6.5.2.1. Initializing the TLB for NORMAL mode

Minimum initialization for NORMAL mode requires that software read the size of the IO TLB, then write
to the IO_CHAIN_ID_MASK register, then write the IO_PDIR_BASE register, and then write the
IO_CONTROL_HV_MODE register selecting NORMAL address translation. The TLB_ENTRY_M,L
registers should then be written with a tlb entry that has the VALID bit NOT set (writing all zeros to
TLB_ENTRY_M,L is a nice simple way to do this). A sequence of TLB direct writes should then be
done to ALL 256 of the TLB entries to initialize the TLB RAM. Failure to initialize the TLB RAM will
cause false (random) TLB entries to be read from the TLB. These random entries will probably not match
with actual transactions; BUT THEY MIGHT, and they would write and read from random areas in
memory. The safe initialization described above resets all valid bits, preventing this small probability
problem from ever occurring.

IO TLB size indicates the size of the TLB in the IOA, and is emulated by IODC. The
IO_CHAIN_ID_MASK determines where the chain ID field is extracted from the GSC+ address (and
indirectly the size of the IO PDIR in main memory). The IO_PDIR_BASE register is the pointer to the
base of the IO PDIR in main memory, and is used to fetch a TLB entry when a miss occurs. The IO PDIR
must be memory resident in an equivalently mapped region of memory.

For NORMAL mode there are several ways the valid TLB entry can be loaded into the TLB, though
NORMAL mode requires that the address translation be present in the IO PDIR regardless of how it first
gets into the IOA TLB. First, wait until a GSC transaction causes a TLB miss, the IOA will automatically
fetch the TLB entry from the IO PDIR table (in an equivalently mapped area of main memory). Second,
cause the entry to be preloaded by doing a TLB_Insert, which will cause the IOA to go fetch the entry
from the IO PDIR table in main memory. This is similar to fetch–on–miss described above, except that
the insert can be done in parallel with the setup of the DMA. This prevents the miss from adding addition-
al latency to the DMA transfer, since the TLB entry is read from the IO PDIR table ahead of the first GSC
DMA transaction. Finally, the TLB entry can be loaded using TLB_Direct_Write command with

118

IO_TLB_ENTRY_M,L registers. This is the same method used for putting entries into the TLB for ER-
ROR mode. Note the sequence of transactions required for proper operation of a TLB direct write de-
scribed above.

Recall that in NORMAL mode when a TLB miss occurs the TLB entry will be read from the IO PDIR
table in main memory. If a valid TLB entry is NOT in the IO PDIR when the TLB miss read is done,
the IOA will detect this as an error. To avoid this error, there must be a valid entry in the IO PDIR table
BEFORE any IO transaction expecting to use that entry is seen by the IOA. This TLB fault generates
and logs a HARD error, which prevents further DMA activity until cleared with a command RESET.
Avoid this, it’s bad.

6.5.2.2. Initializing the TLB for ERROR mode

Alternately, the TLB can be used in ERROR mode, where initialization consists of: read the size of the
IO TLB, write the IO_CHAIN_ID_MASK register, write IO_CONTROL_HV_MODE to select ER-
ROR translation mode, and initialize all TLB RAM locations (described below), then write the desired
entry (or entries) into the TLB by writing to IO_TLB_ENTRY_M,L, and force the entry to be written
by writing a TLB_Direct_Write command and page_num indicating the TLB RAM location and tag
to the IO_COMMAND register. Finally read the Runway IO_STATUS register and check that status
indicates READY before attempting to re–load IO_TLB_ENTRY_M,L (otherwise the values in
IO_TLB_ENTRY_M,L might change BEFORE the TLB direct write actually happens –– NOT GOOD).

ERROR mode also requires that all TLB RAM entries be initialized before use. The minimum TLB
RAM initialization requires that only the TLB RAM locations to be used be initialized. However, to
avoid the possibility of accidentally using a random TLB RAM value, it is safer to initialize the entire
TLB RAM with non–valid entries. This is accomplished by writing an initialization entry with the valid
bit NOT set to IO_TLB_ENTRY_M,L (all zeros to IO_TLB_ENTRY_M,L works fine), and writing this
initialization entry to ALL 256 TLB RAM locations using TLB direct writes. Once this is done, the actu-
al TLB entries to be used can be written using the TLB_Direct_Write command described above.

Recall that in ERROR mode there should NEVER be a TLB miss. Software MUST guarantee that there
is a valid address translation in the TLB for every active DMA BEFORE that DMA begins (otherwise
an error is logged, hence the name). Another side effect of ERROR mode is that two active DMAs cannot
use the same TLB RAM location. Software MUST guarantee that all concurrently active DMAs use GSC
addresses that do not collide in the TLB RAM.

6.5.2.3. TLB initializations MUSTS

For proper TLB operation, the TLB MUST be initialized. The initialization sequence is described below.
The initialization should be done in the sequence specified below.

� Read the TLB size by reading IO_DC_DATA. The UTurn IO TLB size will be con-
tained in the shift field of the iodc_spa byte of IO_DC_DATA. For UTurn, with a
TLB size of 256, the shift field will be equal to 8 (2^8 = 256). Note that the actual 8
bytes of io_dc_data on UTurn does not contain the IO TLB size. PDC will add this
information in the PDC_IODC call before the io_dc_data is returned to the O.S.
This requires that the OS always access UTurn’s IO_DC_DATA via the PDC_IODC
”get entry point” option.

� Write the IO_CHAIN_ID_MASK registers with the consecutive number of bits set
equal to log2(TLB size). For UTurn, the TLB size is 256, so the
IO_CHAIN_ID_MASK value should have AT MOST eight bits set. These eight bits

119

indicate where to extract the TLB address from. These eight bits MUST be consecu-
tive in the register. More than eight bits set will cause unpredictable collisions in the
UTurn TLB. Fewer than eight bits set will reduce the usable size of the IOA TLB
(i.e. seven bits set would make the TLB size decrease from 256 entries to 128 en-
tries). If there are any LEADING ZEROs in the IO_CHAIN_ID_MASK register,
then software MUST guarantee that IO virtual address (GSC+ DMA addresses), and
PAGE_NUMs used for TLB direct write, purge and insert commands will NEVER
have any of these bits set (with the exception of GSC addresses in the IO address
space). Recall that IO addresses (address = Fxxx_xxxx to FFFF_FFFF) do NOT
use the TLB, but are ’F’ extended. Restated, if IO_CHAIN_ID_MASK value has
leading zeros (i.e. 0FF0_0000), then GSC+ DMA addresses must not have any ad-
dress bits set in the leading zero area (i.e. if MASK = 0FF0_0000, illegal GSC ad-
dresses are: 1xxx_xxxx thru Exxx_xxxx, where Fxxx_xxxx is OK because it is in
the IO address space and will not use the TLB). Similarly, if CHAIN_ID_MASK =
0FF0_0000, then illegal PAGE_NUM values for TLB purge, insert and direct write
are: 1xxx_xxxx thru Fxxx_xxxx. Failure to guarantee this may result in FALSE hits
in the UTurn TLB, giving random address translation and the potential for data cor-
ruption in memory, or false TLB access for TLB commands (purge, insert, direct
write). See the section below on IO_CHAIN_ID_MASK Values and Usable GSC
addresses for more detail. The IO_CHAIN_ID_MASK register should NOT be re–
written while any IO activity is in progress. In general the IO_CHAIN_ID_MASK
register should only be written once on system boot–up initialization. Changing the
IO_CHAIN_ID_MASK register scrambles the location of entries in the TLB RAM,
and requires complete re–initialization of the IO TLB in UTurn.

� All TLB RAM entries should be initialized to a non–valid entry (for both NORMAL
and ERROR mode). This is done by writing a non–valid entry into
TLB_ENTRY_L,M (a value of all zeros works fine). This non–valid TLB entry
should then be written to all TLB RAM locations by doing 256 TLB direct writes,
one to each of the TLB RAM locations. The TLB direct write requires a 20 bit
PAGE_NUM value to determine where to write the entry. For initialization, only
256 direct writes need to be done, but the PAGE_NUM values are dependent on the
IO_CHAIN_ID_MASK value. Thus if CHAIN_ID_MASK = FF00_0000, then ini-
tialization direct writes should be done to PAGE_NUMs: 0000_0xxx, 0100_0xxx,
0200_0xxx, 0300_0xxx, ... FF00_0xxx. Similarly, if CHAIN_ID_MASK =
3FC0_0000, then initialization direct writes should be done to PAGE_NUMs:
0040_0xxx, 0080_0xxx, 00C0_0xxx, 0100_0xxx, 0140_0xxx, 01C0_0xxx, ...
3FC0_0xxx. Notice that the count from 0 to 255 occurs in the SAME bit positions
as the CHAIN_ID_MASK value. TLB RAM initialization could also be done with
TLB purges, however since TLB tag hit is checked before the purge is done, to ini-
tialize all TLB RAM locations 2^20 TLB purges would have to issued in order to
’hit’ all possible values for the tag to guarantee that all RAM locations are initial-
ized. This is WAY TOO MANY to be practical (1,048,576 TLB purges), although it
does work. TLB RAM initialization prevents random (power on) values from being
accidentally accessed by DMA traffic. Although unlikely that an IO virtual page
number would match a random power–on value in the TLB, it could happen. TLB
initialization prevents this from occurring, and only needs to be done on power up, or
if the IO_CHAIN_ID_MASK value is changed.

120

� If the TLB is to be used in NORMAL mode, the IO_PDIR_BASE register should be
written with the address of the IO_PDIR. See the section below on how the
IO_PDIR_BASE is used along with the address of the TLB miss to fetch a TLB
entry from the IO PDIR. The IO_PDIR_BASE register (used for NORMAL mode
and TLB insert command) should NOT be re–written while any IO activity is in
progress. In general the IO_PDIR_BASE register should only be written once when
the IO PDIR in main memory is built. Changing the base register causes TLB en-
tries to be fetched from the ’new’ location of the IO PDIR (O.K. if a ’new’ IO PDIR
is set up BEFORE changing the base register).

� For NORMAL mode (where TLB entries are automatically fetched from the IO
PDIR), the entry in the IO PDIR MUST be valid and correct BEFORE a DMA is
initiated that uses that entry. Specifically, the IO PDIR entry must be correct and
have the VALID bit set. Failure to have the valid bit set in the IO_PDIR will result
in a hard error. The virtual index, physical page number, and page types should also
be correct prior to initiating a DMA. This is not a detectable error, but an incorrect
virtual index or physical page number will result in memory corruption or cache in-
coherence. Additionally, the IO PDIR table must be resident in an equivalently
mapped region of memory.

� For ERROR mode (where TLB entries are directly written into the UTurn TLB),
the TLB entry in UTurn MUST valid and correspond to the DMA, BEFORE the
DMA is initiated. Similarly, no two active DMAs can use the same TLB RAM
entry. Failure to do either of these will result in an TLB miss, and a hard error.

� All TLB RAM entries should be initialized first to a non–valid entry (for both NOR-
MAL and ERROR mode) and then to the actual desired TLB entry (for ERROR
mode) before starting any IO activity.

6.5.2.4. Timing of TLB commands and control register writes with respect to DMA activity

The timing of commands affecting TLB entries (TLB_Purge, TLB_Insert, TLB_Direct_Write), and
writes to HPA registers affecting TLB operation (IO_CONTROL_HV_MODE,
IO_CHAIN_ID_MASK, IO_PDIR_BASE, IO_TLB_ENTRY_M,L) must be guaranteed with respect to
DMA activity. This requires that operating system software FULLY initialize the TLB BEFORE any
DMA activity on GSC. Similarly,
operating system software must guarantee for ERROR mode that the TLB_Direct_Write arrive BEFORE
any DMA activity using that entry. Refer to the timing information below.

� HPA register writes happen IMMEDIATELY. Thus writes to IO_PDIR_BASE,
IO_CHAIN_ID_MASK, IO_CONTROL_HV_MODE have immediate side effects.
In general there should be NO DMA activity if any of these registers are being al-
tered.

� TLB commands are first passed through the outbound queue, and then through the
inbound queue. Thus TLB_Purge, TLB_Insert, and TLB_Direct_Write may take
many cycles before causing the change in the TLB entry. The delay depends on the
number of transactions in both queues. In general, the TLB manipulation commands
should be issued on Runway BEFORE any write on Runway which initiates DMA
activity.

� A side effect of the above two bullets (HPA writes happen immediately, and TLB
commands must go through both IOA internal queues) is that the following sequence

121

MUST be adhered for correct operation of TLB direct writes: 1) write TLB entry to
IO_TLB_ENTRY_M,L 2) send a TLB direct write 3) read Runway side (UBC)
IO_STATUS and check that the ready bit is set. THEN and ONLY THEN can the
IO_TLB_ENTRY_M,L registers be re–written. If you don’t wait for the data return
from the read of IO_STATUS before changing IO_TLB_ENTRY_M,L, you will get
the WRONG (or even a mixed) TLB entry written to the TLB.

6.5.2.5. Effects of TLB initialization

The initialization sequence described above has the following effects. When software reads the TLB
size it know how many bits must be extracted from the IO address to be used as the address into the TLB.
 Software allocates space for the IO PDIR table in an equivalently mapped area in memory. The size
of the IO PDIR table is equal to: size of a coherent IO TLB entry * 2^(CHAIN_ID + BLOCK_ID). Where
the size of the coherent IO entry is 64 bits long, and the size of the CHAIN_ID field is determined by
the number of bits necessary to access the TLB (256 entries in the TLB RAM, requiring 8 bits of
CHAIN_ID address). This leaves the size of the BLOCK_ID field adjustable. The tradeoff in determin-
ing the size of the BLOCK_ID field is: size of the IO PDIR table in main memory (always present in
memory, equivalently mapped) vs the size of the IO address space available for DMA. As the
BLOCK_ID field gets smaller, the IO PDIR table in main memory also gets smaller, as does the IO ad-
dress space that is usable on GSC+. Note that the CHAIN_ID field remains the same size, but gets ex-
tracted from a different part of the IO address so that the TLB always receives the same number of bits
as address. This is the function of the CHAIN ID FIELD EXTRACT block shown in the block diagram
of the TLB.

6.5.2.6. IO_CHAIN_ID_MASK Values and Usable GSC addresses

Recall that the IO_CHAIN_ID_MASK register is used to extract a portion of the GSC address or a por-
tion of the TLB command PAGE_NUM field to access the TLB. A side effect of this functionality is
that some GSC address are NOT usable depending on the value in the IO_CHAIN_ID_MASK register.
Similarly, some PAGE_NUM values are NOT legal depending on the value of CHAIN_ID_MASK. This
is essentially an aliasing problem due to bits being ignored depending on the CHAIN_ID_MASK value.
The rules are outlined in the section above called TLB initialization MUSTS. The side effects are ex-
plained here.

For example if IO_CHAIN_ID_MASK = FF00_0000, then GSC address 00xx_xxxx uses TLB entry 00,
and GSC address 01xx_xxxx uses TLB entry 01, but GSC address F0xx_xxxx which would use TLB
entry F0 EXCEPT that it is in the IO address space, and thus does NOT use the TLB. All GSC address
from F0xx_xxxx through FFxx_xxxx are in the IO address space, hence do NOT use the TLB, and thus
for this example TLB entries F0 through FF are unavailable. So for IO_CHAIN_ID_MASK =
FF00_0000, sixteen TLB entries of the total 256 are NOT usable, but all GSC address are legal, and all
PAGE_NUM values are legal. However, recall that GSC addresses F0xx_xxxx through FFFF_FFFF are
in the IO address space, and are NOT usable for DMA.

USABLE GSC address for example IO_CHAIN_ID_MASK = FF00_0000

� GSC addresses 00xx_xxxx uses TLB entry 00 and are legal

� GSC addresses EFxx_xxxx uses TLB entry EF and are legal

� GSC addresses F0xx_xxxx through FFFF_FFFF are in the IO address space, and do
NOT use a TLB entry, but are legal addresses

122

� TLB entries F0 through FF are NOT available in this example (16 out of 256 TLB
entries are lost due to collisions with the IO address space)

� PAGE_NUM values 0000_0xxx thru FFFF_Fxxx (all values) are legal for TLB com-
mands (TLB purge, insert, direct write).

Let’s try another example to drive this point home. If, for example, IO_CHAIN_ID_MASK =
7F80_0000, then GSC address 008x_xxxx uses TLB entry 80, and GSC address 7F8x_xxxx uses TLB
entry FF (see the section below on TLB RAM address generation if you want details on how the
CHAIN_ID_MASK is used to generate the TLB RAM address). GSC addresses 8xxx_xxxx through
EFFF_FFFF violate the ”no bits set left of IO_CHAIN_ID_MASK value” rule, and are NOT usable.
GSC addresses F0xx_xxxx though FFxx_xxxx are in the IO address space, do NOT use TLB entries, but
are legal. Similarly, PAGE_NUM values of 0000_0xxx thru 7FFF_Fxxx are legal.

USABLE GSC addresses for example IO_CHAIN_ID_MASK = 7F80_0000

� GSC addresses 000x_xxxx through 007x_xxx uses TLB entry 00 and are legal

� GSC addresses 7F8x_xxxx uses TLB entry FF and are legal

� GSC addresses 8xxx_xxxx though EFFF_FFFF violate the aforementioned rule (no
bits set left of most significant bit set in the CHAIN_ID_MASK) and are NOT legal
for this example

� GSC addresses F0xx_xxxx through FFFF_FFFF are in the IO address space, and do
NOT use a TLB entry, but are legal addresses

� PAGE_NUM values 0000_0xxx thru 7FFF_Fxxx are legal for TLB commands (TLB
purge, insert, direct write)

6.5.3. TLB RAM address generation

This section explains how the TLB RAM address is generated. Specifically, how the GSC virtual page
number (or TLB command PAGE_NUM) is used along with the IO_CHAIN_ID_MASK field to gener-
ate an eight bit TLB RAM address. This section is really only relevant to those wanting to understand
the source of the IO_CHAIN_ID_MASK rules.

6.5.3.1. IO_CHAIN_ID_MASK rules

The IO_CHAIN_ID_MASK register determines which GSC virtual page number bits are used as address
bits into the TLB RAM, it also indirectly determines the size of the IO_PDIR table in memory. The fol-
lowing is a list of rules that MUST BE ADHERED to for proper operation of coherent IO in UTurn.

� IO_CHAIN_ID_MASK should be the FIRST register written in the TLB initializa-
tion sequence (ERROR and NORMAL modes only, REAL mode does NOT require
this). All TLB commands (purge, insert, direct write), and any accesses of the TLB
RAM require that the mask register have been written first. This is not required for
REAL mode since the TLB is essentially OFF in REAL mode.

� The value in the IO_CHAIN_ID_MASK register should have EIGHT CONSECU-
TIVE bits set. More than eight bits set will cause undetected aliasing of TLB entries
(and hence random destinations for DMA) –– this is VERY BAD, don’t do it. Non–
consecutive bits set in IO_CHAIN_ID_MASK cause similar problems–– don’t do it.
Fewer than eight bits set cause the effective TLB size in UTurn to be reduced. The

123

TLB will operate properly, but with increased TLB misses (reduced performance) ––
probably something which you don’t want to do. Seven bits set reduce the effective
TLB size to 128 entries, six bits set reduce it to just 64 entries, and so on.

� Once the IO_CHAIN_ID_MASK register has a value written to it, software must
GUARANTEE that all GSC addresses and all TLB command PAGE_NUM values
have NO BITS SET LEFT OF (more significant than) the highest bit set in the mask
register. Having bits set more significant than the mask value will cause aliasing of
TLB entries for both TLB commands and GSC address translations.

� Once a value has been written to the mask register, a new value (i.e. different) can
only be written if there is NO DMA activity, all outstanding TLB commands have
completed, and the TLB RAM is re–initialized after the new value is written. Be
cautious when re–writing the mask register.

6.5.3.2. TLB RAM address generation

IO_CHAIN_ID_MASK
 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

GSC Virtual page number or
TLB command page_num
 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

2 input x 8
 bitwise AND

2 input x 8
 bitwise AND

2 input x 4
 bitwise AND

8 8 4 4
4 zeros

3 input x 8
 bitwise OR

8

TLB RAM address

The TLB RAM address is generated by a field extraction of bits from the GSC virtual page number or
TLB command PAGE_NUM as specified by the value in the IO_CHAIN_ID_MASK register. A key
point is that this is NOT a full field extractor, but rather a simple eight bit only field extract. This allows
the hardware field extractor to be much simpler (and hence faster), but with the side effects producing
the IO_CHAIN_ID_MASK rules listed in the section above.

An important observation is that the field extractor may perform a hashing function as long as it always
produces the same TLB RAM address for the same virtual page number AND same TLB command
PAGE_NUM. The field extractor consists of two basic components: three of an eight bit wide AND array

124

and one of an eight bit wide OR array. With only eight bits set in the mask register, only eight of the
twenty AND gates has mask bits set. The eight bits set in the mask register can have arbitrary placement,
but they must be CONSECUTIVE in the register. This provides the guarantee that any bit disabled from
one AND array is replaced by another bit enabled from one of the other AND arrays. Thus one and only
one of the inputs to the OR array can ever active at one time. This performs a field extract with the side
effect that as the value in the mask register is shift right, the newly added address bits fill in on most signif-
icant side.

6.5.4. Accessing the IO_PDIR on a TLB miss

IO_PDIR_BASE:

Virtual page num:

IO_PDIR Addr:

0 19 20 31ZERO

0 19 000

0 7 278 18 28 40

zero

36

FUNCTION ===> ADD PASS THRU

ZERO 17

Runway address:

Runway virtual index:

GSC+ virtual page number

ZERO

8

byte addr
not used

9 bits 20 bits 3 bits

If the TLB is operating in NORMAL mode, when a TLB miss occurs, the inbound side will fetch the
’missing’ TLB entry automatically from the IO_PDIR in main memory. Recall that since there is no TLB
entry for accessing the IO_PDIR, the IO_PDIR MUST be placed in an equivalently mapped region of
memory, and the IO_PDIR must ALWAYS be memory resident. This allows UTurn to still be cache co-
herent on IO_PDIR fetches, and guarantees UTurn’s ability to access it (UTurn has NO way to cause a
page fault to bring a page in from swap).

Assuming the IO TLB is operating in NORMAL mode, once a TLB miss occurs, it is serviced as follows.
First the IO_PDIR_BASE is added to the GSC+ virtual page number, and this result is zero extended
producing the address in the IO_PDIR that contains FOUR TLB entries (only one of which we want).
Ten bits of address are extracted to be used as the (equivalently mapped) virtual index. Note that although
a cache coherent transaction is used to read the IO_PDIR (potentially reading the most current value for
a PDIR entry from a processor cache), if the IO_PDIR entry changes, UTurn’s TLB must be PURGED
or a TLB_INSERT issued to cause the TLB to be properly updated. Once the IO_PDIR read data is re-
turned, the desired TLB entry (one of four returned from the IO_PDIR read) is written to the TLB, and
the GSC transaction which caused the miss continues.

6.5.5. TLB entry format

TLB entries can be loaded into the UTurn TLB from two different sources. One possible source is the
IO_TLB_ENTRY_M,L HPA register (see the Architectural Requirements chapter). The other possible
source is from memory (i.e. the IO PDIR table). The format of the TLB entry is identical for these two
sources since the two 32 bit HPA registers concatenated together can be considered equivalent to a 64
bit entry read from memory.

125

Note that the TLB entry format has room for expansion. The format allows for a 40 bit physical page
number, whereas the current Runway implementation only requires 28 bits of physical page number.
Similarly, the format allows for a 12 bit virtual index, whereas Runway only requires 8 bits. The TLB
entry format shown below indicates which bits are UNUSED as implemented by UTurn on Runway. The
entry format below also shows which bits are used on Runway and which bits are used internal to the
IOA.

6.5.5.1. First half of TLB entry (IO_TLB_ENTRY_M or word 0 from IO PDIR)

ÎÎÎÎÎÎ
ÎÎÎÎÎÎ

0 3ÎÎÎÎÎÎ
ÎÎÎÎÎÎ

4 5 6 15ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ

16 2324 31
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ

physical page
number [0:3]

ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ

virtual
 index [0:1]

virtual index [2:11] ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ

physical page
 number [4:11]

physical page
 number [12:19]

ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ

ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ

Runway
 virtual index [0:9]

ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ

Runway
 real addr [0:7]

ÎÎÎÎÎÎ
ÎÎÎÎÎÎ

 4 bits ÎÎÎÎÎÎ
ÎÎÎÎÎÎ

 2 bits 10 bits ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ

 8 bits 8 bits
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ

NOT USEDÎÎÎÎÎÎ
ÎÎÎÎÎÎ

NOT USED ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ

 NOT USED

6.5.5.2. Second half of TLB entry (IO_TLB_ENTRY_L or word 1 from IO PDIR)

0 19
ÎÎÎÎ
ÎÎÎÎ

20 24 25
ÎÎÎÎÎ
ÎÎÎÎÎ

 26
ÎÎÎÎ
ÎÎÎÎ

27 28 29 30 31

physical page
 number [20:39]

ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ

unused prefetch
 enable

ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ

update
 enable

ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ

unused coherent IO
page type[0:1]

 valid

Runway
 real addr [8:27]

ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ

 IOA
 internal

ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ

ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ

 IOA
 internal

 IOA
 internal

 20 bits ÎÎÎÎ
ÎÎÎÎ

 5 bits 1 bit ÎÎÎÎÎ
ÎÎÎÎÎ

 1 bit ÎÎÎÎ
ÎÎÎÎ

 2 bits 2 bits 1 bit
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ

NOT
USED

ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ

NOT
USED

ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ

NOT
USED

WHERE: PREFETCH ENABLE: 0 = no prefetching allowed
 1 = prefetching enabled
 COHERENT IO PAGE TYPE: 00 = FAST DMA page, STOP_MOST disabled
 01 = SAFE DMA page, STOP_MOST disabled
 10 = FAST DMA page, STOP_MOST enabled
 11 = SAFE DMA page, STOP_MOST enabled
 VALID: 0 = non valid TLB entry
 1 = valid TLB entry

6.5.6. Accessing the TLB

Once a transaction has reached the top of the InQ, the GSC+ address must be converted into a Runway
address. Assuming the IO TLB has been initialized (as described above), the GSC address is used to
access the TLB (see the diagram on the previous page). There are three parts to the GSC address: the
offset, the block ID, and the chain ID. The size of the offset field is fixed (by the architecture at 12 bits
– 4K bytes/page). The size of the chain ID field is determined by the size of the TLB (and the value of
IO_CHAIN_ID_MASK), since the chain ID is used as the address into the TLB. Note that the location
of the chain ID field can vary, but its size is fixed. IO_CHAIN_ID_MASK actually determines effective

126

size of the TLB, but it CANNOT be bigger than 256 entries, and it really makes no sense to make it small-
er than 256. Recall that there are 256 TLB entries, so chain ID is 8 bits wide, which also explains why
the IO_CHAIN_ID_MASK register should have 8 bits set (no more, no less). Finally, the block ID field
is whatever remains of the address BETWEEN the offset and chain ID, and is used as the tag to determine
if the IO address hit or miss the TLB.

Note that the 32 bit GSC+ address is a byte address. Memory reads via Runway only need a quad word
address (the upper 36 bits of a 40 bit Runway byte address). Hence bits GSC+ address [3:0] are not passed
on to Runway; and Runway, a 40 bit address space, really only gets 36 bits of quad word address due
to the cache line quantization of memory accesses.

The IO offset portion of the GSC address passes straight through the address translation unaltered. The
chain ID field is extracted from the GSC address. The specific bits pulled from the GSC address for the
chain ID vary depending on the value written to the IO_CHAIN_ID_MASK register. This allows soft-
ware to trade off IO PDIR size against usable GSC address space. Larger GSC address spaces require
larger IO PDIR tables in main memory, and hence consume more main memory. The block ID field only
needs the remaining portion of the GSC address after offset and chain ID have been removed; however
from a practical standpoint the block ID field can be fixed. When the chain mask is FF00_0000, the most
significant eight bits are the chain ID, and the next twelve bits are the block ID (this produces the largest
possible block ID field). If the chain mask was 0FF0_0000, the most significant four bits are UNUSED,
the next eight are now the chain ID field, and the last eight are the block ID. Notice that although the
block ID field got smaller (12 bits to 8 bits), its right side location did not move. For simplicity the block
ID is ALWAYS extracted as twelve bits from GSC address bits [8:19] (where this is the IOA internal
numbering for the GSC address. i.e. the GSC most significant address bit is GSC addr[0], complying
with the PA convention). Depending on the value of the chain mask, twelve bits for block ID may be
excessive, but twelve is the largest size for the field (when the chain mask is FF00_0000), and twelve
bits must be allocated for the block ID field. When the chain mask is moved right (i.e. 0FF0_0000), re-
dundant bits are stored in the block ID field, but this causes no problems.

TLB accesses proceed as follows: the chain ID is used to address the TLB, and a TLB entry is read out
of the TLB RAM. The TLB entry contains the following fields: virtual index, physical page number,
prefetch enable, coherent IO page type, tag, and a valid bit. The tag from the TLB is compared to the
block ID field from the GSC+ address to determine if we got an actual TLB hit. Note that the valid bit
in the TLB RAM is also used to determine a TLB hit. If the valid bit is not set, then there can be NO
TLB hit.

Assuming we got a TLB hit, the physical page number read from the TLB entry is concatenated with the
GSC+ address offset to form the physical address for accessing memory. The virtual index is provided
on Runway so processors can snoop their caches to maintain cache coherency. The page type bits are
used to assist in mapping from GSC+ transactions to Runway transactions, and in assertion of
STOP_MOST on Runway. The prefetch bit is used to enable or disable prefetching. Recall that prefetch-
ing is only supported for GSC+ devices that can assert XQL on GSC+.

6.5.7. Definition of the PAGE TYPE bits

First, some general understanding of what the page type bits mean. The page type field is used as a HINT
to the IOA to assist in mapping transactions from GSC to Runway. The page type field is currently
defined to have two bits, providing four different page types. The IOA’s implementation uses four of
these page type encodings. The four pages currently defined are: FAST DMA with STOP_MOST en-
abled, SAFE DMA STOP_MOST enabled, FAST DMA STOP_MOST disabled, and SAFE DMA
STOP_MOST disabled.

127

Note that semaphores (where atomicity requirements are limited to ONE and ONLY ONE cache line)
will be supported regardless of the page type read from the TLB. Recall that atomicity limited to one
cache line is provided by coherent IO, and does not require the assertion of STOP_MOST. If semaphores
can be guaranteed to fall totally within one cache line, and the semaphore operation requires at MOST
a read followed by a write, then STOP_MOST need not be asserted. On pages where STOP_MOST is
disabled, the atomicity is limited to one cache line. This is sufficient for ALL semaphore accesses used
by HP–UX and MPE–XL.

EISA locked transactions (where atomicity requirements span more than one cache line) are ONLY sup-
ported on pages where STOP_MOST is enabled. The assertion of the LSL line on GSC requests atomic-
ity of some kind. The IOA will process the GSC guest’s transactions with STOP_MOST asserted (pre-
venting the other IOAs and the processors from accessing memory) if and only if the page type enables
the assertion of STOP_MOST.

Similarly for semaphores, a GSC READ (connected) with LSL asserted will be interpreted as a sema-
phore regardless of the page type (a READ_PRIV is always requested on Runway, but STOP_MOST
is only asserted if the page type has STOP_MOST assertion enabled). If the subsequent transaction is
a GSC WRITE with LSL asserted to the same address, the IOA will perform an atomic READ/WRITE
(i.e. semaphore) regardless of the page type. If the subsequent transaction is NOT a GSC write with LSL
asserted, the READ_PRIV data in cache is discarded. For a GSC+ CLEAR transaction, there is no sema-
phore ambiguity, and an NIO style of CLEAR (atomic read cache line, write zero to first word) type sema-
phore will be executed, again regardless of the page type.

The following describes each of the aforementioned pages. Refer also to the table below to see how the
different page types interact with the GSC+ XQL and LSL line to determine how GSC+ transactions map
to Runway transactions.

� SAFE DMA, STOP_MOST enabled page (DEFAULT page type for REAL mode).
This page type is for DMA access where the beginning/end of the DMA may share a
cache line with some other unrelated data, and atomicity requirements span a multi-
ple cache lines. Partial cache line writes must properly preserve dirtied cache data
from the processor cache. This is accomplished using a coherent read to acquire the
cache line, modifying it as necessary, and writing it back once done. This is the safe
(i.e. low performance) DMA mode necessary if the DMA overlaps in a cache line
with some unrelated, but modified data in the processor cache. The differences for
SAFE pages are only observed for half cache line write transactions (GSC four
word writes). The SAFE DMA with STOP_MOST enabled page is the default page
type when the IOA is operating in REAL addressing mode. Recall in real addressing
mode, all pages are equivalently mapped, and the TLB is NOT used for address
translation. This means that there are NO page type bits to read out of the TLB.
Hence the default page type. STOP_MOST enabled allows assertion of
STOP_MOST when LSL is asserted. This page should be used only where DMA
writes overlap with other data in a cache line, and atomicity requirements span multi-
ple cache lines. (example EISA inbound partial page DMA with the potential for
processor writes in the same cache line as the beginning/end of DMA).

� FAST DMA , STOP_MOST enabled page. This page type is for DMA access
where the beginning/end of the DMA is aligned with a cache line or the other half
of the data in the cache line does NOT need to be preserved, but atomicity require-
ments span a single cache line. Half cache line writes can be accomplished using the

128

WRITE16_PURGE transactions, which writes half the cache line, and will destroy
any data on the remaining half of the cache line if it is held private dirty in a proces-
sor’s cache. This is the high performance DMA mode, but requires either alignment
of the DMA to cache lines, or knowledge that the remaining portion of the cache line
will NOT see processor writes (i.e. is NOT held private dirty in a processor cache).
The FAST DMA with STOP_MOST enabled allows assertion of STOP_MOST
when LSL is asserted. This page should only be used where full cache lines writes
are used (or you don’t care about the lost processor data on the other half of a cache
line) and atomicity requirements span multiple cache lines. (example EISA full page
DMA or cache–line aligned DMA).

� SAFE DMA, STOP_MOST disabled page. This page is identical to the above SAFE
page EXCEPT that assertion of LSL on GSC does NOT cause assertion of
STOP_MOST on Runway. This still allows atomic accesses, but only if limited to a
single cache line (i.e. semaphore). (example NIO partial page DMA). See the sec-
tion below on Rules for Obtaining the Best DMA Performance, and the section on
Semaphore Specification on GSC and GSC+ for more information.

� FAST DMA, STOP_MOST disabled page. This page is identical to the above FAST
page EXCEPT that assertion of LSL on GSC does NOT cause assertion of
STOP_MOST on Runway. This still allows atomic accesses, but only if limited to a
single cache line (i.e. semaphore) (example NIO full page DMA). See the section
below on Rules for Obtaining the Best DMA Performance, and the section on Sema-
phore Specification on GSC and GSC+ for more information.

6.5.7.1. Rules for Obtaining the Best DMA performance

� SEMAPHORES: If possible, semaphores should be specified with the GSC+ sema-
phore transaction (CLEAR 16), with no assertion of LSL; however, this transaction
is only available to GSC+ guests (not to regular old GSC guests). The best choice
for GSC guests is a GSC semaphore (read/write combination with LSL asserted) to a
STOP_MOST disabled page (either FAST or SAFE). The final (and least desirable)
semaphore is a GSC read/write combination with LSL asserted to a STOP_MOST
enabled page (either FAST or SAFE) . Recall that assertion of LSL on a
STOP_MOST enabled page causes assertion of STOP_MOST on Runway (locking
all processors and the other IOAs out of memory); whereas the GSC+ CLEAR trans-
action and the GSC read/write combo to a STOP_MOST disabled page, are accom-
plished by acquiring the cache line privately, modifying it, and copying it back, with-
out ever causing assertion of STOP_MOST. See the section on semaphore
specification on GSC and GSC+ below for an explanation of the differences.

� DMA: The system performance effects of STOP_MOST are eliminated if a
STOP_MOST disabled page can be used. The STOP_MOST enable/disable page
choice primarily effects system performance. From a system performance perspec-
tive, if at all possible, all DMA should be done to the STOP_MOST disabled page
types (either FAST or SAFE). The ability to use the STOP_MOST disabled pages is
determined by the atomicity requirements of the memory accesses. Only devices
requiring atomicity of accesses in excess of one cache line should need a
STOP_MOST enabled page (i.e. some EISA devices). Even if semaphores are
mixed with DMA data, if the atomicity requirements do no exceed ONE cache line,

129

the STOP_MOST disabled pages can be used. See the section on Semaphore Speci-
fication on GSC and GSC+.

� DMA: The transaction mapping effects of half cache line writes is determined by the
FAST vs SAFE page type choice. Inbound DMA (memory writes) gets best perfor-
mance on a FAST page; for outbound DMA (memory reads) FAST vs SAFE really
makes no difference. To use a FAST page for inbound DMA requires that both the
beginning and the end of a DMA stream should either be aligned to cache lines, or
the DMA buffer should be made larger (by one half cache line) to align it to cache
line boundaries, or buflets should be used. Buflets effectively separate the majority
of the DMA (which is cache line aligned) from the beginning/end parts of the DMA
(which may not be aligned). Thus the FAST DMA page can be used for the majority
of the DMA transfer (the highest DMA performance), and the SAFE DMA page can
be used for the unaligned portion at the beginning or end of the DMA. Preferably,
inbound DMA should be aligned to cache line boundaries (even if there are small
unused portions of a cache line at the beginning or end of the DMA). This allows
the entire DMA to be done with one transfer (as opposed to buflets), and uses the
high performance FAST DMA transactions.

6.5.7.2. Interaction of the PAGE TYPE with GSC+ XQL (prefetch) and LSL (lock) lines

In addition to the page type and prefetch enable fields read from the TLB, GSC provides an atomicity
indication, and a prefetch request. The atomicity indication from GSC is on the LSL line which is active
low; internal to UTurn this is renamed LOCK, which is active high. Similarly, the prefetch request from
GSC is on the XQL line which is active low; internal to UTurn this is renamed NEXT, which is active
high. These bits interact with the page type and prefetch enable bits to determine how transactions are
mapped from GSC+ to Runway.

In general, assertion of LOCK requests atomicity of some type. For a STOP_MOST disabled page type,
this atomicity is limited to one cache line, and results in a Runway read_priv to accomplish the atomicity
request. For a STOP_MOST enabled page type, this atomicity is unlimited, and results in a Runway
STOP_MOST assertion to lock all of memory. A Runway read_priv is still issued to provide the coheren-
cy required for read–modify–write (the sequence used for both sub–cache line writes and semaphores).
 The point here is that transaction mapping from GSC to Runway depends only on the GSC LSL line
and the page type (FAST vs SAFE). The assertion of STOP_MOST on Runway depends on the GSC
LSL line and the page type (STOP_MOST enabled vs STOP_MOST disabled). There is no cross–inter-
action between FAST/SAFE pages and STOP_MOST enable/disable page types. This can be seen in the
tables below which independently describe the transaction mapping (FAST/SAFE pages and atomicity
signal LOCK), and the assertion of STOP_MOST (STOP_MOST enable/disable and atomicity signal
LOCK).

In general, assertion of XQL with a DMA read is a prefetch request. In order for prefetching to be done,
the following requirements must be met. The GSC guest will only receive prefetching if XQL is asserted
on a READ 4 or 8 (words). In addition, the LSL line must not be asserted (UTurn does not prefetch if
the accesses has an atomicity request), and the prefetch enable TLB bit must be set, which allows pre-
fetching on outbound DMA (memory reads).

6.6. Semaphore specification on GSC and GSC+

There are several ways in which a semaphore can be specified by a GSC+ guest, but only one way for
a GSC guest. For GSC+ guests, either the semaphore transaction (CLEAR) can be used, or LSL (called

130

LOCK internal to UTurn) can be asserted for an atomic access. For GSC guests, LSL must be asserted
to request an atomic access (either a semaphore or an atomic set of transactions). Also recall that the TLB
page type field (STOP_MOST enabled vs STOP_MOST disabled pages) determines the level of atomic-
ity provided when LSL is asserted. On a STOP_MOST disabled page, assertion of LSL provides atomic-
ity for ONE read/write pair accessing ONE and ONLY ONE cache line. On a STOP_MOST enabled
page, assertion of LSL provides atomicity of an arbitrary number of transactions to as much of memory
as desired.

6.6.1. Semaphore specification on GSC

For GSC guests, semaphores MUST be of the form: READ (connected) with LSL asserted, followed
immediately (and in the SAME bus tenure) by ONE WRITE to the SAME cache line address with LSL
continuously asserted for BOTH transactions. GSC bus tenure for the read is guaranteed since the read
MUST be connected; tenure must be continued through the write for atomicity of the semaphore. It is
very important that the GSC semaphore adhere to the aforementioned semaphore specification. Other
sequences WILL NOT result in an atomic access (required for semaphores).

Note that the above sequence results in a semaphore operation regardless of whether the page type is a
STOP_MOST enabled or a STOP_MOST disabled. For atomicity limited to one read/write pair, the
STOP_MOST disabled page type has the minimum impact on system performance, and is the most desir-
able choice. For atomicity requirements that exceed one read/write pair to one cache line, the
STOP_MOST enabled page should be used. For example: READ (LSL) address1, WRITE (LSL) ad-
dress1, WRITE (LSL) address1. On a STOP_MOST disabled page, the read and FIRST write would be
atomic relative to one another, but NOT the second write, even though the second write is to the same
cache line address, and LSL is continuously asserted. On a STOP_MOST enabled page, all transactions
(the read, and BOTH writes) are atomic relative to one another. The sequence of transactions on Runway
is the same in both cases; however, in the second case STOP_MOST is asserted for the duration of all
three, thereby making them all atomic with respect to each other.

� BEST GSC semaphore: READ (connected), followed by ONE WRITE to the
SAME cache line address with LSL continuously asserted for BOTH transactions to
a STOP_MOST disabled page type. This is the best system performance semaphore
possible on GSC.

� GSC ATOMIC (EISA): Any sequence of transactions with LSL continuously as-
serted to a STOP_MOST enabled page type. This provides atomicity for more than
one read/write pair, and to an memory area larger than a single cache line. Due to
system performance impacts of STOP_MOST, this should only be used where this
level of atomicity is absolutely required (i.e. EISA devices with extensive atomicity
requirements).

6.6.2. Semaphore specification on GSC+

GSC+ guest have two ways in which a semaphore can specified: either the GSC read/write pair or the
GSC+ clear transaction. GSC+ guests can also use the STOP_MOST enabled page type which provides
access to multiple–cache line atomic sequences IF NECESSARY.

GSC+ guests can perform semaphores using the same read/write pair as the above mentioned GSC sema-
phores. The same rules apply here. The semaphore MUST be of the form READ (connected) with LSL
asserted, followed immediately (in the SAME bus tenure) by ONE WRITE to the SAME cache line ad-
dress with LSL continuously asserted for BOTH. It is very important that the GSC+ semaphore using

131

the read/write pair adhere to the aforementioned semaphore specification. Other sequences WILL NOT
result in an atomic access (required for semaphores).

Note that the above sequence results in a semaphore operation regardless of whether the page type is a
STOP_MOST enabled or a STOP_MOST disabled page. For atomicity limited to one read/write pair,
the STOP_MOST disabled page type has the minimum impact on system performance, and is the most
desirable choice. For atomicity requirements that exceed one read/write pair to one cache line, the
STOP_MOST enabled page should be used. Recall that a semaphore to a STOP_MOST enabled page
is NOT the preferred semaphore for GSC+ guests due to the performance impact of assertion of
STOP_MOST on Runway.

The preferential semaphore on GSC+ is the the CLEAR 16 transaction. This transaction performs an
atomic read cache line and clear first word (identical with the NIO CLEAR 16 transaction) regardless
of the page type or the LSL line. This allows the IOA to perform the semaphore in its local cache, without
the assertion (and associated system performance penalty) of STOP_MOST on Runway.

For atomicity of MANY transactions (more than just a READ/WRITE) BOTH the assertion of LSL AND
the STOP_MOST enabled page are required for both GSC and GSC+ guests. However, this level of
atomicity (ownership of all of memory) should only be used where absolutely required due to the perfor-
mance impact on the rest of the system.

� BEST GSC+ semaphore: CLEAR without assertion of LSL, or CLEAR to a
STOP_MOST disabled page type. This provides an NIO style read and clear sema-
phore. This is slightly better performance than the read/write pair, since it is only
one GSC+ transaction (instead of two for the read/write semaphore pair).

� NEXT BEST GSC+ semaphore: READ (connected), followed by ONE WRITE to
the SAME cache line address with LSL continuously asserted for BOTH transactions
to a STOP_MOST disabled page type. This is almost as good as the CLEAR trans-
action, but requires the additional address cycle for the write.

� GSC ATOMIC (EISA): Any sequence of transactions with LSL continuously as-
serted to a STOP_MOST enabled page type. This provides atomicity for more than
one read/write pair, and to an area larger than a single cache line. Due to system per-
formance impacts of STOP_MOST, this should only be used where this level of
atomicity is absolutely required (i.e. EISA devices with extensive atomicity require-
ments).

6.7. Prefetching in the IOA

6.7.1. Deterministic vs Speculative Prefetch in the IOA

GSC+ provides a prefetch hint (called XQL on GSC+, and NEXT internal to UTurn) so that the IOA can
prefetch for outbound DMA to reduce latency, and increase effective DMA bandwidth. As currently de-
fined, GSC+ allows guests to indicate that they will want the next half or full cache line. Note that this
is a deterministic prefetch. If a guest assertss XQL on a 16 byte read (GSC read4), the very next transac-
tion from that guest MUST be a read4 of the next 16 byte chunk of memory, or the prefetch will be dis-
carded (see the section on prefetch rules below).

So how does speculative prefetch fit in with this? Easy, any GSC+ module that wants to speculatively
prefetch may do so with the following limitations. First, there must be an understanding of the DMA

132

model (with software) of the legality of performing speculative prefetch. Finally, in keeping with the
GSC+ definition of prefetch, a GSC+ module may NEVER request a prefetch, and then not come back
and request that read. Said another way, a GSC+ guest that wants to do speculative prefetching can assert
XQL, but must request that location later, even if the data goes unused.

There is one other acceptable method of removing a prefetch once started. A guest may assert XQL, then
decide it no longer wants the data. It must either read that location (and throw the data away, as discussed
above), or it must read some other LEGAL location to cause the prefetch to be discarded. Note that the
address must be one that the guest is allowed to read (i.e. an address already past in the DMA stream).

Note that under NO conditions may a module prefetch across a page boundary. This causes several prob-
lems. First, internal to the IOA we assume that if a TLB entry exists for a normal read, it also exists for
the prefetch. A prefetch crossing a page boundary would violate this assumption. Second, prefetching
across a page boundary assumes that physical memory exists, BUT it may not. This would at best cause
a page fault, and the next page would be unnecessarily brought in from virtual memory (a disk read to
fetch the page). At worst, the read from a non–existent page could cause a memory error and system
crash. Prefetching across a page boundary is an architectural no–no; DON’T DO IT!

6.7.2. Deterministic Prefetch Implementation

The IOA implements a limited outbound deterministic prefetch. If a GSC+ guest asserts XQL (called
NEXT internal to UTurn) on an appropriately sized transaction (READ 16 or READ 32) without asser-
tion of LSL, and the prefetch enable bit from the UTurn TLB allows prefetching (i.e. prefetch enable bit
set for that page), the IOA will fetch the appropriate cache line. Notice that the READ transaction re-
quested by the GSC+ guest must be at least 16 bytes and LSL must not be asserted, the prefetch enable
bit must be set for that page in the TLB, and XQL must be asserted. Under these conditions, the IOA
will perform the requested read, and once that request is completed, will request the prefetch. Note that
UTurn will read an entire cache line for a prefetch; however, if prefetch was caused by a 16 byte read,
then only the appropriate half cache line will be returned to the GSC guest.

Note that the original read transaction information is placed into the Pool with the entry bit indicating
a normal read. Similarly, the prefetch transaction information is also placed in the Pool with the entry
type bit indicating a prefetch read. When the prefetch read is requested by the GSC+ guest, the prefetch’s
status bits are changed to indicate that the read has been formally requested; even though the entry type
bit still indicates a prefetch read, the pool entry has logically been changed to a ’normal’ read.

6.7.3. Prefetch Rules and Invalidation of Prefetch Entries

The prefetching implemented by the IOA is very limited, and has several restrictions. First, the IOA
has only eight Pool entries for both normal reads and prefetch reads. Additionally, GSC guests may only
have one outstanding normal read, and one outstanding prefetch read (this is a GSC+ bus protocol rule).
This will work very nicely for GSC+ based devices reading down a single DMA stream, but provides
limited benefits if multiple DMA streams are passed simultaneously through one GSC+ guest (i.e. bus
converters). Due to the potential for these multiple streams to be intermixed, the single outstanding pre-
fetch allocated per guest will cause prefetch thrashing. Prefetching in this case has limited (if any) bene-
fit, and should probably not be used.

The following rules apply to prefetch in the IOA.

� One outstanding prefetch per GSC+ guest. Prefetch is limited to one and only one
sequential DMA stream at a time. Two or more intertwined DMA streams from the

133

same guest will thrash the buffer, and generate additional memory requests with no
benefit. Prefetch should be not be used in this case.

� Prefetch is limited to outbound DMA (GSC+ guest mastered reads) of size 16 or 32
bytes without LSL asserted on a page with the prefetch enable bit set in the TLB
entry.

� A GSC+ guest’s prefetch buffer will be discarded if the next transaction from that
guest is not a read of the requested address or a DMA write. This allows prefetch
data to be regularly discarded to solve the problem of GSC+ guests which get errors
or get reset after requesting a prefetch. In cases where the GSC+ guest is a bus con-
verter (i.e. intertwined DMA streams), this will cause prefetch data to be removed
potentially before the GSC+ guest comes back to request it. Notice there are two
ways this prefetch discard can be invoked. Either the next transaction from that
guest has LSL asserted, or it is a read of the wrong address. An example: GSC
guest 3 does a read16 at address 0 and indicates it wants a prefetch by asserting
XQL. The prefetch will be discarded if guest 3 then reads some address OTHER
than address 20 (then next cache line after 0). The prefetch will also be discarded if
guest 3 performs any SHORT write (any write requiring a read–modify–write opera-
tion) to any address. The only way for the guest to get the prefetch data is for the
read of address 20 to be the next READ transaction from guest 3 after requesting the
prefetch. Note this allows a mix of inbound DMA (memory writes) with outbound
DMA (memory reads) without discarding prefetches. However, this only works if
the inbound DMA (memory writes) do NOT do read–modify–write (only writes of 8
words, or writes of 4 words to FAST pages).

� LSL causes a special case of prefetch discard. When LSL is asserted to mean split,
UTurn does not know the GSC guest ID. Due to the problems of special casing
splits vs locks; UTurn assumes any assertion of LSL prevents us from knowing the
GSC guest ID, and UTurn discards ALL prefetches (from ALL GUESTS!) that have
not yet been formally requested. NOTE: An actual GSC transaction must be done
under the LSL split. If LSL is asserted to split a transaction, but no GSC transaction
is mastered by the guest, then this assertion of LSL will NOT cause prefetchs to be
discarded. Notice that if a guest formally requests the prefetch read, and is waiting
for the data, the prefetch will NOT be discard, since the prefetch has been formally
requested, and the guest expects a response.

134

Transaction
 type ===>

Reads with no
LSL assertion

DMA writes
(GSC write 8,
write 4 to FAST
 page)

ANY GSC
transaction with
LSL asserted

Prefetch activity
(Address match)

mark prefetch
 as ’requested’

–– no action –– DISCARD
prefetchs from
ALL guests

Prefetch activity
(Address miss)

DISCARD that
guests
 prefetch

–– no action –– DISCARD
prefetchs from
ALL guests

TABLE ? Prefetch discard behavior

The above table shows the conditions under which UTurn will discard prefetchs. Note that the GSC
guest must master a transaction with LSL asserted to cause ALL prefetchs to be discarded. Just asserting
LSL to split a host–mastered transaction does not cause prefetchs to be discarded.

6.8. Transaction Map (GSC+–>Runway)

The following tables indicate the interaction of the page types with the GSC XQL and LSL lines. Recall
that the GSC+ prefetch indication is called XQL and is active low; internal to UTurn it is inverted (now
active high) and called NEXT. Similarly, the GSC+ atomicity indication is called LSL and is active low;
internal to UTurn it is inverted (now active high) and called LOCK.

The first table shows how the GSC LSL line (called LOCK internally) interacts with the STOP_MOST
enable bit in the page type to enable or disable assertion of STOP_MOST on Runway. The second table
shows how the transaction size, type, and LSL asserted on GSC interact with the FAST/SAFE page types
to map GSC transactions to Runway transactions.

To minimize the impact to system performance, the STOP_MOST enable bit should only be set when
multi–transaction atomicity is required or for GSC semaphores. For more information see the section
on semaphore specification on GSC and GSC+.

6.8.1. Some general notes on the transaction map table and the atomicity table

TRANSACTION NOTE: the table below indicates use of a ’READ_SHAR’, for Runway. The actual
transaction used will be a ’READ_SHAR_OR_PRIV’. This was abbreviated for purposes of conserving
space.

SIZE NOTE: the transaction length is reference to a Runway cache line of 32 bytes. Thus FULL is a
full cache line (32 bytes), HALF is a half cache line (16 bytes), and PART is a partial half cache line (any-
thing less than 16 bytes). Be careful, since GSC refer to transaction lengths in WORDS. So a GSC read
1 is a read of 1,2, or 4 bytes. Similarly a GSC read 2 is a read of 8 bytes, and a read 4 is a read of 16 bytes,
and a read 8 is read of 32 bytes (or one cache line)

PAGE TYPE NOTE: FAST = fast DMA page, SAFE = safe DMA page, LOCK = transaction with LSL
asserted regardless of the page type. Restated: the page types listed assume LSL is NOT asserted. If
LSL is asserted, that page type is listed as LOCK. The allowable page types are listed below:

135

� FAST page: page type = x0 with LSL not asserted (LSL = 1)

� SAFE page: page type = x1 with LSL not asserted (LSL = 1)

� LOCK page: page type = xx with LSL asserted (LSL = 0)

STOP_MOST enable: Each page (either FAST or SAFE) can independently have STOP_MOST enabled
or disabled. This allows programmatic control of the connection between GSC’s LSL line and Runway’s
STOP_MOST line. See the sections above on Definition of the PAGE TYPE bits, and Semaphore speci-
fication on GSC and GSC+ for more details.

� STOP_MOST enabled: page type = 1x

� STOP_MOST disabled: page type = 0x

CONNECTED NOTE: All READs are required to be connected for GSC guests. GSC+ guests may
choose to select non–connected (i.e. SPLIT) read data returns. However, any READ with LSL asserted
is required to be connected as per the GSC+ bus specification. Similarly, any CLEAR is required to be
connected. The connected bit also influences whether a GSC transaction is interpreted as a semaphore
or not. See the section of semaphore specification of GSC and GSC+.

136

GSC+
TRANS

SIZE PAGE
TYPE

Connected PREFETCH Runway
TRANSACTION

NOTE

READ PART FAST 0 NO READ_SHAR

FAST 1 NO READ_SHAR

SAFE 0 NO READ_SHAR

SAFE 1 NO READ_SHAR

LOCK 1 NO READ_PRIV 1,5,7

GSC+
TRANS

SIZE PAGE
TYPE

Connected PREFETCH Runway
TRANSACTION

NOTE

READ HALF FAST 0 YES READ_SHAR 3

FAST 1 YES READ_SHAR 3

SAFE 0 YES READ_SHAR 3

SAFE 1 YES READ_SHAR 3

LOCK 1 NO READ_PRIV 1,5,7

GSC+
TRANS

SIZE PAGE
TYPE

Connected PREFETCH Runway
TRANSACTION

NOTE

READ FULL FAST 0 YES READ_SHAR 3

FAST 1 YES READ_SHAR 3

SAFE 0 YES READ_SHAR 3

SAFE 1 YES READ_SHAR 3

LOCK 1 NO READ_PRIV 1,5,7

GSC+
TRANS

SIZE PAGE
TYPE

Connected PREFETCH Runway
TRANSACTION

NOTE

WRITE PART FAST 0 NO READ_PRIV,WRITE_BACK 4

FAST 1 NO READ_PRIV,WRITE_BACK 4

SAFE 0 NO READ_PRIV,WRITE_BACK 4

SAFE 1 NO READ_PRIV,WRITE_BACK 4

LOCK 0 NO READ_PRIV*,WRITE_BK 4,5,6

LOCK 1 NO READ_PRIV*,WRITE_BK 4,5,6

137

GSC+
TRANS

SIZE PAGE
TYPE

Connected PREFETCH Runway
TRANSACTION

NOTE

WRITE HALF FAST 0 NO WRITE16_PURGE

FAST 1 NO WRITE16_PURGE

SAFE 0 NO READ_PRIV,WRITE_BACK 4

SAFE 1 NO READ_PRIV,WRITE_BACK 4

LOCK 0 NO READ_PRIV*,WRITE_BK 4,5,6

LOCK 1 NO READ_PRIV*,WRITE_BK 4,5,6

GSC+
TRANS

SIZE PAGE
TYPE

Connected PREFETCH Runway
TRANSACTION

NOTE

WRITE FULL FAST 0 NO WRITE_PURGE

FAST 1 NO WRITE_PURGE

SAFE 0 NO WRITE_PURGE

SAFE 1 NO WRITE_PURGE

LOCK 0 NO READ_PRIV*,WRITE_BK 4,5,6

LOCK 1 NO READ_PRIV*,WRITE_BK 4,5,6

GSC+
TRANS

SIZE PAGE
TYPE

Connected PREFETCH Runway
TRANSACTION

NOTE

CLEAR HALF FAST 1 NO READ_PRIV,WRITE_BACK 2,7

SAFE 1 NO READ_PRIV,WRITE_BACK 2,7

LOCK 1 NO READ_PRIV,WRITE_BACK 2,5,7

* = READ_PRIV may have already been done due to previous READ. See note 6 below.

TABLE ? Transaction map GSC+ –> Runway and effects of PAGE TYPE and CONNECTED

NOTES:

1) MAYBE a semaphore (transaction=READ with LSL=0 (asserted)) This MAY be a semaphore, imple-
mented as READ_PRIV. If followed by a WRITE to the SAME address it is a semaphore, so modify
in cache, WRITE_BACK. Any READ with LSL asserted is required to be a connected transaction as
per the GSC bus specification. Special hardware enforces this. There is NO SUCH thing as a non–con-
nected read if LSL is asserted. If XQL is asserted, it is disregarded, since prefetching is NOT allowed
if atomicity is requested (LSL asserted). READs with LSL asserted may be semaphores (UTurn will
issue read_priv); but if the next transaction is NOT a WRITE to the SAME address, then it was not a
semaphore and the cache line read privately is released. See note 6 below.

2) The unambiguous semaphore for GSC+ guests ONLY. The CLEAR transaction is only defined for
GSC+ guests, and only for a four word length (half cache line). The CLEAR transaction reads four words
of data passing the data back to the GSC+ guest assuming a connected read, clears the first word, and
writes the four words back ALL ATOMICALLY. CLEAR is required to be requested as a CONNECTED
transaction as per the GSC+ bus specification. Special hardware in the inbound side forces a connected
return of the data EVEN if the guest did not request it. There is NO SUCH thing as a non–connected
CLEAR transaction. LSL may be asserted for the CLEAR, but it makes very little sense. CLEAR is

138

already an atomic read/write, asserting LSL would only impact system performance by stalling all pro-
cessors, and other DMA activity from the other IOAs/UTurn.

3) Prefetch will be performed if requested (by assertion of XQL), and enabled (where indicated by a
’YES’ in the PREFETCH column in the tables above), and the prefetch enable bit is set for the TLB entry
for the page being accessed.

4) READ_PRIV, WRITE_BACK combination is used to perform a read–modify–write in the IOA

5) Prevent all other Runway devices from accessing memory to guarantee multi–cache line atomicity for
EISA or ISA devices. This mode is very safe, and has tremendous performance impact since all other
devices (processors, other IOAs) are prevented from accessing memory. This should be avoided unless
absolutely necessary since there is a large performance impact on the rest of the system. See the section
on semaphore specification on GSC and GSC+ to find out how to minimize the assertion of
STOP_MOST for semaphores. Note that STOP_MOST will only be asserted if the guest asserted LSL
AND the page type has STOP_MOST enabled. Otherwise atomicity request is limited to one cache line,
and STOP_MOST is NOT asserted.

6) WRITE transactions with LSL asserted MAY be the second half of a READ/WRITE semaphore com-
bination. This requires that the IOA check the contents of the cache to see if a READ_PRIV to the same
address was ALREADY performed. If a READ_PRIV was NOT already done, then it will be issued on
Runway. If a READ_PRIV to the SAME address was done just prior to the WRITE, then the WRITE
transaction will NOT generate a READ_PRIV. Recall, that semaphores on GSC are required to be a
READ (connected) with LSL asserted followed IMMEDIATELY by a WRITE with LSL asserted to the
SAME cache line address. Semaphores on GSC+ should use the CLEAR transaction. NOTE that full
cache line writes that look like the second half of semaphores will use read–modify–write in order to get
maintain proper cache coherency with the processors.

7) GSC+ guest may request that reads be split (also called ’pended’ or not connected). However, if LSL
is asserted OR if the GSC+ transaction is a CLEAR, then the GSC+ data return MUST be connected.
Special hardware on the inbound side guarantees this. See the GSC+ bus specification for details. GSC
guests do not have any options for read returns, they are connected.

The table below shows the interaction of the GSC atomicity line and the TLB STOP_MOST enable bit
that together determine if STOP_MOST will be asserted on Runway. Recall that the GSC atomicity in-
dication is active low (LSL), whereas internal to UTurn this signal is inverted (high true) and called
LOCK.

GSC LOCK indication
(high true version of LSL)

TLB STOP_MOST
enable bit

Runway atomicity
 (STOP_MOST)

ATOMICITY NOTE

NO LOCK (lsl = 1) DISABLE (0) NO disabled, not re-
quested

LOCK (lsl = 0) DISABLE (0) NO disabled, requested

NO LOCK (lsl = 1) ENABLE (1) NO enabled, not re-
quested

LOCK (lsl = 0) ENABLE (1) YES enabled, AND re-
quested

TABLE ? Atomicity specification interaction between GSC LSL line and TLB STOP_MOST enable
bit

139

6.9. Hardware Blocks

6.9.1. Inbound Queue

The Inbound Queue (InQ) is used to synchronize and store all inbound transaction information (note that
the data associated with a transaction is stored in the INBOUND RAM, not in the queue). The InQ is
written to by the GSC+ master and slave state machines. Three types of transactions are placed in the
InQ: guest mastered GSC+ transactions (memory reads and writes), data returns from GSC+ guests initi-
ated by Runway direct IO reads, and read returns of IOA internal HPA registers. The ENTRY bit is used
to distinguish between guest mastered GSC+ transactions (ENTRY = 0), and data returns and IOA inter-
nal HPA register accesses (ENTRY = 1).

1 6 3 1 4

 4 20 10

 1 1 1 1

0

0
=
G
S
C

ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ

1 6
NOT
USED

7 9
GSC
guest
ID

10
Force
time–
 out
for
read

11
14
GSC byte
enables

15 18
GSC
trans
type

19 38
GSC
addr
(virtual
page
number)

39 48
GSC addr
(page offset)

49
c
o
n
n
e
c
t

50
l
o
c
k

51
n
e
x
t

52
d
i
a
g

1
=
d
a
t
a

r
t
n

Run–
 way
TransId

Run–
 way
Mastr
ID

ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ

N
O
T

U
S
E
D

11
H
P
A

R
E
G

12
T
L
B

C
M
D

13
r
t
n

z
e
r
o
s

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

14
N
O
T

U
S
E
D

data
return
type

ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ

NOT
USED

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

39
N
O
T

U
S
E
D

40
R
E
G

A
D
R

ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ

41 43
N
O
T

U
S
E
D

44 48
HPA
REG
addr
(lsb)

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

N
O
T

U
S
E
D

ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ

N
O
T

U
S
E
D

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

N
O
T

U
S
E
D

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

N
O
T

U
S
E
D

TABLE ? InQ entries and descriptions
 (ENTRY = 0: GSC+ sourced transactions) (ENTRY=1: data returns, tlb commands)

6.9.1.1. Inbound queue entry (0 = GSC mastered transaction)

For guest mastered GSC+ transactions, ENTRY=0, and the InQ entries have three special bits (CON-
NECTED, LOCK, NEXT) that effect how the GSC+ transaction is processed. See the section above (in-
teraction of TLB PAGE TYPE bits with LOCK, NEXT, and CONNECTED) for an explanation of how
LSL interacts with the TLB page type bits.

The GSC guest ID indicates which guest to return data to (for reads) or which GSC guest caused a prob-
lem (for error logging).

The Force timeout bit is used for reads only. It allows a dummy entry to be placed in the pool, which
will cause a data return on GSC with an error indication. This is used to get a connected guest read off
GSC once an error has occurred.

140

The GSC trans type indicates which transaction (READ, WRITE, CLEAR) and how long (word, double
word, four word, or eight word).

The GSC addr indicates the target address of the GSC transaction. The GSC address is composed of two
parts: the IO virtual page number (used to access the TLB), and the IO page offset (passed on to Runway).

The CONNECTED bit is used to indicate that the read on GSC+ was a connected read, and the data needs
to be returned immediately, bypassing the OutQ.

The LOCK indication is the high true (inverted) version of the GSC atomicity line called LSL. LOCK
is asserted to request an atomic memory access. The level of atomicity is determined by the value of the
TLB STOP_MOST enable bit. If the TLB STOP_MOST enable bit is set, STOP_MOST is asserted on
Runway for GSC transactions with LSL asserted. This provides the GSC guest with the highest degree
of atomicity (ownership of ALL of memory). If the TLB STOP_MOST enable bit is NOT set,
STOP_MOST is never asserted on Runway regardless of the assertion of LSL. This provides the GSC
guest with atomicity limited to ONE read/write pair accessing ONE cache line. See the section above
on Definition of the Page Type bits, and the section on Semaphore Specification on GSC and GSC+ for
more details.

The NEXT bit is the high true (inverted) version of the GSC prefetch line called XQL, used by a GSC+
guest to indicate that a prefetch can be performed on the next sequential address to reduce latency on se-
quential outbound DMA. See the section on deterministic prefetch, and the description of the PRE-
FETCH area for further description.

The InQ entries for guest mastered GSC+ transactions contain the the Diag bit, used to indicate a special
UTurn internal diagnostic transaction. This is passed along to the pool (i.e. this bit does not directly affect
behavior on the inbound Runway side).

6.9.1.2. Inbound queue entry (1 = GSC data returns, internal data returns, TLB com-
mands)

For data returns bound for Runway, and for IOA internal HPA register reads the bit ENTRY=1. There
is a different InQ entry type containing different fields. The address field is unused, and the remaining
fields are redefined to include:

The TRANS_ID indicates what transaction id should be used when the data is returned.

The MASTER_ID indicates which Runway master to return the data to.

HPA REG indicates (if asserted) that this entry is a read of an HPA register (the address of the register
is indicated in the HPA REG ADDR field).

TLB CMD indicates (if asserted) that this entry is a TLB command (insert, purge, write)

Return Zeros is used to force a data return of zeros on Runway. This allows us to return zeros on reads
of unimplemented registers, and return zeros for reads of the io status register during command reset (i.e.
UTurn is NOT ready).

DATA RETURN TYPE which distinguishes GSC+ data returns from HPA register data returns from oth-
er special transactions. These ’special’ transactions are a catch–all for transactions not encoded in the
GSC+ transaction field (e.g. a GSC+ interrupt which needs to be translated into a Runway
WRITE_SHORT to the interrupt destination address).

The HPA REG ADDR (msb, four lsbs) indicates which HPA register to read.

141

6.9.2. Pool

The Pool is used for temporary storage of transaction information. There are two types of Pool entries:
one for normal reads, and one for prefetch reads. A Pool entry is written anytime a transaction expecting
return data is driven out onto Runway. This Pool entry is used by the Runway receiver side to know which
GSC+ guest to return the data to when a data read return is captured on Runway. Pool entries are written
to when a normal read or a prefetch read is at the head of the InQ. The Pool entry is used when data is
returned to create a data return entry in the OutQ . Note that there are eight Pool entries, one for each
possible outstanding transaction, since the IOA is limited to only eight transaction IDs on Runway. This
makes is unnecessary to store the transaction id, as each Pool entry has a hardwired transaction id
associated with it.

See the section in chapter five on Pool Buffers for details of the physical positions of the pool fields within
the Pool.

6.9.2.1. Pool fields for normal reads

Two different types of entries are created depending on whether the read was a regular read or a prefetch
read. For normal reads the entry bit field in the Pool is a zero (0). The normal read pool contains the
following fields:

The IN–USE bit indicating that the Pool entry contains valid information.

The ENTRY bit indicating either normal read entry or prefetch entry.

The RAMADDR bit used by the outbound side to determine which RAM location to use for the returned
data.

The TIMEOUT bit used to keep track of timeouts on responses to read requests.

The TIMED_OUT bit used to record which transaction timed out.

The TLB bit indicates that the data return is necessary to service a TLB miss, and the data should be placed
immediately into the TLB.

The CACHE bit indicates that the data return is bound for the cache, and the data should be placed im-
mediately into the cache location.

The CONNECTED bit indicates that the data return is necessary to service a connected read on GSC+.
This is necessary as the GSC+ bus is tied up until the data is returned, so the data return must bypass all
other entries in the OutQ to avoid deadlock. If both the CACHE and the CONNECTED bits are set, then
the return data should be placed in the cache and returned to the GSC guest.

The GUEST_ID field which indicates to the outbound side which GSC guest to return the data to.

A Portion of the GSC TYPE field is also stored, indicating to the outbound side how much data should
be returned to the GSC guest.

The GSC_ADDR field stores the address of the desired word on the cache line since entire cache lines
are read from memory, but the GSC guest may only want one word.

6.9.2.2. Pool fields for prefetch reads

The Pool area is also used for temporary storage of transaction information for prefetch reads. A prefetch
entry is written when an appropriately sized (4 word or 8 word) GSC+ read transaction has the XQL line

142

asserted (see the table above on the interaction of the page type and prefetch hint bits with GSC+ transac-
tions, and the section on prefetching). Prefetch requires a couple special bits to keep track of the status
of the prefetch. These are the REQ_BY_GSC, RETURNED, and DISCARD bits explained below. The
prefetch entries contains roughly the same information as the normal read entries, but prefetches do not
use the TLB, or CACHE bits. Prefetch Pool entries contain the following fields:

The IN–USE bit identical as for normal read pool entries.

An ENTRY type bit which always has the value one (1) for prefetch reads.

RAMADDR, TIMEOUT, TIMED_OUT, GUEST_ID, and TYPE fields are used in the same way as
for normal reads.

The CONNECTED bit is not valid when the prefetch is first issued and is set to zero. However, when
the GSC guest comes back to formally request the read (i.e. causing the REQ_BY_GSC bit to be set),
the guest may request the read be connected. At this point the CONNECTED bit can be set to indicate
that the data should be returned immediately via the connected read return queue. See the section in the
OUTBOUND chapter on the connected read return mechanism and the section on the pool.

RETURNED indicates that the prefetch data has been returned on Runway.

REQ_BY_GSC indicates that the prefetch has been formally requested on the GSC+ side. Once formally
requested, the prefetch read is now a normal read, though the entry type bit does not change.

The DISCARD bit is used to indicate that the pool entry should be marked as unused, and the data dis-
carded once it returns. This allows the IOA to flush the prefetch buffers periodically to prevent a stale
data problem if a GSC guest requests a prefetch and then does not formally read it (GSC card gets reset
or takes an error). The Pool entry must be maintained so the returning data is accepted by the IOA, even
though it will not be used. See the section on prefetch for more details. The GSC address is stored so
that it can be compared against reads from that same GSC guest to determine when the prefetch turns
into a normal read (i.e. formally requested).

6.9.3. TLB

As discussed previously, the TLB is a cache of address translation entries from the IO PDIR or pre–loaded
by software into the TLB. The TLB allows the IOA to translate from the 32 bit GSC+ addresses to the
40 bit Runway physical address necessary for accessing memory. The TLB contains the following fields:

Eight bit of virtual index corresponding to the physical address which processors use to snoop their
caches to maintain coherency. The virtual index is driven onto Runway for all coherent transactions.

Twenty Eight bits of real page number which is concatenated with the twelve bit IO offset to form a forty
bit Runway physical memory address.

One prefetch enable bit used to enable prefetching for the page in question. Note prefetching will only
be performed if the GSC+ read transaction is a half cache or full cache line, and the guest requests a pre-
fetch (by asserting GSC+ XQL line), and the prefetch enable bit is set for that page, and no atomicity
is requested (i.e. LSL is NOT asserted for that read transaction).

Two bits of page type, used to assist in mapping GSC+ transactions to Runway transactions. See the
section in this chapter on Definition of the PAGE TYPE bits, and the section on Transaction Map (GSC+
–> Runway).

143

Twelve bits of tag used to determine a TLB hit. The TLB tag is written from and compared to the GSC+
address bits [8:19]. GSC+ address bits [20:29] are the IO offset, and address bits [0:7] are typically the
address into the TLB RAM (though this depends on the value written to the IO CHAIN ID MASK regis-
ter). See the section above on accessing the TLB for a more detailed explanation of how the GSC+ ad-
dress is used in the TLB.

Note that the IOA architectural IO_CONTROL_HV_MODE register selects the address translation
mode. See the section above on address translation mechanisms.

0 9
 10 bits

10 37
 28 bits

 38
 1 bit

39 40
 2 bits

41 52
 12 bits

 53
 1 bit

Runway
VIRTUAL
INDEX

Runway
REAL PAGE
NUMBER

pre–
 fetch
enble

PAGE
TRANS
MAP

TLB TAG FIELD Valid

TABLE ? TLB fields and physical positions within the TLB RAM

6.9.4. Cache

Each IOA has a small one line cache used for short writes (writes of a half cache line or less), and for
atomic read/write combinations (semaphores). Any time the IOA reads a memory location privately the
data is placed into the cache. Read privates are only issued for short writes (requiring read–modify–
write), and semaphores (or things that ’look’ like semaphores –– see the section on Transaction Map
GSC+ –> Runway). Data is loaded into the cache when the CACHE bit is set into the pool on a read
operation. When the data is returned on Runway, the outbound side asserts load signals to cause the data
to be loaded into the cache location.

Once the cache is loaded with the data from the read private, the inbound side is able to modify the data
in the cache. Each of the 32 bytes in the cache is individually addressable. The inbound side is able
to modify any one, two, three, four, eight, or sixteen bytes in the cache (with some addressing restric-
tions). As with all PA memory accesses, writes are required to be quantity aligned (i.e. write four bytes
must be done on a word address boundary). There is also special hardware to support the CLEAR 16
GSC+ semaphore. Recall the CLEAR transaction reads a cache line (privately), returns the data to the
GSC+ guest, writes all zeros to the FIRST word in the cache line, and writes the cache line back to
memory.

In addition to the storage for 256 bits of data (a cache line), and steering logic for loading the cache from
the inbound side, and writing individual bytes in the cache, the state of the cache line is stored with a small
state machine. Refer to the section on the cache for more details.

6.10. Inbound Side HPA registers

Due to the locality of their use, some of the IOA internal HPA registers have dedicated outputs to the
INBOUND side even though they are physically located in the OutQ side of the chip. These registers
are written to by the OUTBOUND side, and read from the INBOUND side. This has the interesting side
effect that writes take effect immediately, whereas reads go through the OUTBOUND and then the IN-
BOUND queues. This introduces the possibility of a read being bypassed by a subsequent write to the
register. This can be avoided by having software wait for the read return before issuing subsequent writes.

The following IOA internal HPA registers control aspects of the inbound transactions or TLB access:
 IO_COMMAND, IO_STATUS, IO_CONTROL_HV_MODE, IO_TLB_ENTRY_M,

144

IO_TLB_ENTRY_L, IO_PDIR_BASE, IO_CHAIN_ID_MASK, Runway_TIMEOUT, INTER-
RUPT_DESTINATION, TOC_DESTINATION. For more information on IOA internal HPA registers
refer to the chapter on Architectural Requirements.

145

146

7. UTurn 120+ MHz Logic

A portion of the UTurn logic must operate at the full Runway clock rate (120 MHz or more). This logic
includes the Runway pads, the interface between the Runway pads and the I/O Adapter in the core, and
the Runway arbitration block. This chapter will describe the functionality of these blocks.

7.1. Runway Pads

Electrical details regarding the Runway I/O pads are included in the electrical chapter of this document.

7.2. Signals Connecting Runway Pads With IOAs

Detailed technical documentation regarding design and timing issues can be found in chapter {Internals}.

7.3. Runway Arbitration

There can be up to two UTurns (or four I/O Adapters) in a system. These I/O Adapters coexist on the
same client sub–group arbitration net. This means that the four I/O Adapters arbitrate amongst one anoth-
er to determine which one wins Runway. The Runway arbitration policy implemented in the UTurns is
dual round robin.

Each UTurn keeps track of three pointers: one pointer points to the highest priority I/O Adapter for the
ANY_TRANS or NO_IO CLIENT_OP, the second pointer points to the highest priority I/O Adapter for
winning the ATOMIC CLIENT_OP, and the third pointer points to the highest priority I/O Adapter for
all other CLIENT_OPs. For each pointer, when I/O Adapter #2 finishes its transaction (or its atomic hold,
in the case of the ”stop_most” pointer), I/O Adapter #0 is highest priority for ownership, followed by
#3, #1, with I/O Adapter #2 lowest (assuming a two UTurn subnet). If no I/O Adapters arbitrate, then
the pointers don’t advance.

7.3.1. Algorithmic Details

Whenever an I/O Adapter wants to drive a transaction, it asserts its Rstart_arb line. The arbiter for that
UTurn then drives the UTurn’s outgoing UTurn_ARB signal based on the Rstart_arb line being asserted
now or having been asserting previously without a corresponding bus win.

Each UTurn receives the UTurn_ARB line of the other UTurn. When either of the two UTurns has arbi-
trated in each of the current cycle and the last cycle, it will win Runway the second cycle after the current
cycle. (Two cycles of arbitration are required due to UTurn residing on the I/O client sub–group arbitra-
tion net.) The two cycles in which the arbitration lines are driven is referred to as the ”ARB” phase. The
following cycle (known as the ”EVAL” phase) is when both UTurns evaluate the CLIENT_OP from the
previous Runway cycle, LONG_TRANS from the previous Runway cycle, UTurns’ priority relative to
each another (indicated by the pointers described in the previous section), and both UTurns’ assertion
of the arbitration lines as of the previous cycle, to determine (unanimously) the arbitration winner. The
very next cycle is the ”DRIVE” phase, when the winning UTurn drives Runway. Although this is a four
cycle exercise, these phases are all pipelined, so that in any given state, the UTurns may actively assert
their respective UTurn_ARB lines, the host drives the CLIENT_OP bus, each Runway client performs
their evaluation, and the current owner of Runway drives LONG_TRANS.

The following timing diagram illustrates internal UTurn timing relative to Runway, and the different
phases of arbitration:

147

Runway Clock

Internal Clock (half speed)

Rstartx_arb

U2_ARB

CLIENT_OP

LONG_TRANS

ADDR_DATA

Rstartx_arb

U2_ARB

Runway:

Clocks:

U2 (client_id[2] = 0):

U2 (client_id[2] = 1):

Phases Arb Phase Eval Drive

Arb Phase Eval Drive

t t + 1 t + 2 t + 3t – 1t – 2

7.3.2. Forward Progress Guarantee

When an ANY_TRANS or NO_IO CLIENT_OP occurs, the I/O Adapter is allowed to drive any transac-
tion. Therefore, the ”any” pointer guarantees forward progress and non–starvation for all I/O Adapters,
since the ANY_TRANS and NO_IO CLIENT_OPs have to occur occasionally, at which point the highest
priority I/O Adapter is guaranteed that it can issue its transaction, and then the pointer advances.

The ”round–robin” pointer allows progress to continue, even though one or more I/O Adapter may be
arbitrating for a transaction that is currently disallowed. When this occurs, the I/O Adapter will drive
idle cycles and back off from arbitration, passing control to the processor subnet to guarantee forward
progress. Eventually the CLIENT_OP will change back to ANY_TRANS or NO_IO, at which point
priority automatically switches back to the ”any” pointer which will eventually advance to the starving
I/O Adapter.

When the client_op is atomic, the stop_most pointer indicates which I/O Adapter is allowed to drive any
transaction. All other clients on Runway view the atomic client_op as an effective ret_only, and they
can therefore only drive return transactions. Following an atomic sequence, all I/O Adapters must back
off from Runway arbitration until an ANY_TRANS CLIENT_OP is observed thus guaranteeing forward
progress.

The following table illustrates what UTurn will drive on Runway based on the client_op and the pending
transaction type:

Client_Op Transaction Type Runway Cycles

Shared Return Any Transaction Type Doesn’t Drive

148

Host Control Any Transaction Type Doesn’t Drive

None Allowed Any Transaction Type First Cycle: Idle
Second Cycle: Doesn’t Drive

One Cycle One Cycle Transaction Type

Multi Cycle Transaction Type

First Cycle: Transaction
Second Cycle: Doesn’t Drive

First Cycle: Idle
Second Cycle: Doesn’t Drive

Return Only One Cycle Return Transaction Type

Write_Back

Non Return Transaction Type

First Cycle: Return Data
Second Cycle: Idle

Drive Complete Transaction

First Cycle: Idle
Second Cycle: Idle

No I/O Any Transaction Type Drive Complete Transaction

Atomic Any Transaction Type from Atomic Owner

Return Transaction Type from non Atomic Owner

Non Return Transaction Type from non Atomic Owner

Drive Complete Transaction

Drive Complete Transaction

First Cycle: Idle
Second Cycle: Idle

Any Trans Any Transaction Type Drive Complete Transaction

7.3.2.1. Starvation Metaprotocol

Without some additional metaprotocol, multiple UTurns have the ability to starve the processors. There
are three particular instances of this type of starvation. One occurs simply as a consequence of having
the I/O client sub–group arbitration net as highest priority on Runway. If both UTurns are able to arbitrate
for only 50% of the Runway cycles, by alternating back and forth they could potentially prevent the pro-
cessors from ever winning the bus. The metaprotocol required to avoid these starvation cases is for the
I/O Adapters as a group to periodically back off from arbitration until an uncontested ANY_TRANS CLI-
ENT_OP occurs. The current implementation counts up to 256 cycles and if one of these cycles was an
any_trans client_op won by an I/O Adapter, then all UTurns back off from arbitration until either an un-
contested any_trans client_op is detected, an uncontested no_io client_op is detected, or an I/O Adapter
within this UTurn is arbitrating for a return or atomic transaction.

Likewise, starvation could occur if a processor wishes to issue a coherent request (such as READ_PRIV)
and the CCC queue in the host is full. In this case the CLIENT_OP will be RET_ONLY, preventing the
processor from issuing its transaction. Conceivably, UTurn could arbitrate as soon as the CCC queue
has a vacancy, thereby immediately filling the CCC queue. If UTurn consistently wins arbitration and
fills the queue, the processor will be starved since it only wins the bus when the CLIENT_OP is
RET_ONLY. To recover from this starvation case, UTurn will back off from arbitration whenever it wins
a ret_only client_op but does not have a return transaction to issue or whenever the client_op is atomic
and an I/O Adapter which is not the winner of this atomic client_op is arbitrating for something other
than a return transaction. UTurn will continue to back off from arbitration until either a host_control,
shar_return, none_allowed, one_cycle, no_io, or any_trans client_op occurs.

149

Finally, the third starvation case exists when both UTurns are allowed to simultaneously assert
STOP_MOST enabling them to win back to back atomic sequences, potentially preventing the proces-
sors from ever winning the bus. To avoid this starvation case, I/O Adapters must back off from asserting
STOP_MOST and arbitrating for an atomic client_op when either another I/O Adapter is already in the
midst of an atomic sequence or when the I/O Adapter has just completed an atomic sequence. The back
off will clear when an any_trans or no_io client_op is observed. This mechanism not only prevents
starvation caused by UTurns alternating back and forth with atomic sequences, but also by preventing
the same I/O Adapter from continuously arbitrating for atomic sequences.

7.3.2.2. Deadlock Metaprotocol

Metaprotocol is necessary to avoid deadlock. A deadlock case will occur if UTurn wants to issue a co-
herent request (such as READ_PRIV) and the CCC queue in the host is full. In this case, the CLI-
ENT_OP will be RET_ONLY, preventing UTurn from issuing its transaction. And the processor which
needs to issue the return to allow the CCC queues to progress, never wins because the I/O Adapter contin-
uously arbitrates, hoping for a favorable CLIENT_OP.

The metaprotocol solution to this problem is for the I/O Adapter to back off from arbitration when it wins,
but cannot issue its transaction because the effective CLIENT_OP is RET_ONLY. In order to ensure
forward progress during the arbitration back off, the host must go from a RET_ONLY CLIENT_OP to
either HOST_CONTROL, SHAR_RTN, NONE_ALLOWED, ONE_CYCLE, NO_IO, or
ANY_TRANS. It is when one of these six CLIENT_OPs is issued, that the I/O Adapter can continue
arbitrating.

7.3.2.3. Backoffs

As described in the previous sections, the method for guaranteeing forward progress and avoiding dead-
lock is arbitration backoffs. The following table illustrates when backoffs are turned on and off:

BackOff Enabled Disabled

Any one of past 256 cycles was an any_trans
client_op won by UTurn

uncontested any_trans client_op is de-
tected, uncontested no_io client_op is
detected, or IOA is arbitrating for a re-
turn or atomic transaction

Ret_Only client_op=ret_only but UTurn does not
have a return transaction to issue or cli-
ent_op=atomic and IOA which is not
atomic owner is arbitrating for some-
thing other than a return transaction

client_op is host_control, shared_return,
none_allowed, one_cycle, no_io, or
any_trans

Atomic client_op=atomic and non–owning IOA
is also arbitrating for an atomic se-
quence or whenever an IOA has just
completed an atomic sequence

client_op is any_trans or no_io

7.3.3. ”Any” Priority Function

The ”any” pointer points to the I/O Adapter with the highest priority. It is a two bit pointer – the most
significant bit indicates which UTurn (0=local and 1=remote) and the least significant bit indicates which
I/O Adapter within a UTurn (0=ioa0 and 1=ioa1). To distinguish between the UTurns and guarantee

150

unanimous arbitration decisions, the pointer comes up in identically mirrored states within each UTurn.
So, the UTurn distinguished by client_id[2] = 0 will initialize its ”any” pointer to 2’b10 and the UTurn
distinguished by client_id[2] = 1 will initialize its ”any” pointer to 2’b00, where the symbol 2’b simply
indicates that this is a two bit binary number. In this way, both UTurns agree that the highest priority
I/O Adapter is ioa0 within UTurn client_id[2]=1.

Once power is stable, the ”any” counter will advance on every relevant evaluation phase. An evaluation
phase is considered relevant if power is stable, the CLIENT_OP is either NO_IO or ANY_TRANS,
LONG_TRANS is false, and this cycle isn’t a default drive cycle caused by a previous arbitration win.
If all of these conditions are met, then the pointer will exhibit the behavior illustrated below:

00 11 1001 U2_1 wins
U2_0 wins U2_1 wins

U2 with client_id[2] = 1

power_on

U2 with client_id[2] = 0

U2_1:

U2_0:

U2_0 wins

U2_0 wins

U2_0 wins

U2_1 wins

10 00 0111 U2_1 wins
U2_0 wins U2_1 wins

power_on

U2_0 winsU2_0 wins

U2_1 wins

U2_0 wins

U2_1 wins

U2_1 wins

Note that if neither UTurn has arb’d, then neither will win, and therefore, the pointer will not advance.
In addition to changing state, if a UTurn has won, then three lines must be asserted to drive the Runway
bus. The signals ioa0_select and ioa1_select indicate which ioa, of the UTurn’s two internal ioas, wins;
if neither ioa wins then ioa_idle must be asserted to cause an idle cycle on Runway. Also, the arbitration
block is responsible for asserting the runway_drv line which goes directly to the Runway pads as a drive
enable. Finally, the state variable second_cycle_default_win is asserted. If this UTurn won an
ANY_TRANS CLIENT_OP and the transaction was a single or two cycle transaction, then this UTurn
is responsible for driving the following cycle, with either idle or valid transaction data, respectively.
Likewise, if this transaction is greater than two cycles, then both UTurns must be aware that the bus is
not available on the cycle following the first drive cycle, even though LONG_TRANS is not observable
until the pads are already loaded for the second cycle. Second_cycle_default_win fires on every UTurn

151

arbitration win, to ensure that Runway is always driven valid on the following cycle. Once an ioa is se-
lected, the select line will remain asserted until the ioa’s transaction buffers are drained. The ioa decre-
ments a transaction length counter and asserts the signal, ioa_deselect, to indicate when the transaction
is complete, at which point the arbitration block will deassert the corresponding select line and run-
way_drv.

7.3.4. Round Robin Priority Function

The round robin pointer operates nearly identically to the ”any” pointer. It is also a two bit pointer which
points most significantly to the highest priority UTurn and least significantly to the highest priority I/O
Adapter within that UTurn. It also powers on in identically mirrored states, to guarantee unanimous ar-
bitration decisions. However, the round robin pointer initializes to 2’b00 on the UTurn whose cli-
ent_id[2] = 0 and for the UTurn whose client_id[2] = 1, the round robin pointer initialization value is
2’b10. Notice that this is switched from the initialization values of the”any” pointer, so that both UTurns
come up with one of the two pointers giving them highest priority.

Once power is stable, the round robin counter will advance on every relevant evaluation phase. An evalu-
ation phase is considered relevant by the round robin state machine if power is stable, the CLIENT_OP
is either RET_ONLY or ONE_CYCLE, LONG_TRANS is false, and this cycle isn’t a default drive cycle
caused by an arbitration win on a RET_ONLY CLIENT_OP. If all of these conditions are met, then the
pointer will exhibit the behavior illustrated below:

00 11 1001 U2_0 wins
U2_1 wins U2_0 wins

U2 with client_id[2] = 0

power_on

U2 with client_id[2] = 1

U2_0:

U2_1:

U2_1 wins

U2_1 wins

U2_1 wins

U2_0 wins

10 00 0111 U2_0 wins
U2_1 wins U2_0 wins

power_on

U2_1 winsU2_1 wins

U2_0 wins

U2_1 wins

U2_0 wins

U2_0 wins

Note that if neither UTurn has arb’d, then neither will win, and therefore, the pointer will not advance.
Conversely, if either UTurn has arb’d, then it must win, despite the possibility that the CLIENT_OP does
not match the transaction type (such as a read or write transaction and a RET_ONLY CLIENT_OP or
a many cycle transaction and a ONE_CYCLE CLIENT_OP). Since it would be illegal to issue the pend-
ing transaction under these circumstances, the winning UTurn has responsibility for forcing an idle cycle.
On an arbitration win, the round robin pointer must advance, even if the transaction clashes with the CLI-
ENT_OP and the UTurn is forced to drive idle cycles. In addition to changing state, if a UTurn has won,

152

then the signals ioa0_select, ioa1_select, ioa_idle, runway_drv, and second_cycle_default_win must be
asserted to their proper values, as described in the previous section.

7.3.5. Stop Most Priority Function

Stop Mosts occur when an I/O Adapter requires an atomic CLIENT_OP for the duration of a sequence
of linked transactions. Whenever an I/O Adapter wants an atomic CLIENT_OP, it asserts its
stop_most_out line. The arbiter then drives the UTurn’s outgoing STOP_MOST_OUT signal. Each
UTurn receives the STOP_MOST_OUT line of the other UTurn. When both UTurns assert their
STOP_MOST_OUT lines simultaneously, the UTurn with the highest priority continuously wins the
atomic CLIENT_OP until it has completed its entire sequence of atomically linked transactions. The
UTurn with lower priority must back off from its stop most assertion, until the higher priority atomic
sequence completes, and an any_trans client_op has occurred, ensuring forward progress. Whenever an
atomic sequence completes, the stop most priority advances to the next I/O Adapter.

So, like the any and round robin pointers, the stop most pointer also points to the I/O Adapter with the
highest priority. It, also, is a two bit pointer with the most significant bit indicating which UTurn and
the least significant bit indicating which I/O Adapter within a UTurn. And again like the other pointers,
the stop most pointer comes up in identically mirrored states within each UTurn to guarantee unanimous
arbitration decisions.

The stop most pointer differs from the any and round robin pointers in that it remains in the same state
throughout a number of transactions, advancing only after the entire atomic sequence completes. The
following diagram illustrates the behavior of the stop most pointer:

Note that the only conditions under which the pointer will advance is – (1) when the atomic sequence
has just concluded (indicated by signal ”atomic_sequence_over”), to rotate the priority or (2) when an
atomic sequence is about to commence, to bring the pointer to the I/O Adapter which arb’d for the atomic
sequence. Otherwise, throughout the assertion of an atomic CLIENT_OP, the stop most pointer stays
constant. The detection of an atomic sequence conclusion is actually a bit of a corner case. The logic
must detect that the atomic CLIENT_OP is still asserted, but neither UTurn is asserting its STOP_MOST
output. Another noteworthy corner case, is when either UTurn is arb’ing after the completion of an atom-
ic sequence, and the CLIENT_OP has not yet changed from atomic or when either UTurn is arb’ing for
the atomic client_op prior to when the CLIENT_OP has changed to atomic. In these cases, the arb’ing
UTurn is responsible for driving ioa_idle.

153

00 11 1001
UTurn0:IOA1 wins

UTurn with client_id[2] = 0

power_on

UTurn with client_id[2] = 1

UTurn_0:

UTurn_1:

UTurn_0:IOA0 wins

UTurn_0:IOA0 wins

UTurn_1 wins UTurn_1 wins

UTurn_0:IOA1 wins

UTurn_0:IOA1 wins

UTurn_0:IOA1 wins

001110 01
UTurn_1:IOA1 wins

power_on
UTurn_1:IOA0 wins

UTurn_1:IOA0 wins

UTurn_0 winsUTurn_0 wins

UTurn_1:IOA1 wins

UTurn_1:IOA1 wins

UTurn_1:IOA0 wins

+ atomic_sequence_over+ atomic_sequence_over

+ atomic_sequence_over

+ atomic_sequence_over

+ atomic_sequence_over+ atomic_sequence_over

+ atomic_sequence_over

+ atomic_sequence_over

154

155

8. UTurn GSC+ Bus Ports

8.1. Overview

UTurn incorporates two identical 32–bit GSC+ bus ports. Each bus port consists of 3 basic elements:
the clock circuitry, arbitration logic, and the data transfer protocol logic. The clocking, arbitration, and
data transfer on UTurn’s two GSC+ ports are independent. UTurn is the host on each of the GSC+ busses.
UTurn will master transactions directed to GSC+ guests operating as slaves, and will be the slave in trans-
actions mastered by GSC+ guests (guest to guest transfers are not supported).

8.2. Reset and clock synchronization

UTurn drives the RESETL line for each of its GSC+ bus ports. RESETL performs two functions: it
provides a hard reset of GSC guests, and it is used by the GSC guests to synchronize their internal GCLKs
to the SYNCH/L clocks (2X frequency) that are distributed externally. UTurn drives 2 RESETL lines,
one for each GSC+ bus port. To meet the timing requirements for RESETL as given in the GSC specifica-
tion, UTurn requires certain buffering and distribution delays to be added with external circuitry. The
following timing diagram shows UTurn’s RESETL line timing and the external circuit delays required
for correct clock synchronization.

156

The timing diagram shows minimum and maximum delays for a Kitty Hawk system; delays expected
in Firehawk are similar. The delays shown for UTurn are independent of the systems in which UTurn is
operating, and are a function of supply voltage, process skew, and temperature. The hold time equation
and setup time equation mathematically constrain what is shown in the timing diagram. The delay from
UTurn is the time from the crossing of SYNCH and SYNCL at UTurn’s pins to the time that RESETL
is driven on the PC board pin. The time shown for UTurn does not include device–to–device clock skew.
Device–to–device clock skew is shown at the receiver end.

At higher GSC+ bus frequencies (or longer trace lengths), RESETL needs to incident wave switch the
GSC guest’s receivers. The RESETL pad driver in UTurn can successfully incident wave switch two
guest receivers when the two RESETL traces fork at UTurn’s PC board pin. When more than two GSC
devices need to be reset from a single UTurn RESETL signal, a buffer/splitter is required. NOTE: A
few GSC slave devices use the RESETL signal to tri–state their pad outputs during power on. For this
reason it is important that the combination of UTurn and splitter provide a low RESETL signal during
power on (i.e. before the first RESETL rising edge).

The device–to–device clock skew in conjunction with the insertion delay of the guest’s clock to its RE-
SETL pad cause a potential HOLD TIME violation to occur. This violation would cause the guest to
synchronize on the SYNCH falling edge just preceding the correct one. To compensate for this effect,
an artificial delay must be made to ensure that the guest synchronizes on the correct clock edge. In the
timing diagram above this delay comes from the splitter/buffer circuit and delay on the PC board trace.
This delay must be controlled (kept as small as possible) so that it does not cause a SETUP TIME viola-
tion at the operating frequency of interest.

It should be noted that the timing requirements for RESETL with respect to clocks must be met by the
system designer. For GSC functions that are built directly into the system, timing relationships must
meet the expectations of the components that are built into the system as part of the core functionality.
For GSC functions that are added as expansion modules (via a connector), the system designer must en-
sure that the RESETL/clock relationship is correct at the expansion connector. It is then the responsibility
of the add–in module designer to ensure that the RESETL/clock relationship is maintained correctly to
the GSC interface logic residing on the add–in module.

8.3. GSC Arbitration

UTurn contains a central arbitration circuit for each of its GSC+ ports. Round robin arbitration for six
external modules is supported with six request/grant pairs of pins that connect radially to the UTurn
GSC+ port. (The number of external modules actually supported in a given system is dependent upon
the limitations within the system implementation.) In addition to the external modules, the UTurn GSC+
master block competes for ownership of the GSC+ bus on behalf of one of two internal resources. One
of these internal resources is the outbound command queue (OutQ), containing processor initiated read
and write traffic for graphics and for general control/status transactions with I/O modules. The other in-
ternal resource that may cause UTurn to master a GSC+ transaction is the read return queue (RRQ), the
channel for returning data to satisfy pended DMA read request transactions.

DMA read return traffic is the highest priority traffic on GSC+. Next in the priority order is outbound
command queue traffic, including transactions to PDH space and to HPA registers either in UTurn or in
GSC guests. Below this in the priority list come guest–mastered transactions. UTurn processes bus re-
quests from external devices in round robin order. The order is fixed in hardware, and is not tied necessar-
ily to GSC+ geographic address (OFFSET) assignment (geographic address assignments and Bus Re-
quest / Bus Grant pair assignments are made in a system–specific manner).

157

If a GSC+ guest asserts the RETRY line in response to a UTurn–mastered transaction, a forward progress
algorithm is invoked in the GSC+ arbiter. The transaction to be retried is held at the head of the outbound
command queue, preventing further OutQ traffic from proceeding until the retried transaction is success-
fully completed. Arbitration then proceeds in normal order. UTurn will retry its transaction after comple-
tion of either a DMA read return transaction sequence or a guest–mastered transaction sequence, or after
a fixed time delay of 16 GSC gclk cycles.

UTurn implements a per–guest “pulsed grant” option. When enabled for a given guest, any bus grant
issued to that guest will be asserted for only one GSC bus cycle. In normal operation, a bus grant is issued
to a guest for as long as the guest continues to request ownership of the bus; this is a “level grant” mode.
The pulsed grant mode allows for further host control of individual guest bus tenure by essentially telling
the guest to relinquish bus ownership as soon as possible. Default bus grant mode for UTurn is the level
grant mode. Pulsed grant mode is configurable on a per–guest basis by a field in the GSC+_CONFIG
register.

UTurn’s GSC arbiter incorporates several specific forward progress mechanisms designed to ensure that
guest devices are not prevented from obtaining GSC bus ownership indefinitely. Since OutQ traffic is
prioritized above guest–mastered GSC traffic by the arbiter, and since theoretically the OutQ could al-
ways contain a valid entry (initiated by a processor) in a multiprocessor system, forward progress mecha-
nisms must be invoked or guests may starve. After every DIO read transaction and after every PDH ac-
cess (read or write), UTurn ignores the OutQ for a GSC bus cycle, allowing the bus to be granted to a
requesting guest device. An optional forward progress mechanism, enabled amd configured by bits in
the GSC+_CONFIG register, allows guest mastership after every 4, 8, 12, or 16 OutQ write entries pro-
cessed. This forward progress screen is useful in cases where long write streams from a processor to a
graphics device would otherwise starve out a guest attempting to perform DMA transactions. Late in
the UTurn project, it was suggested that due to changes in the processor–to–frame buffer flow control
scheme for future graphics hardware and software, a better implementation of the DMA forward progress
mechanism would allow guest bus mastership after a given number of GSC clocks, not after a given num-
ber of OutQ entries processed. The UTurn team agrees that the clock counting solution is better given
the architectural changes, but coordinating such a change in UTurn at a point late in the development
cycle entailed more negative schedule and risk impact than could be justified by the expected benefit for
the change. The OutQ entry count implementation is functional, and is the implementation plan.

8.4. Transaction Types

”DIO” transactions are transactions mastered by UTurn on the GSC+ bus. DIO transactions are ultimate-
ly originated by a processor on the Runway side of UTurn. ”DMA” transactions are transactions mastered
by guests on the GSC+ bus. UTurn assumes that it is the slave for all DMA transactions. DMA transac-
tions generally address memory space, although some guest–initiated single–word writes can be directed
to a processor’s I/O address space on the Runway side of UTurn.

Each UTurn GSC+ port can master the following GSC+ transactions.
 Connected ”DIO” reads of <= 1 or 2 words (1–4 or 8 bytes)
 Pended (split) ”DIO” reads of <=1 or 2 words (1–4 or 8 bytes)
 ”DIO” writes of <=1 or 2 words (1–4 or 8 bytes)
 Variable length ”DIO” writes of 1 to 8 words (4 to 32 bytes)
 DMA read returns of 1, 2, 4, or 8 words (4, 8, 16 or 32 bytes)

Each UTurn GSC+ port can be the slave in the following GSC+ transactions.
 Connected DMA reads of <=1, 2, 4, or 8 words (1–4, 8, 16, or 32 bytes), with or without lock (LSL)

158

asserted
 Pended (split) DMA reads of 1, 2, 4, or 8 words (4, 8, 16 or 32 bytes)
 DMA Writes of <=1, 2, 4, or 8 words (1–4, 8, 16, or 32 bytes)
 DIO read returns of <=1 or 2 words (1–4 or 8 bytes))
 Guest–mastered Clear transaction (DMA read with clear side–effect in memory)
 Guest–mastered GSC Error transaction

8.5. Transaction Duration

Transactions mastered by UTurn on GSC+ are time limited. The connected transaction time limit is pro-
grammable by system software; default value is 16380 GSC bus cycles (approximately 512 us for a 32
MHz GSC implementation). Responsibility for GSC transaction length checking rests on UTurn; guests
need not have transaction length checking capability. Transaction length checking follows the require-
ments of the GSC specification. Transactions mastered by guest devices are timed in a very coarse sense
by a watchdog timer. GSC interfaces to devices such as EISA cards may assert LSL and monopolize
GSC for indeterminate periods of time. This behavior is highly discouraged, since all system activity
(including processor accesses to memory) will be blocked while LSL is asserted.

Pended DIO reads also have a pended transaction timeout associated with them. If the guest that pended
a DIO read transaction does not respond with the data, using a corresponding DIO read return transaction,
within the pended transaction timeout value, a timeout error will be logged and appropriate processor
notification will occur. The pended DIO read transaction timeout value is software programmable, and
defaults to 16380 GSC bus states (approximately 512 us for a 32 MHz GSC implementation).

8.6. GSC+ Master interface

8.6.1. Overview

The GSC+ master portion of the UTurn design takes transactions from UTurn’s outbound queue or read
returns from the read return queue and processes them appropriately. Entries in the read return queue
are always bound for a GSC+ guest. Transactions in the outbound queue can be destined for a GSC+
guest, an internal (HPA) register, the PDH port, or the inbound queue (”U–turn” transactions). The GSC+
master block makes a determination as to the appropriate destination. If the transaction is a PDH space
access, the necessary decoding and byte packing/unpacking is performed as part of the transfer. See the
PDH port description for more details.

It is assumed that by the time a non–UTurn–HPA/non–PDH transaction reaches the GSC+ master in the
outbound queue or the read return queue, the RUNWAY outbound block has already done appropriate
address range comparisons to ensure that the transaction is indeed destined for a guest attached to the
GSC+ port shared by the master block.

Read return queue entries contain a GSC+ guest ID, a transaction size, and a pointer to an on–chip RAM
location that contains the actual data. Outbound queue entries include a GSC+ address, transaction size,
and valid byte(s) indication. Reads also require a RUNWAY master ID and transaction ID field. The
following transaction types may be found in the outbound queue:

 “U–turn” transaction Destination: Inbound Queue

 READ 1 (Single word read) Destinations: PDH, Internal registers, or GSC+
 READ 2 (Double word read) Destinations: PDH, Internal registers, or GSC+

159

 WRITE 1 (Single word write) Destinations: PDH, Internal registers, or GSC+
 WRITE 2 (Double word write) Destinations: PDH or GSC+

If the destination for a particular queue entry is determined to be GSC+, the UTurn master block arbitrates
for GSC+ and then performs the necessary transaction. In the case of a write to a GSC+ guest, UTurn
sources address and transaction type information followed immediately by data. After acknowledgement
by a guest, assuming no error occurs, the transaction is finished, and no further action is taken by UTurn.
For DMA read returns to GSC+ guests, UTurn ”addresses” the guest explicitly by asserting the guest’s
unique bus grant line along with a data read return signal. Data is then sent to the guest. Handling of
reads mastered by UTurn is more complex, since reads can be connected, pended (split), or retried. The
pend and retry cases are discussed later. For a connected read transaction, UTurn sources an address and
transaction type and then waits for data while retaining bus ownership. The first datum returned from
a guest is accompanied by the assertion of READY_L by the guest. As the data arrives, it is stored in
an on–chip RAM location associated with an inbound queue entry that is built for each completed read.
The inbound queue entry includes the RUNWAY master ID and transaction ID of the initiating RUN-
WAY module (copied over from the outbound queue), a transaction size and valid bytes indication. For
each inbound queue entry, there is an implicit pointer into the on–chip RAM array containing the data
associated with the queue entry.

8.6.2. Protocol implementation

8.6.2.1. Basic GSC protocol

At the core of UTurn’s GSC+ master interface, the base GSC protocol is implemented to support peak
DIO transfer rates for single word and double word DIO write transactions. This is somewhat indepen-
dent of design optimizations that enhance DMA performance. DMA concerns are discussed in the GSC+
slave interface section.

One specific transaction type note: for UTurn–mastered transactions to broadcast address space on GSC
(should only be write transactions), UTurn will assert READYL itself during the data cycle (broadcasts
are single word transactions). Guests that have registers in broadcast space must not assert READYL
when slave to such broadcast transactions.

8.6.2.2. XQL prefetch hint

The GSC extended data request line, XQL, is used by UTurn as a deterministic prefetch indication for
DMA read transactions issued by a GSC+ guest master. Assertion of XQL by the guest during the address
cycle of a DMA read transaction indicates that, in addition to the data requested in the current transaction,
the data for the next contiguous block of memory will be requested ”soon” by the same guest. Along with
fetching the explicitly requested data, then, UTurn may elect to also prefetch the next contiguous chunk
of data (where chunk size is the size of the explicitly requested transaction). When the prefetched data
is actually requested by the guest, UTurn can supply the data from an on–chip prefetch buffer, eliminating
the latency to main memory across RUNWAY. The prefetch is not speculative. When the guest asserts
XQL, it is committing to fetch the data from UTurn. For further implementation details, see section {Pre-
fetching in the IOA} in chapter {Inbound (GSC+–to–RUNWAY) Transaction/Data Flow}. Note that
XQL is being implemented as documented in the GSC+ extensions document (ver 0.95 and later), in that
UTurn will never actually extend a DMA read transaction by streaming more data to the guest than was
explicitly requested. UTurn will also ignore XQL assertion during DMA write transactions.

8.6.2.3. GSC+ protocol extensions

160

The GSC+ protocol additions to GSC add extra performance capabilities required in systems where
UTurn is the I/O bus bridge. Protocol additions include a true split read transaction protocol (terminology
used for GSC+ is ”pended reads”), and a RETRY capability for deadlock avoidance and/or guest flow
control.

8.6.2.3.1. Pended reads

The GSC+ pended read protocol implements a true split transaction capability. (GSC describes the dead-
lock resolution usage of the LSL line as a ”split”, but it is really more of a ”swap” of bus ownership be-
tween the host and a specific guest.) Implementation requires three external lines – a ”pend capable” line
(PENDL), a pend acknowledge line (PACKL), and a data read return line (DRRL). PENDL and DRRL
are driven by UTurn and received by all guests. PACKL is shared by all guests, and is received by UTurn.
Reads initiated by either UTurn or by a GSC+ guest may be ”pended”.

Pended DMA reads, initiated by GSC+ guests, operate as follows. At the time UTurn issues a bus grant
to a GSC+ guest, if it is capable of supporting a pended DMA read, it asserts the PENDL line, which is
bussed to all GSC+ guests. If a GSC+ guest bus master wishes to perform a read transaction and supports
the pended DMA read capability and senses PENDL asserted, it can elect to source only the address phase
of the read transaction while asserting the PACKL line. The guest then gives up the bus, allowing other
devices in turn to use the bus while the host fetches the requested data. When the data is available,
UTurn’s GSC master state machine arbitrates for the bus and, after gaining control, asserts the DRRL
line along with the Bus Grant (BGL) line connected to the requesting guest. The return data is transferred
in subsequent bus cycles. DRRL and BGL are released during the last data cycle. The advantage of the
pended DMA read cycle is that the requesting guest need not tie up bus bandwidth waiting for return data
to become available. For a moderately busy system in which Runway is the processor/memory bus and
DMA reads must go all the way to memory (no prefetch), the wait time to the first datum on GSC+ (the
effective latency) can be twice as long as the time required to actually transfer the data.

Pended DIO reads (reads initiated by UTurn) operate as follows. UTurn makes a determination before
each DIO transaction it sources whether or not a pended DIO read will be allowed. If a particular DIO
read can be pended, UTurn will assert the PENDL line during the address cycle of the read transaction.
If the guest that determines that it is the slave in the transaction supports the pended read capability and
senses PENDL asserted, it can elect to assert PACKL in place of data / READYL. UTurn internally stores
necessary state regarding the read (note that it does not know the identity of the guest), then terminates
the read, allowing other transactions (including ones mastered by UTurn) to proceed. At some point, the
guest that asserted PACKL will have retrieved the read data. To complete the read, the guest must arbi-
trate for and win mastership of the bus, then source a transaction with the type field encoded to indicate
a read return transaction. Other than the type encoding, this transaction is just like a write transaction.
UTurn decodes the type, associates the data with the earlier request, and returns the data to the requesting
processor via the inbound queue. Since only one pended DIO read transaction at a time can be outstand-
ing on GSC+, the ”address” presented by the guest on the AD[] lines during the address cycle of the read
return is unnecessary and is currently ”reserved”. While a pended DIO read is outstanding on GSC+,
UTurn will not assert PENDL while mastering a subsequent DIO read transaction. UTurn may assert
ERRORL and log a hard error if it sees a read response transaction when there is not a pended DIO read
request outstanding. As with pended DMA reads, the advantage of the pended DIO read is that the re-
sponding guest need not tie up GSC+ while fetching read data. For devices that have long read latencies,
as might be expected for bus converters to slow busses like EISA or NIO, 40 or more bus cycles per read
may be freed up for further data transfer. A specific example of this is a system where graphics, an EISA
bus converter, and a DMA device sit on the same GSC+ bus. A read of an EISA register could be pended

161

by the EISA–to–GSC+ bus converter, and while waiting for the read response the bus is free for UTurn
to complete writes to a graphics device or for a DMA device to continue its transfers. Quantification of
the benefits of support of pended DIO reads is difficult, but it was felt to be needed. It is at the bottom
of the required features list, and has the greatest chance of being unsupported in first silicon.

8.6.2.3.2. RETRY

One of the extensions to the GSC specification implemented by UTurn is a busy/retry capability. By
asserting the RETRYL line, a GSC+ guest may indicate that it is unable to process a DIO transaction (read
or write), expecting the GSC+ host (UTurn) to re–attempt the transaction at some time in the future. For-
ward progress guarantees are the responsibility of the guest device. That is, a guest implementing the
RETRYL line must ensure that a given transaction will not be retried indefinitely. This prevents the pos-
sibility of deadlock (or ”livelock”) in the system.

Retry capability is required if pended DIO reads are to be supported with maximum concurrency. If a
guest pends a DIO read, UTurn cannot in general determine the identity of the guest. To maximize bus
usage, UTurn will continue to master DIO transactions after a DIO read has been pended, raising the pos-
sibility that a second DIO transaction will be directed to the guest that is working on the pended DIO
read. The guest must now have a way to process this second DIO transaction without violating any order-
ing constraints and without pending the second transaction if it is a read (only one pended DIO read on
the bus at a time). The guest may assert LSL to split the second DIO transaction, returning the DIO read
data under split. Alternatively, the guest may elect to assert RETRYL if its GSCL input is high, causing
UTurn to terminate the second DIO transaction and retry it at some later time.

The GSC+ RETRY capability has several uses. One use is to resolve a bus interlock (that is, deadlock)
condition. This condition arises in I/O subsystems when shared busses on both sides of a module like
a bus converter are simultaneously locked by devices attached to those busses, each of which must ac-
quire ownership of the ”other” bus in order to complete some operation before relinquishing the shared
bus resource it owns. If neither device can be ”backed off”, deadlock occurs because neither bus will ever
be free. In systems with Runway being the processor/memory bus, the GSC+ host (UTurn) may be at-
tempting a read or write transaction to a device on a bus like EISA through an appropriate bus converter,
and at the same time a master device on the EISA bus may be attempting a read or write from/to memory.
Since EISA devices cannot be ”backed off”, GSC+ must provide the back–off mechanism to avoid dead-
lock. The GSC+–to–EISA converter would have to initiate a deadlock resolution sequence on GSC+
in the middle of the UTurn–mastered transaction. In general, there are two ways for GSC+ guests to re-
solve a potential deadlock condition. One way, the GSC–defined mechanism, is for the guest to assert
the LSL line in the middle of the UTurn–initiated GSC+ transaction to essentially swap ownership of
GSC+ with UTurn, suspending UTurn’s transaction and allowing the guest to master one or more transac-
tions in a memory–locked mode. After completion of these transfers, the guest releases LSL and the
UTurn–mastered transaction is resumed and completed. Use of LSL has significant negative perfor-
mance impact in systems incorporating UTurn, exposing all devices on all busses to a significant delay
due to the time required for the guest to complete the necessary transactions. The guest will not likely
be buffering and bursting efficiently when asserting LSL. Additionally, since LSL also requires memory
lock, all modules in the system (including processors) are locked out of memory for the time required
to complete the interlock resolution transactions. A second way to resolve deadlock conditions without
LSL’s negative side effects is available to GSC+ modules – a retry capability. With this capability, if
an interlock condition is encountered, the GSC+ guest asserts RETRYL in the middle of the UTurn–mas-
tered transaction, causing UTurn to relinquish bus ownership (cease the present transaction) and allow
other devices including the RETRYing guest to arbitrate for and be granted the bus. The guest need not

162

take over GSC+ right away, so it can buffer writes and burst efficiently, leaving the bus free for other
guests to use in the meantime. Perhaps more importantly, memory is not necessarily locked during the
deadlock resolution phase. Once the guest has finished the transaction(s) needed to resolve the bus inter-
lock, a UTurn re–attempt of the earlier transaction will successfully conclude. During this sequence, the
GSC+ bus and memory are not locked by the GSC+ guest.

A second possible reason for a guest to assert RETRY is as a flow control mechanism, to indicate ”not
ready for data”. The example here is a graphics device that only accepts processor reads and writes (as
opposed to using DMA). A processor may be able to generate transactions much faster than a graphics
device may be able to process them. To avoid overrunning the graphics device, several alternatives may
be employed. One of these is to allow the graphics device to assert RETRYL when its input FIFO is full.
Some time later, the write transaction will be retried, and by that time the graphics device may be ready
to accept it. In systems incorporating UTurn, the graphics device sitting on a GSC+ bus could assert RE-
TRYL to UTurn, and UTurn would hold the transaction at the head of its outbound queue, retrying the
transaction after some minimum delay. Other guests connected to GSC+ would be able to proceed with
their own DMA or directed write (interrupt) transfers while UTurn waits to retry. UTurn’s outbound
queue is blocked by this to–be–retried queue entry, so eventually UTurn’s outbound queue may be full.
This will result in issuance of a STOP_IO on RUNWAY, which will in turn prevent all processors from
issuing transactions to I/O space. This is a potentially ugly side effect.

A third use for the RETRYL line is as an alternate way to free GSC+ for other bus activity while a long–la-
tency read operation is performed by a GSC+ guest. The EISA or NIO bus converter may assert RETRYL
and initiate a fetch of the data. While the read data is being fetched from the EISA or NIO device, GSC+
is available for other guests to perform DMA transactions. (Note that processor–initiated graphics traffic
will still have to wait for the read to complete successfully.) UTurn may retry the read several times before
the data is actually available, but eventually the read will be satisfied. The opportunity for other guests
to proceed with DMA in the interim results in improved overall system throughput for systems with sig-
nificant DMA activity. Because graphics traffic gets backed up behind a busied transaction, however,
the recommended way for GSC+ guests to hide long read latencies is to assert PACKL to initiate a pended
(split) transaction sequence if possible.

A fourth necessary use for RETRY relates to overflow conditions when using pended DIO reads (as was
noted above). Architecturally, unless unlimited pended transactions are supported (difficult to do) or un-
less a pended transaction prevents UTurn from initiating further DIO transactions (making pend look a
lot like retry), RETRYL will always be needed when pended DIO reads are supported.

The following UTurn–specific RETRYL implementation notes may be of use to guest module designers.

� UTurn will retry a transaction after 16 GSC cycles or after a transaction sequence mas-
tered by a single guest or after one or more DMA read return transactions, which ever
occurs first. The retry will not begin until after a guest has relinquished bus ownership
and UTurn has returned all queued pended DMA read data to guests.

� UTurn will discard a transaction held for retry if, while waiting to retry, UTurn logs a
hard or fatal error in either the Runway clock domain or the GSC clock domain. If the
discarded transaction is a read, PATH_ERROR is returned to the processor that initiated
the read.

� A transaction held for retry blocks UTurn’s outbound command queue (OutQ). Even
PDC accesses will not be completed as long as a retry is outstanding. Thus, it is extreme-

163

ly important that guests implementing RETRYL have a forward progress mechanism
that prevents indefinite retry of a given transaction. PDC access must not be permanent-
ly blocked.

8.6.2.4. GSC1.5X and GSC2X extensions

To enable higher throughput for processor–mastered I/O writes (DIO writes), the GSC protocol has been
extended to include a variable–length write transaction (writeV). UTurn can master writeV transactions
on GSC as a result of write transactions in an IOA OutQ when appropriately configured. (Guest–mas-
tered writeV transactions are not supported.) If certain conditions are met (detailed in a subsequent sec-
tion), UTurn will combine multiple OutQ entries into a single GSC writeV transaction, an operation re-
ferred to as coalescing. “GSC1.5X” refers to support for the writeV transaction with data transferred at
the normal GSC rate (one data word per GSC bus cycle). “GSC2X” refers to support for writeV transac-
tions with data transferred at twice the normal GSC rate (2 data words per GSC bus cycle, one word per
GSC GCLK edge).

8.6.2.4.1. Configuration of GSC1.5X and GSC2X capability

UTurn incorporates two registers that are used to enable GSC1.5X and GSC2X capability. These regis-
ters, GSC1.5X_CONFIG and GSC2X_CONFIG, are located in the GSC bus–specific register set at reg-
ister offsets 8 and A (see architectural chapter for details). Each register is 32 bits long, and each register
bit corresponds to an 8 MByte “chunk” of I/O address space on the GSC bus. If a particular bit of the
GSCnX_CONFIG register is set, writeV transactions are enabled to that address space (if the bit is set
in the GSC2X_CONFIG register, writeVs will be performed with data being transferred at the 2X rate).
It is expected that GSC guests supporting the GSC1.5X and GSC2X capability will follow the capability
reporting requirements set forth in the GSC2X specification, and that system software will correctly de-
termine guest capability and appropriately configure UTurn to enable the appropriate GSCnX operation
in UTurn.

8.6.2.4.2. WriteV protocol

The GSC2X specification contains details of the GSC1.5X and GSC2X transaction protocol. The essen-
tial ingredients of that protocol are detailed here. The reader is encouraged to consult the GSC2X specifi-
cation for further details.

UTurn bus arbitration for a GSC writeV transaction is identical to that for any other UTurn–mastered
transaction. Once UTurn has secured bus ownership, it masters a writeV address cycle. The address
cycles is a full GSC bus cycle in duration. The value driven on the TYPE[0:3] bus is 4’b1111. The least
significant 2 bits of address are driven to 0 for a writeV in 1.5X mode (normal data rate). For writeVs
in 2X mode, the 2 address LSBs are driven to 2’b01.. There are no address alignment restrictions for
writeVs (other than the state of the 2 LSBs as just noted). Data cycles immediately follow the address
cycle. All data cycles are assumed to have all byte lanes valid. Bit 0 of the TYPE bus is used to indicate
when the writeV transaction is complete. Specifically, TYPE[0] will be high until the last data cycle;
during the last data cycle, TYPE[0] will be driven low. The remaining TYPE bits are driven to 0 by UTurn
during data cycles. For data in 2X mode, TYPE[0] is driven with the same timing as data. If a writeV
transaction in 2X mode has an odd number of data words, the remaining half GSC cycle is unused.

GSC writeV transactions must be acknowledged with READYL just as write1 and write2 transactions
are. A guest may assert READYL in response to a writeV transaction as early as the first data cycle.
Even in 2X mode, GSC control lines (with the exception of TYPE[0:3], as noted earlier) are driven for
a full GSC GCLK cycle. A guest may delay READYL assertion as a flow–control mechanism, but since

164

UTurn will signal a transaction timeout even for a writeV transaction, guests must limit acknowledge-
ment delays. A guest may not acknowledge a writeV transaction by asserting RETRYL. UTurn will
ignore RETRYL when mastering a writeV transaction, so if a guest acknowledges a writeV with RE-
TRYL, a GSC transaction timeout will result.

UTurn can master back–to–back writeV transactions, much as the “fast writes” case for write1s and
write2s documented in the GSC specification. Guests supporting GSC1.5X and/or GSC2X should be
able to process the address that occurs in the cycle following guest assertion of READYL in response
to a writeV. (That address cycle may be for another writeV, or may be for any other UTurn–mastered
transaction).

8.6.2.4.3. DIO write processing and coalescing rules

Once GSCnX capability is enabled via the GSCnX_CONFIG registers, any OutQ write entry (DIO write)
whose address falls within an address space enabled for GSCnX capability will be performed as a writeV
transaction on GSC. Single word writes will be performed as a writeV, even though there is no cycle
savings even in 2X mode over a write1 transaction. Double word writes performed as writeV have the
same cycle count as write2s in 1.5X mode, but in 2X mode only one GSC cycle is required for both data
words.

If consecutive write transactions in the OutQ are addressed to consecutive I/O addresses within a
GSCnX–enabled address space on GSC, and if the initial write transaction(s) in such sequences are
2–word writes, UTurn will coaslesce the write transactions into a single GSC writeV transaction up to
8 words in length. The initial address of the writeV has no alignment restrictions. An 8 word writeV
can begin on an odd–word address. UTurn will break a writeV at a page boundary, however. UTurn is
not planning to coalsece write sequences that begin with a single word write. A single–word write will
be mastered as a writeV with one data cycle. Coalescing is only performed for DIO write transactions
whose addresses fall within GSCnX–enabled I/O address space. DIO writes to all other I/O address
ranges are performed as write1s and write2s on GSC.

8.6.2.4.4. Additional protocol restrictions

As noted in the GSC2X specification, writeV transactions can be split by a guest (LSL assertion, etc)
after the last data cycle is transferred, but a guest cannot assert RETRYL in response to a writeV. Address
parity error handling and data parity error signaling are assumed to be performed as for DIO write1s and
write2s. In the 2X data case, ERRORL is still asserted for 1 full GSC cycle, even though 2 data words
are driven per cycle. The ERRORL delay is still assumed to be 2 GSC cycles after the cycle in which
a data parity error occurs.

8.6.3. Applications information

For graphics, heavy use of GSC1.5X and GSC2X modes is expected, taking advantage of the perfor-
mance improvements made possible by coalescing consecutive writes and by transferring data at a 2X
rate. In order to optimize the throughput to graphics devices, UTurn’s arbitration scheme assumes
UTurn’s GSC+ master block to be the default GSC+ master, benefiting CPU–initiated transaction traffic
(like graphics). Other bus requesters will be granted the bus in round–robin sequence as long as there
are no DIO or read return transactions pending inside UTurn and as long as DMA forward progress me-
chanisms are not active.

Discussion regarding use of RETRYL for graphics data flow control has raised a few serious system per-
formance concerns. As a result, graphics interfaces are not planning to implement RETRYL as a flow
control mechanism.

165

8.7. GSC+ Slave Interface

8.7.1. Overview

UTurn’s GSC+ slave interface translates guest–mastered transactions or other activity into appropriate
entries in the internal inbound queue. UTurn’s GSC+ slave interface proceses 5 types of guest–mastered
transactions and 2 classes of hardware events.. The 5 transaction types are read, write, read return, clear,
and error transactions. Hardware events include interrupts and errors..

8.7.2. Guest–Mastered Read transactions

Read transactions sourced by a GSC+ guest cause UTurn to create an appropriate read entry in the in-
bound queue. This entry has several fields that identify the requester and allow for a number of variations.
See section {Inbound Queue} in chapter {Inbound (GSC+–to–RUNWAY) Transaction/Data Flow} for
details on each inbound queue entry. In the case of sub–word reads, the guest is expected to ignore return
bytes it is not interested in. UTurn will always supply 1, 2, 4, or 8 words of read data with all byte lanes
containing valid data. No data shifting or other alignment functions are performed.

8.7.3. Guest–Mastered Write Transactions

A write transaction sourced by a GSC+ guest and bound for memory results in an inbound queue entry
that is a subset of a read transaction entry (no CONNECTED or PREFETCH indications needed). See
section {Inbound Queue} in chapter {Inbound (GSC+–to–RUNWAY) Transaction/Data Flow} for in-
bound queue entry details. All writes are assumed to be ”drop and run” – that is, no acknowledgement
of completion of the write in memory is sent to (or expected by) the GSC+ guest. All writes of 2 or fewer
words (8 or fewer bytes) will be converted into read–modify–write memory update sequences on the
RUNWAY side of UTurn.

8.7.4. DIO Read Return Transactions

Read return transactions sourced by a GSC+ guest provide the data in response to an earlier read request
issued by UTurn. These transactions have dedicated GSC+ transaction type encodings, and are matched
with request identification information to form an inbound queue entry. See section {Inbound Queue}
in chapter {Inbound (GSC+–to–RUNWAY) Transaction/Data Flow} for inbound queue entry details.

8.7.5. Guest–Mastered Clear Transactions

A clear transaction mastered by a GSC+ guest will cause UTurn to return 4 words of data to the mastering
guest, similar to a read4 transaction. The between a read4 and a clear transaction is primarily on the Run-
way side of UTurn. A clear transaction on the GSC bus causes UTurn to read a line from memory, clear
a single word in the line (the word addressed by the clear transaction on GSC), and then write the modified
cache line back to memory. The requested portion of the data read from memory is also returned to the
guest (prior to clearing of the addressed word). In this way, GSC guest devices can participate in a sema-
phored communication protocol, supported by the GSC bus and UTurn hardware.

8.7.6. Guest–Mastered Error Transactions

A guest–mastered error transaction (TYPE field = 4’b1101 in guest–mastered address cycle) will cause
UTurn to log a hard error on its GSC port. This transaction is used by the GSC–to–HPPB bus bridge,

166

GeckoBOA, to handle certain error cases where GeckoBOA encounters an error on the HPPB (AKA
NIO) bus after processing the corresponding GSC transaction. UTurn ignores the address and data for
such error transactions (parity is also ignored). UTurn handshakes a guest–mastered error transaction
as if it were a write transaction. No inbound queue entry is created in response to an error transaction.

8.7.7. Hardware Events

External events may cause UTurn to generate a transaction entry in the inbound queue. These external
events include interrupts and errors. The GSC definition includes both an interrupt line and an error line
(INTERRUPTL and ERRORL).

8.7.7.1. INTERRUPTL Assertion

When UTurn senses an INTERRUPTL transition from the asserted to the negated state, it generates an
inbound queue entry uniquely encoded to indicate that a GSC interrupt has occurred. This entry is trans-
lated into a Runway write_short transaction directed to a processor EIM register. UTurn’s Runway in-
bound block uses information in the EIM_MONARCH_AND_GROUP register (UTurn Specific Regis-
ter Set, offset 1) when performing this write transaction.

8.7.7.2. Error Cases

In some cases, a GSC+ bus error results in generation of an inbound queue entry. Specifically, when
UTurn encounters a data parity error or a timeout on a DIO read transaction, it will log a soft error and
will create an inbound queue entry indicating that a directed error transaction should be generated on Run-
way to inform the data requester of the error. For other GSC+ errors, including an error transaction type
mastered by a GSC+ guest, a hard error is logged in the GSC+ port, preventing further guest–mastered
transaction activity, but an error–type inbound queue entry is not created. Subsequent DIO reads of
GSC+ guest registers result in a path error entry being created in the inbound queue, informing the re-
quester that a hard error prevents fetching the requested data.

8.8. GSC+ Port Error Handling

Section {Error Handling} in chapter {Architectural Requirements} provides high level error detection
and logging details for each IOA in UTurn. This section builds on that foundation, identifying a few
GSC+ port specific implementation details.

8.8.1. Impact of Error Modes

When the GSC+ port of an IOA is in hard error mode (GSC IO_STATUS[he] = 1), or when the Runway
side of an IOA is in hard or fatal error mode (RW IO_STATUS[fe] = 1 or RW IO_STATUS[he] = 1), the
operation of the GSC+ port is significantly altered. Transactions on the GSC+ bus are no longer mastered
by the IOA. Guests are not allowed to master transactions when an IOA has logged a hard or fatal error.
Reads of GSC+ port internal registers are not allowed if the Runway side of an IOA was in hard or fatal
error mode at the time the register read was requested. Writes to GSC+ port internal registers queued
under a Runway hard or fatal error mode are discarded by the GSC+ port logic. The following table sum-
marizes the impact of the various error modes on GSC+ port operation.

167

TABLE: Error mode impact on GSC+ port operation

Error Mode

Runway fatal error
(RW IO_STATUS[fe] = 1)

Runway hard error
(RW IO_STATUS[he] = 1)

GSC h dQueue and entry
type

Entry queued
before fatal

error oc-
curred

Entry queued
after fatal

error
occurred

Entry queued
before hard
error oc-
curred

Entry queued
after hard

error
occurred

GSC hard error
(GSC

IO_STA-
TUS[he] = 1)

OutQ entries

UTurn GSC port
HPA reg. read

Perform read Return
path_error 1,2

Perform read Return
path_error 1,2

Perform read

UTurn GSC port
HPA reg. write

Perform
write

Discard write Perform write Discard write Perform write

External GSC
port read

Perform read
on GSC

Return
path_error 1,2

Perform read
on GSC

Return
path_error 1,2

Return
path_error 1

External GSC
port write

Perform
write on
GSC

Discard write Perform write
on GSC

Discard write Discard write

PDH port read Perform read

PDH port write Perform write

U–turn (RW HPA
reg rd/wr)

Perform U–turn (create InQ entry)

DMA test entry Create InQ entry for test

RRQ entries Return data to GSC+ guest that issued read request

Retry pending

Retry trans = readReturn path_error 1; discard read transaction

Retry trans =
write

Discard write transaction

External bus re-
quests from guests

No grants issued

Transactions mas-
tered by guests 3

Reads Assert ERRORL; no InQ entry created

Writes Assert READYL but discard data (no InQ entry)

Notes:
1 When path_error is returned in these cases, no GSC+ transaction is performed.
2 Errors that occur on the GSC+ side of an IOA do not affect the logging of a hard or fatal error on the

168

Runway side of the IOA. If a GSC+ port error occurs, access to GSC+ port HPA registers (including
status and error logging registers) is still assured. If a Runway hard or fatal error is logged, GSC+ port
status and error logging registers are not accessible.
3 A Guest can master transactions if a hard or fatal error is encountered while the guest owns GSC+.
Guest transactions mastered while an IOA is in hard or fatal error mode are not forwarded to Runway.
It is strongly recommended that guests not master any GSC+ transactions after they detect an error condi-
tion related to their GSC+ interface.

8.8.2. Address Alignment Violations

Each of UTurn’s GSC+ ports expects transactions mastered by GSC+ guests to be aligned to transaction
size boundaries. Hence, 8 byte transactions have the least significant word address bit equal to zero; 16
byte transactions must have zeroes in the 2 least significant word address bits, and cache line sized trans-
actions must be aligned to a memory cache line address boundary. Violation of this requirement will
cause UTurn to assert ERRORL and log a hard error (GSC+ protocol error). UTurn will delay ERRORL
assertion such that a guest will interpret the error as a timeout error.

8.8.3. Pended DMA Read Errors

Pended DMA read transactions have two components: a request component and a response component.
The only error that is interesting during the response component is a data parity error. A guest that detects
a data parity error during a DMA read response should assert ERRORL two GSC bus cycles after the
cycle in which the error occurred. During the DMA read request, and in the time between the request
and response components, many possible errors may occur. An address parity or alignment error may
be detected by UTurn, or an error on the Runway side of UTurn may occur while the data is being fetched
from memory. In any case, the mechanism for UTurn to inform the requesting guest that an error occurred
is an errored DMA read return. The errored return consists of 2 or more notify cycles (DRRL and BGL[n]
asserted simultaneously), followed by an error cycle in which DRRL, BGL[n], and ERRORL are all as-
serted. The error cycle may be followed by one or more “standard return” cycles in which only DRRL
and BGL[n] are asserted; UTurn inserts 8 such cycles in its current design. After the error and standard
return cycles, there may be a restore cycle, in which DRRL, BGL[n], ERRORL, and all other GSC control
lines are negated, or there may be an address cycle for a subsequent UTurn–mastered transaction. Note
that the AD[], TYPE[], and PARITY signals are meaningless for errored DMA read returns.

It should be noted that if an address cycle error occurs on a pended DMA read, UTurn will not assert
ERRORL 2 bus cycles later. Rather, UTurn will drive an errored DMA read return transaction after some
time.

8.9. General

8.9.1. Miscellaneous Notes

UTurn’s GSC+ slave block has some interaction with UTurn’s GSC+ arbiter in that it requires an identifi-
cation of the current master for pended read return purposes as well as for error tracking. In addition,
when RETRYL has been invoked on a UTurn–mastered transaction, UTurn’s GSC+ master block may
require some communication from the slave block and/or the arbiter to ensure that forward progress guar-
antees are preserved.

Transactions in which UTurn is a slave will be not be timed in the way that UTurn–mastered transactions
are monitored. This is due primarily to the complexity required to keep separate timeout information

169

for each outstanding transaction that might be buffered inside UTurn. Runway does time its transactions,
so timeouts between UTurn and memory will be detected.

8.9.2. Guest–to–Guest Transfers

Interest has been expressed in supporting guest to guest transfers using UTurn as an intermediary. UTurn
does not support guest–to–guest transfers. UTurn assumes that it is the slave for all guest–initiated trans-
actions. UTurn does not implement the necessary registers or address decode logic to decide if a transac-
tion is destined for another guest on the same GSC bus segment. It has been suggested that UTurn might
be able to act as a reflector for data, forwarding transactions from guest to guest if the address issued falls
within an appropriate range of the I/O space. Implementation of this functionality is more than trivial.
Guest to guest transfers are not supported in the UTurn design.

170

171

9. PDH Support in UTurn

UTurn includes internal logic and a dedicated external port for accessing processor dependent code
(PDC) and other registers and functions in processor dependent hardware (PDH) address space. The
PDH block inside UTurn is connected to only one of UTurn’s IOAs (IOA0). The PDH block consists
of several internal registers, an external memory–like port (including address, data, and control lines),
and several miscellaneous functions such as a front panel interface, a real time clock, and a transfer of
control input.

In Kitty Hawk global 40–bit physical address space, PDH resides in the address range from F0 F000 0000
– F0 F01F FFFF (2 MBytes). Inside UTurn, the 2 MByte PDH space is accessed using a 21–bit, byte–
granularity address (the least significant 21 bits of the Runway address in Kitty Hawk). PDH space is
partitioned roughly as shown in the following table. Note that addresses and ranges in this table identify
the 21–bit PDH address that appears on the PDH address pins for external accesses. To get the equivalent
Runway address, prepend the table address with F0 F0; e.g., off–chip fast PDH space is in the Runway
address range F0 F0000000 through F0 F015FFFF.

Entity Location PDH Address /
range

Total size Timing Comments

Off–chip ”fast”
memory com-
ponents

External 000000 – 15FFFF 1408
KBytes

Fast In this address range will be flash
EPROM containing PDC and
IODC, scratch RAM, and misc.
individual registers

Real time clock Internal 160000 4 Bytes N.A. Seconds since 1/1/70; battery
backed

Semaphore reg. Internal 160007
(Any address from
160004–160007
works)

4 bits N.A. Atomic read and clear LSB when
read; next 3 bits are Runway
master ID of semaphore owner

Access port
data reg.
(FPDATA)

Internal 160008 4 Bytes N.A. Latched into register, then shifted
out using FPCLOCK

Unimplem-
ented UTurn–
internal PDH
reg. space

Internal 16000C – 17FFFF (128K –
12) bytes

N.A. Writes to this range are dis-
carded; reads return zeroes.

Off–chip
”slow” memory
components
and interfaces

External 180000 – 1FFFFF 512 KBytes Slow In this address range are the EE-
PROM (containing stable storage
information) and the LCD front
panel interface

TABLE: PDH space partitioning

9.1. UTurn–internal PDH Registers

All resources noted as ”internal” in the location column of the preceding table are actually implemented
inside UTurn. Access to all internal registers should be with single word transactions. The specific PDH
space registers implemented in UTurn are documented below.

172

9.1.1. Real time clock

The real time clock register is a readable and writeable counter that keeps track of wall clock time. The
counter is powered by an external battery. The time value is incremented once each second.

The format of the real time clock register is as follows:

0
 31

Time in seconds (UNIX assumes since January 1, 1970)

This register’s value is maintained through power cycles and resets. Its value is changed only by writing
to the register (or by removing the battery).

9.1.2. Semaphore register

The PDH semaphore register is a readable and writeable register containing 4 bits of interesting informa-
tion. Reads of this register may have the side–effect of modifying the least significant bit of the register.
The format of the register is as follows:

0
27

Not implemented (read as zeroes)

28 30
owner

31
semaphore

The semaphore bit operates as follows. At power–up, semaphore is initialized to a value of 1 (indicating
semaphore available). Semaphore is set to 1 with any write to the semaphore register, regardless of the
value written. Any read of the semaphore register returns the current value of semaphore. In addition,
if semaphore is set when a read occurs, semaphore will be cleared, indicating that the semaphore is now
owned, after the current value of the bit is returned to the reader.

The owner field contains the Runway master ID of the current owner of the PDH semaphore. If the sema-
phore is currently not owned, owner identifies the previous owner of the semaphore. At power–up, this
field is initialized to zero. If the semaphore register is read and the semaphore bit is set, the master ID
of the reader is stored in the owner field after the current value of the field is returned to the reader. Read-
ing the semaphore register when the semaphore bit is cleared (semaphore owned) does not change the
value of owner. Writing to the semaphore register does not affect the value of owner.

The following table summarizes the values of the owner and semaphore fields after various actions.

Action Owner value Semaphore value Value returned on read

Power–up 000 1 N.A.

Write to semaphore reg. unchanged 1 N.A.

Read from semaphore
reg., semaphore bit set

RW Master ID of
reader

0 {previous_owner_ID, 1}

Read from semaphore
reg., semaphore bit clear

unchanged unchanged (0) {current_owner_ID, 0}

Otherwise.... unchanged unchanged N.A.

173

Important note: The initial UTurn parts contain a bug that causes the data returned on a read of the PDH
semaphore register to be different than what is documented above. Specifically, on reads from the sema-
phore register when the semaphore bit is set (third row of table, last column), UTurn returns the value
{current owner ID, 0} instead of {previous owner ID, 1}. Thus, for early UTurns, a processor reading
the semaphore register must check to see that the owner value returned by UTurn matches its own ID in
order to ensure that it acquired the semaphore.

9.1.3. Front panel data register

The front panel data register is a write–only register. Data to be shifted out on the UTurn’s FPDATA pin
is written to this register with the following format:

0 11
Unused

12 31
fp_data

According to an early version of the Kitty Hawk DC2–/DC2/DC3 System Board ERS, the fp_data field
has its own sub–field definition. UTurn attaches no additional meaning to the bits in the fp_data register.
Consult the System Board ERS or contact Ken Pomaranski for fp_data field details
(kenp@hprpcd.rose.hp.com).

9.1.4. Unused UTurn–internal PDH space

Writes to unused UTurn–internal PDH space are discarded. Zeroes are returned on reads of unused
UTurn–internal PDH space. No error is logged for accesses to unused UTurn–internal PDH space.

9.2. UTurn–external PDH Space

UTurn has an external data port to interface to the features identified as ”external” in the location column
of the PDH space partitioning table. The data port includes a 21 bit address (output only), an address
valid line, an 8 bit data port (bidirectional, no parity), a write enable line, and an output enable line.
External timing has fast and slow variants. The timing UTurn uses is based on address, not on external
handshake. UTurn does not need to know how the external PDH address space is actually utilized. All
PDH accesses that fall outside the internal register address range are simply sourced on the PDH port,
with timing determined based on address value.

Details on the timing of the external PDH port, as well as further details regarding the external PDH ad-
dress map, may currently be found in the DC2–/DC2/DC3 System Board ERS authored by Ken Poma-
ranski.

9.3. Other PDH Features

9.3.1. Front Panel Interface

For serial access front panel requirements, 2 pins are allocated – FPCLOCK and FPDATA. Values writ-
ten to the front panel data register are shifted serially out of UTurn on the FPDATA pin as timed by
FPCLOCK. Timing details regarding the FPCLOCK/FPDATA interface can be found in the
DC2–/DC2/DC3 System Board ERS authored by Ken Pomaranski.

9.3.2. Transfer Of Control Accommodation

174

To accommodate transfers of control (TOCs), UTurn provides a TOC input pin. The received TOC input
signal is forwarded directly to logic in the Runway domain of UTurn’s IOA0 for generation of a command
reset (write_short) transaction directed to the IO_COMMAND register of the processor indicated by the
Runway TOC_MONARCH_CLIENT_ID register. See chapter {Architectural Requirements} for regis-
ter details.

9.3.3. Real Time Clock Support

For real time clock support, an external clock signal pair is provided along with a separate supply rail
input (for battery backed operation).

9.3.4. Test Features

The PDH port address and data pins (PADDR[0:20] and PDATA[0:7]) are used for chip test functions
in addition to their normal PDH interface usage. Sets of signals internal to UTurn can be viewed on the
PADDR bus when in a viewport mode (mode enabled by setting the vpt bit (bit 31) in the Runway
TEST_INFO/CONFIG register). The specific set of signals to be viewed is selected by driving the PDA-
TA bus from an external test source, generally a special test jig. A more detailed description of PDH port
test mode usage can be found in the testability chapter of this ERS.

175

10. UTurn Testability

All testability features are documented in this chapter, including internal logic testing, viewport descrip-
tion and PDC self test.

10.1. Internal logic testing

In general, the testability features of UTurn follows the guidelines outlined in the ”Kitty Hawk ASIC DFT
Design Rules”. Any additions or differences from those design rules are discussed below.

Boundary Scan is implemented using the IEEE 1149.1 protocol. A BSDL description of the boundary
scan implementation is available.

The outbound queue (OutQ), inbound queue (InQ), read return RAM (RRR), and inbound RAM (In-
RAM) are all tested using built–in self test (BIST). In association with the BIST, there is a capability to
bypass data around the BIST–able structures for test purposes. This combination of features is intended
to provided for rapid go/no go testing.

Full internal Scan is implemented for all blocks not served by BIST. The scan flip–flops include double–
strobe capability. This feature allows loading of master and slave stages with different values. The at–
speed functionality of selected paths can therefore be checked.

The capability exists to use internal scan to apply both address and data to the BIST–able structures. The
output data is also accessible via scan. Special provisions are also included to allow the a CPU access to
TLB RAM output data for diagnostic purposes.

10.2. UTurn TAP controller

UTurn uses a TAP (test access port) controller. It implements all required 1149.1 JTAG features and a
number of additional features that are used in conjuction with chip testing. The TAP controller is lever-
aged from the design used by the Kitty Hawk memory ASICs.

Please refer to ”Kitty Hawk Memory Sub–System TAP/SAP Design” for a detailed description of the
TAP controller. The UTurn TAP controller contains a few modifications relative to the Kitty Hawk
memory TAP controller. The following information includes those additions and changes:

176

10.2.1. UTurn TAP Controller Instructions and Behavior

UTurn implements the following TAP instructions:

 Name Opcode (Hex) DR selected capture data

extest 00 boundary pad

bypass FF bypass ’0’

sample/preload 20 boundary pad

intest 01 boundary (note 5)

chip test 88 (note 3) (note 5)

scan_internal BE (note 3) (note 6)

dr00_scan A0 (note 4) (note 6)

dr01_scan A1 (note 4) (note 6)

dr02_scan A2 (note 4) (note 6)

dr03_scan A3 (note 4) (note 6)

dr04_scan A4 (note 4) (note 6)

dr05_scan A5 (note 4) (note 6)

dr06_scan A6 (note 4) (note 6)

isample 40 bypass ’0’

esample 41 bypass ’0’

hi_z 60 bypass ’0’

drive_inhibit 61 bypass ’0’

drive_enable 62 bypass ’0’

select_mode BC mode (note 7)

set_mode_bit DC mode (note 7)

clr_mode_bit CC mode (note 7)

idcode 02 idcode (note 8)

NOTES:

1) Instruction register length is 8 bits.

2) Mode register length is 12 bits.

3) The DR selected for the CHIPTEST and INTERNAL_SCAN instructions depends on the state of the PS (paral-
lel scan enable) bit of the mode register. When PS=0 the Boundary scan register is selected for the DR of the
CHIPTEST instruction. When PS=0 the Internal scan register is selected as the DR for the INTERNAL_SCAN
instruction. PS=1 should NOT be used during board test/scan for either the CHIPTEST or INTERNAL_SCAN
instructions.

4) The DR selected for the DRxx_SCAN instructions also depends on the state of the PS bit of the mode register.
When PS=0 a block level internal scan path is selected as follows:

177

 Name Scan Path

 DR00_SCAN DR0

 DR01_SCAN DR1

 DR02_SCAN DR2

 DR03_SCAN DR3

 DR04_SCAN DR4

 DR05_SCAN DR5

 DR06_SCAN DR6 PS=1 should NOT be used during board test/scan DRxx_SCAN instructions.
 If PS=1 the individual internal chains are ported through auxiliary scan–in and
 scan–out ports.

The PDATA[0:6] are used for scan–in.
The PADDR[0:6] pins are used for scan–out.
The assignments are as follows:

 Scan Path SCAN IN SCAN OUT

 DR0 PDATA[0] PADDR[0]

 DR1 PDATA[1] PADDR[1]

 DR2 PDATA[2] PADDR[2]

 DR3 PDATA[3] PADDR[3]

 DR4 PDATA[4] PADDR[4]

 DR5 PDATA[5] PADDR[5]

 DR6 PDATA[6] PADDR[6]

 5) The INTEST and CHIPTEST instructions capture the state of the system outputs when a system clock is given.
The state of the system drive enables are not captured.

 6) If PS=1, then the Boundary scan register is selected between TDI and TDO as the DR and the PAD is captured.

 7) The parallel–update stage of the Mode register is captured.

 8) The 32 bit IDCODE for UTurn is: ”0001” & –– 4 bit version (This code for rev. B)
 ”0001010010101000” & –– 16 bit part number
 ”00001010100” & –– 11 bit manufacturer
 ”1” ; –– mandatory LSB

 9) All other/undefined opcodes produce the same effect as the BYPASS instruction.

Notes regarding the five system clock pairs:

178

The ”H” version of the clock corresponds to the internal clock as it is applied to the flops. The only exception is
that when TestClockMode is set, then the internal GCLKs correspond to their respective ”L” version clocks. That
is, SYNC_K0_L and SYNC_K1_L. The internal clocks should all be kept low during scan.

Bit definitions for the mode register:

 DBL_STRB_1 mode_bits[11]

 ML_TCK_B_1 mode_bits[10]

 Arm_JPAD mode_bits[9] – During Chiptest operation, force PADNIO pads to capture signals from core logic

 unused mode_bits[8]

 force_hld_fets mode_bits[7] – Forces keepers on GSC pads to drive

 gclk_DSBL mode_bits[6] – Disable core gclk. The GSC clocks to the
 pads are still active. Used to make GSC
 pads appear transparent during ATG testing.

 BIST_EN mode_bits[5]

 P_SCAN mode_bits[4]

 FLUSH mode_bits[3] – Only works on internal scan chains

 PMASK mode_bits[2]

 IDDQ_EN mode_bits[1] – Used by the ”J2PADPNIO” pads during IDDQ testing.

 TEST_MODE mode_bits[0] – Places GSC clock generator in divide–by–1
 mode. Apply at least three clocks after
 setting or clearing this bit. Note: Bit[0] is closest to TDO.

10.3. Initialization of UTurn for JTAG operation
The first step is to reset the UTurn’s core logic and the TAP controller. At power on of the board the system reset
signal ”ARESETL” and the test reset signal ”TRST” must be low. The ”TRST” signal initializes the TAP control-
ler. The ”TRST” is an asynchronous signal, and only needs to be held low for a minimum of 100ns after power is
up, to put the TAP controller in its test–logic–reset state. The ”ARESETL” input can either be kept low or allowed
to rise after a minimum of 100ns. Application of clocks during the power up sequence is optional.

The purpose of the next step is to prevent the chip core logic from driving the pads and potentially causing external
drive fights during opcodes when the core logic has control of the pads.

This tristating of the pads is accomplished by executing the DRIVE_INHIBIT opcode. This opcode sets a flip–
flop which prevents the system logic in the chip from driving the pins. (Note that the EXTEST instruction still has
the ability to drive the pads while the DRIVE_INHIBIT flip–flop is set.) If this option is to be used and the clocks
are not halted then it is NECESSARY to set the ”test–clock–mode ” bit of the mode register before executing the
DRIVE_INHIBIT.

179

The reason is as follows: UTurn uses the Kitty Hawk type inhibit circuit. For more information please refer to
”Proposal for Preventing Bus Clashes and System Reset” by Bulent Dervisoglu, 8/10/92. If drive inhibit has been
set and the DRIVE_INHIBIT opcode is not currently in the instruction register, any rising edge of the system clock
while the ”RESETL” pin is high will clear the Inhibit Latch. Chip system logic would then be able to drive the
pads resulting in DRIVE FIGHTS. The setting of ”test–clock–mode” prevents the system clock from clearing the
Inhibit Latch.

Specifically, the sequence looks like this:

 A. Load the SELECT_MODE opcode; This selects the 12 bit mode register for the subsequent DR–scan;

 B. Scan in the value 001H into the mode register; This sets ”test–clock–mode”;
 (Note that the LSB is the first bit applied;)

 C. Load the DRIVE_INHIBIT opcode;

It is recommended that the above sequence be used. It provides the highest degree of protection against drive
fights caused by errors in the boundary scan test program whiich give control of the pads back to the chip function-
al logic at an inappropriate time.

If it is desired to re–enable the pads there are two options. The first is to use the DRIVE_ENABLE opcode. The
second is to reset UTurn as described in the power up sequence above.

Following are the relevant UTurn opcodes:

 DRIVE_INHIBIT 01100001

 DRIVE_ENABLE 01100010

 SELECT MODE 10111100

 HIGH–Z 01100000

10.4. Viewport Description

UTurn has the ability to mux out many internal signals to the PDC Address pins through a combinational path.
This allows internal signals to be viewed continuously while the system is running. This can be very useful for
debug purposes. When a PDC access is in progress the PDC Address line revert to their real function – being the
PDC address. The PDC DATA are used as enables and selects to select which signals are being ”view”ed.

The internal node viewing feature is only enabled if there is no valid address on the PADDR[] pins (that is, if
pdh_addr_drv is high) and if either the MSB of the PDATA[] bus is being driven to a 1 and the view_enb bit is set in
the Runway TEST_INFO register. Stated in an opposite sense, an actual address is driven on the PADDR[] pins as
follows:

wire #1 drive_pdh_addr = pdh_addr_drv | ~pdataI[0] | ~reg_view_enb;
/* View port is enabled if pdh_addr_drv=0 AND pdataI[0] = 1 AND reg_view_enb=1 */
/* View logic signal group selection logic */
/* Decode assignments for pdataI[1:2] when used as top level view select:

180

 10 – arb
 11 – arb
 00 – IOA0
 01 – IOA1
 case (pdataI[1:2]) // synopsys full_case
 2’b00: paddrO = ioa0_view;
 2’b01: paddrO = ioa1_view;
 2’b10: paddrO[0:20] = {arb_view[0:5], ioa0_view[6:20]};
 2’b11: paddrO[0:20] = {arb_view[0:5], ioa1_view[6:20]};
 default: paddrO = ioa0_view;
 endcase
wire [0:1] #1 blk_view_sel = pdataI[3:4];
/* Decode assignments for pdataI[3:4] :
 arb
 xx – blk_view_sel
 ioa
 00 – inbnd
 01 – outbnd
 10 – synchro
 11 – gsc_view

wire [0:2] #1 int_view_sel = pdataI[5:7];

/* Decode assignments for int_view_sel are made within the individual lower–level blocks. The mapping of
signals for specific values of int_view_sel is shown below. */

/**************************UTurn_arb****** arb_view[0:5]*******************/
/* blk_view_sel is a don’t care – not looked at*/
/* pdataI[0:4] = 5’b11xxx */
case (int_view_sel)
 3’b000: begin
 arb_view[0] = Rstart_arb0_state;
 arb_view[1] = Rtrans_len_in0_state[0];
 arb_view[2] = Rtrans_len_in0_state[1];
 arb_view[3] = Rtrans_len_in0_state[2];
 arb_view[4] = Rdata_return_in0_state;
 arb_view[5] = stop_most_out0_state;
 end
 3’b001: begin
 arb_view[0] = Rstart_arb1_state;
 arb_view[1] = Rtrans_len_in1_state[0];
 arb_view[2] = Rtrans_len_in1_state[1];
 arb_view[3] = Rtrans_len_in1_state[2];
 arb_view[4] = Rdata_return_in1_state;
 arb_view[5] = stop_most_out1_state;

181

 end
 3’b010: begin
 arb_view[0] = ioa0_arb_ckrw;
 arb_view[1] = ioa0_ret_ckrw;
 arb_view[2] = ioa0_len_ckrw;
 arb_view[3] = ioa0_stop_ckrw;
 arb_view[4] = back_off_from_arb0;
 arb_view[5] = atomic_back_off0;
 end
 3’b011: begin
 arb_view[0] = ioa1_arb_ckrw;
 arb_view[1] = ioa1_ret_ckrw;
 arb_view[2] = ioa1_len_ckrw;
 arb_view[3] = ioa1_stop_ckrw;
 arb_view[4] = back_off_from_arb1;
 arb_view[5] = atomic_back_off1;
 end
 3’b100: begin
 arb_view[0] = rr_ptr[0];
 arb_view[1] = rr_ptr[1];
 arb_view[2] = any_ptr[0];
 arb_view[3] = any_ptr[1];
 arb_view[4] = stop_most_ptr[0];
 arb_view[5] = stop_most_ptr[1];
 end
 3’b101: begin
 arb_view[0] = ioa0_select_prev;
 arb_view[1] = ioa1_select_prev;
 arb_view[2] = runway_drv_prev;
 arb_view[3] = ioa_idle_prev;
 arb_view[4] = ioa_deselect_prev;
 arb_view[5] = second_cycle_default_win_last;
 end
 3’b110: begin
 arb_view[0] = reload_trans_ctr0;
 arb_view[1] = reg_pntr0[2];
 arb_view[2] = Rinterface_ready0;
 arb_view[3] = reload_trans_ctr1;
 arb_view[4] = reg_pntr1[2];
 arb_view[5] = Rinterface_ready1;
 end
 3’b111: begin
 arb_view[0] = UTurn_arb_out_twice;
 arb_view[1] = UTurn_arb_in_twice;
 arb_view[2] = any_back_off;
 arb_view[3] = atomic_sequence_over;

182

 arb_view[4] = UTurn_wins_any;
 arb_view[5] = clr_any_ctr;
 end
 endcase

/**************************ioa****** ioa_view[0:20]*******************/
 case(blk_view_sel)
 //synopsys parallel_case full_case
 2’b00: /* select inbnd */
 begin
 in_n_out_view_sel = 1; /* this selects inbnd instead of outb*/
 ioa_view = r2_view;
 end
 2’b01: /* select outbnd */
 begin
 ioa_view = r2_view;
 end
 2’b10: /* select synchro */
 begin
 ioa_view = synchro_view;
 end
 2’b11: /* select gsc */
 begin
 ioa_view = gsc_view;
 end endcase

/**************************outbnd_view****** ioa_view[0:20]*******************/
 /* pdataI[0:4] = 5’b10001(IOA0) or 5’b10101 (IOA1) */
casex (int_view_sel)
 //synopsys parallel_case full_case
 3’b000: /* select pool */
 begin
 outb_view = pool_view;
 assign #1 pool_view[0:20] = {reg_pool_entry0[‘pool_inuse],
 reg_pool_entry1[‘pool_inuse], // pool_inuse = 48
 reg_pool_entry2[‘pool_inuse],
 reg_pool_entry3[‘pool_inuse],
 reg_pool_entry4[‘pool_inuse],
 reg_pool_entry5[‘pool_inuse],
 reg_pool_entry6[‘pool_inuse],
 reg_pool_entry7[‘pool_inuse],
 reg_pool_entry0[‘pool_pref], // pool_pref = 47
 reg_pool_entry1[‘pool_pref],
 reg_pool_entry2[‘pool_pref],

183

 reg_pool_entry3[‘pool_pref],
 reg_pool_entry4[‘pool_pref],
 timeout,
 ld_RRQ_or_conn_pref,
 pref_rdy_4_rrq,
 pref_rdy_4_conn,
 entry_4_rtn[0:2],
 pref_discard};
 end
 3’b001: /* select outctrl */
 begin
 outb_view = outbctrl_view;
 assign #1 outbctrl_view[0:20] =
 {present_state[0:2],
 remember_trans[0:2],
 ld_RRQ,
 ld_RRR,
 ld_OutQ,
 ld_hpareg,
 R_conn_rtn_valid,
 R_ConnRRRAddr,
 R_ConnRRRError,
 r_ok_to_start,
 l_pool_match,
 r_pool_match,
 (r_ad_parityok & r_ctrl_parityok),
 (l_ad_parityok & l_ctrl_parityok),
 sv_trans_dest[0],
 sv_trans_dest[2],
 sv_trans_dest[4]};
 end
 3’b010: /* select data_store_h and ld signals to see when valid */
 begin
 outb_view = {ld_OutQ,ld_RRR,data_store_h[0:18]};
 end
 3’b011: /* select rest of data_store_h */
 begin
 outb_view = {ld_OutQ,ld_RRR,data_store_h[0:11],
 data_store_h[19:25]};
 end
 3’b11x: /* select outbccc and RRQ */
 begin
 outb_view = {ld_RRQ,RRQ[0:10],outbccc_view[0:8]};
 assign #1 outbccc_view[0:8] = { num_ok_resp_after[1:4],

delay_till_Npriv, left_just_went_private,
we_have_private, l_delay_ccc, r_delay_ccc};

184

 end
 3’b10x: /* select error stuff */
 begin
 outb_view = {
 error_enb,
 timeout,
 tlb_miss_err,
 io_address_err,
 (p_R_ERR_mode_phase | l_R_ERR_mode_phase),
 l_We_MAS,
 r_We_MAS,
 (l_R_ERR_ctrl_par | r_R_ERR_ctrl_par),
 (l_R_ERR_adr_par | r_R_ERR_adr_par),
 (l_R_ERR_data_par | r_R_ERR_data_par),
 (l_R_ERR_broad | r_R_ERR_broad),
 (p_R_ERR_ill_resp | l_R_ERR_ill_resp | r_R_ERR_ill_resp),
 (l_R_ERR_path | r_R_ERR_path),
 (l_R_ERR_unexp_resp | r_R_ERR_unexp_resp),
 R_ERR_addr_valid,
 l_R_data_from_memory,
 r_R_data_from_memory,
 (p_R_ERR_pool_info_valid | l_R_ERR_pool_info_valid),
 Rio_status_se,
 hpa_reg_he,
 hpa_reg_fe};
 end
 default: /* select outbccc and RRQ */
 begin
 outb_view = {ld_RRQ,RRQ[0:10],outbccc_view[0:8]};
 end
 endcase

/**************************inbnd_view************************/
 /* pdataI[0:4] = 5’b10000(IOA0) or 5’b10100 (IOA1) */
 casex (int_view_sel) // synopsys parallel_case
 3’b000: begin // most basic debug info
 inbnd_view = { inQ_valid,
 R2interface_ready,
 tlb_hit,
 page_type, // 2 bits of page type
 cache_hit,
 dont_start_rp,
 write_back_start,
 pool_full,
 pool_write,

185

 transid_from_pool,
 inQ_done,
 Rstart_arb,
 cache_state, // 2 bits of cache state
 inQ_nowstate}; // 6 bits of main state
 end
 3’bx01: begin // inQout signals
 inbnd_view = { inQ_valid,
 inQ_done,
 3’b000, // 3 unused bits
 inQout[‘entry], // entry = 0
 3’b000, // 3 unused bits
 inQout[‘force_timeout],//force_timeout = 10
 inQout[‘HPA_read], // HPA_read = 11
 inQout[‘TLB_cmd], // TLB_cmd = 12
 inQout[‘RTN_zeros], // RTN_zeros = 13
 inQout[‘Ktype], // Ktype = 15:18
 // 4 bits of GSC or inbnd type
 inQout[‘Kconnected], // Kconnected = 49
 inQout[‘Klock], // Klock = 50
 inQout[‘Knext], // Knext = 51
 inQout[‘diagnostic]}; // diagnostic = 52
 end
 3’bx10: begin // tlb and cache signals
 inbnd_view = { load_second_cache,
 cache_status_private,
 cash_read,
 clear_cache,
 cache_write_1,
 cache_write_2,
 bist_rm_obsv_count,
 bad_pool_entry,
 load_first_tlb,
 load_second_tlb,
 tlb_miss_read,
 tlb_purge,
 tlb_RAM_r_w, // actual RAM write signal
 tlb_addr}; // 8 bits of tlb address
 end
 3’bx11: begin // other inputs (toc, interpt, prefetch)
 inbnd_view = { send_toc,
 send_broad_err,
 broad_error,
 send_pfail,
 io_address_detect,
 io_control_hv_mode, // 2 bits of mode type

186

 stop_most_out,
 pdir_read_done,
 prefetch_update,
 prefetch_read,
 prefetch_inc,
 prefetch_overflow,
 prefetch_match,
 prefetch_enable,
 Raddress_sel, // 3 bits of address sel
 Rsecond_sel, // 2 bits of second sel
 inbRAMaddr_lsb};
 end endcase
/*********************************gsc_view****************************/
 /* pdataI[0:4] = 5’b10011(IOA0) or 5’b10111 (IOA1) */
 case (pdataI[5:7]) // synopsys full_case
 3’b000: gsc_view = { view_garb[0:2],
 view_gmaster[0:8],
 view_gslave[0:4],
 k_reset,
 k_resetO,
 k_reset_to_RW,
 powon_reset };
 3’b001: gsc_view = view_garb;
 wire [0:20] #1 view_garb = { arb_state[0:3],
 DMAPendActive[0:5],
 Req[0:5],
 GuestGrant,
 GuestActive,
 gGuestID[0:2]
 } ;
 3’b010: gsc_view = view_ginmux;
 assign #1 view_ginmux = { 1’b0,
 staged_adI[24:29],
 StagedDataWr[0:1],
 staged_typeI[0:3],
 staged_data[24:31] };
 3’b011: gsc_view = view_gmisc;
 wire [0:20] #1 view_gmisc = { gError,
 gInterrupt,
 gLockSplit_slow,
 gReady,
 gRetry,
 k_readyLO,
 k_reset,
 k_resetO,
 k_reset_to_RW,

187

 powon_reset,
 pdataI[0],
 ResetCnt[0:3], // MSBs of ResetCnt
 ResetCnt[14:19] // LSBs of ResetCnt
 } ;
 3’b100: gsc_view = view_gmaster;
 wire [0:20] #1 view_gmaster = {master_state[0:8],
 PossDIOTrans,
 GSCAddrCycle,
 gmAdDrv,
 k_addvLO,
 k_type_drv,
 LeftWdOnlyBuf,
 RtWdOnlyBuf,
 kmbg,
 k_RRQ_valid,
 k_OutQ_valid,
 AnyErrMode,
 1’b0
 };
 3’b101: gsc_view = view_goutdecode;
 wire [0:20] #1 view_goutdecode = { gIOFlexWr,
 gIODCDataRd,
 gIOStatRd,
 gIOCntrlRd,
 gIOErrRespRd,
 gIOErrInfoRd,
 gIOErrReqRd,
 gRAMTestRd,
 gTransTORd,
 gPendTORd,
 gConfigRd,
 gWatchdogTORd,
 gPerfMask0Rd,
 gPerfMask1Rd,
 gPerfComp0Rd,
 gPerfComp1Rd,
 gPerfCount0Rd,
 gPerfCount1Rd,
 gPerfConfigRd,
 IntrnlReg,
 DoWrite
 };
 3’b110: gsc_view = view_gslave;
 assign #1 view_gslave = { k_InQ_load,
 slave_state[0:4],

188

 ksRRRWdAddr[0:2],
 ksDIORdRtn,
 CkDMAWrDPar,
 con_rtn,
 connected,
 crrv,
 ready_wait,
 BadDIORdRtn,
 BadDMAWr,
 DIOPendDone,
 gsLoadDirErr,
 ksreadyLO,
 ksAdDrv };
 3’b111: gsc_view = pdh_view;
 wire [0:20] #1 pdh_view = {pdh_state[0:4], // Main state mach.
 ClkCnt[0:5], // GCLK Cycle ct.
 OutQBuf[10], // OutQ PDH bit
 OutQBuf[12], // OutQ READ/NWR bit
 OutQBuf[16:23] }; // OutQ Runway Byte Enb
 default: gsc_view = view_garb;
 endcase

/*********************************synchro_view****************************/
 /* pdataI[0:4] = 5’b10010(IOA0) or 5’b10110 (IOA1) */

 case (int_view_sel) // synopsys full_case parallel_case
 3’b000:
 begin
 synchro_view = {dp_q_obsv_rcount, dp_q_obsv_wcount, inq_obsv_rcount,
 inq_obsv_wcount, 17’b0};
 end
 3’b001:
 begin
 synchro_view = oQ_view[0:20] ;
 end assign oQ_view[0:20] = { sync_write_cnt[0:5],
 sync_read_cnt_1[0:5],
 in_cmp_cnt[0:5],
 o_OutQ_valid,
 k_OutQ_valid,
 almost_full } ;
 assign oQ_oflow_view[0:4] = oflow_cnt[0:4] ;
 3’b010:
 begin
 synchro_view = { RRQ_view[0:13], oQ_oflow_view[0:4], 2’b00 } ;
 end

189

 assign RRQ_view[0:13] = { sync_write_cnt[0:3],
 sync_read_cnt_1[0:3],
 in_cmp_cnt[0:3],
 o_RRQ_valid,
 k_RRQ_valid } ;
 3’b100:
 begin
 synchro_view = { iQ_view[0:16],rCmdReset,rCmdClear,k_reset_sync,rFlexEnb }
 end
 assign iQ_view[0:16] = { sync_write_cnt[0:3],
 sync_read_cnt_1[0:3],
 in_cmp_cnt[0:3],
 oflow_cnt[0:2],
 inQ_valid,
 k_InQ_avail } ;

10.5. PDC Self Test

To some extent, just writing and reading from PDC and UTurn internal registers verifies some degree
of functionality. However, additional features have been added to the UTurn design to simulate GSC+
activity. Specifically, GSC+ DMA reads and GSC+ DMA writes can be configured into the queues, ac-
cording to the mechanisms described below.

10.5.1. GSC+ DMA Reads

UTurn provides programmability features to allow PDC to create the illusion of a GSC+ read. The dia-
gram and sequence of events shown below, explain this functionality. For details on specific HPA Regis-
ters and Commands, please reference the Architectural Register Chapter.

190

HPA

Registers

Runway Receive Register

CCC
Queue

=

Prefetch and

Inbound RAM

=

+

128

Runway Drive Register

PDC/PDH

Outbound RAM

TLB

Cache

Pool

Outbound
Command

Queue

Read
Return
Queue

TLB HPA Registers

Inbound
Queue

HPA

Registers

1

3

4
5

4

5

3

2 6

6

66

6

1. PDC must write the GSC+ read command to the Runway TEST_ADDRESS and
TEST_INFO registers.

2. PDC must issue a TEST_Ld_OutQ command to trigger the Runway slave block to
load the Runway Test Register contents into the Outbound Command Queue with
both the Uturn and Diagnostic bits set (indicating that this transaction must be routed
to the Inbound Queue).

3. The Outbound Command Queue entry will migrate to the head of the queue and
from there it will transfer to the Inbound Queue, appearing to the Runway Inbound
block like a GSC+ DMA read with the diagnostic bit set.

4. When the Inbound Queue entry has migrated to the head of the queue, the Runway
Inbound block will issue a Runway Read_Shar_or_Priv and create a pool entry,
again with the Diagnostic bit set.

5. As with all UTurn mastered reads on Runway, the corresponding data return will get
stored in the Read Return RAM and a Read Return Queue entry will get formed,
again with the Diagnostic bit set.

6. When the Read Return Queue entry has migrated to the head of the queue, the data
will be returned on GSC+. Because the Diagnostic bit is set, the data will also be
inserted in the Inbound RAM.

7. The processor must wait for the “read” to complete. a 1 microsecond wait after is-
suance of the TEST_Ld_OutQ command is sufficient. After this time delay, PDC

191

may issue GSC+ HPA reads of the OUT_RAM registers to obtain the Read Return
RAM contents corresponding to this transaction. Data returns for this HPA read will
cycle through the Inbound RAM and get issued on Runway in quantities of 64 bits.

10.5.2. GSC+ DMA Read Returns

This testability feature is simply a subset of the GSC+ DMA Read test described above. It provides PDC
with the capability of selecting the Outbound RAM address for a fictional DMA Read Return, thereby
allowing test accessibility to all Outbound RAM locations. The following procedure must be followed
to perform this test.

1. PDC must write the GSC+ DMA read return transaction information to the Runway
TEST_INFO register, selecting the Outbound RAM address.

2. PDC must issue a TEST_Ld_RRQ command to trigger the Runway slave block to
load the Runway Test Register contents into the Read Return Queue.

3. The Read Return Queue entry will migrate to the head of the queue and from there it
will get issued on GSC+.

10.5.3. GSC+ DMA Writes

UTurn provides programmability features to allow PDC to create the illusion of a GSC+ write. The dia-
gram and sequence of events shown below, explain this functionality. For details on specific HPA Regis-
ters and Commands, please reference the Architectural Register Chapter.

HPA

Registers

Runway Receive Register

CCC
Queue

=

Prefetch and

Inbound RAM

=

+

128

Runway Drive Register

PDC/PDH

Outbound RAM

TLB

Cache

Pool

Outbound
Command

Queue

Read
Return
Queue

TLB HPA Registers

Inbound
Queue

HPA

Registers

1

5
5

2

3

4

4

4
4

5

192

1. PDC must force fictitious data into the Inbound RAM, by following steps 1 through
6 in the above procedure for GSC+ DMA Reads.

2. PDC must write the GSC+ write command to the Runway TEST_ADDRESS and
TEST_INFO registers.

3. PDC must issue a TEST_Ld_OutQ command to trigger the Runway slave block to
load the Runway Test Register contents into the Outbound Command Queue with
both the Uturn and Diagnostic bits set (indicating that this transaction must be routed
to the Inbound Queue).

4. The Outbound Command Queue entry will migrate to the head of the queue and
from there it will transfer to the Inbound Queue, appearing to the Runway Inbound
block like a GSC+ DMA write with the diagnostic bit set.

5. When the Inbound Queue entry has migrated to the head of the queue, the Runway
Inbound block will issue a Runway Write16_Purge, Write_Purge, or a Runway
Read_Priv followed by a Write_Back depending on the size of the write command
and the TLB page type.

6. Now PDC can interrogate Memory to determine if the write occurred properly.

NOTES on DMA Reads/Writes:

1. A fake DMA read/write combination with lock asserted will NOT act the same as a
normal GSC transaction combination. The lock will look like it was deasserted and
an unlock queue entry will be formed. This will mean that there will be two
read_privates done for the read–write combo – the first will be due to the lock–on
and the second will be due to the sub–cache–line write.

2. PDC must be very careful when doing the fake GSC DMA writes. PDC should
cache all the code before starting this sequence. If not, the data that is written with
the DMA write will be somewhat indeterminate. It is best to do a fake DMA read
followed by a fake DMA write without any transactions going to UTurn in between.

3. Fake DMA reads that are connected will cause the read to be done and the data to be
inserted in the RRR (read return RAM), but the data will not be returned on GSC.
For pended reads the data will be returned on GSC.

193

194

11. UTurn Pinout

UTURN

195

(UTURN DIE)

196

TABLE KEY:

Multiple pin connections are noted by (m*) and notated collectively at
the end of the listing.

A ”–” in the ”bond share” column means the PGA bond pad number is unique.
A number in this column means that there are multiple bond wires
connected from a single large pad on the PGA to indiviual bitslices
on the Chip.

SIGNAL TYPES: I/O Input/Output
I Input
O Output
A Analog
I–ECL Input, standard or DC shifted ECL levels
VDLXX VDL with internal VDL/DGND breaker
GND core ground } DGND/GND share a com-

mon
DGND dirty ground } ground plane in the PGA
VDL 3.3 volt supply (Dirty supply for drivers)
VDDn 5.0 volt supply (n: 1,2,3,4,5,6,7,8)

m* – Internal multiple pin connections (PGA PIN#’s)

VDD1: D18,F18
VDD2: D6,F8
VDD3: T4,T6
VDD4: DD6,FF4
VDD5: FF18,HH18
VDD6: FF28,HH30,DD26
VDD7: T30,T32
VDD8: F32,H30,K28

VDL: Q1, G3, L3, U3, CC3, EE3, M4, Z4, G5, W5, EE5, K6, P6, A7, E7, GG7,
 JJ7, T8, C9, FF10, JJ11, D12, HH12, FF14, E15, LL15, KK16, C17, H18,
 DD18, JJ19, B20, GG21, F22, D24, HH24, F26, JJ27, T28, C29, GG29, X30,
 BB30, G31, Q31, M32, Z32, J33, S33, EE33, G35, W35,

GND: EE1, LL1, R2, Z2, C3, J3, Q3, S3, W3, Y3, JJ3, F4, K4, R4, L5, F6,
 M6, X6, Z6, BB6, FF6, HH6, C7, K8, R8, BB8, JJ9, F10, H10, DD10, HH10,
 GG11, B12, F12, FF12, C13, F14, C15, DD16, JJ17, C19, H20, D20, A21,
 JJ21, FF22, JJ23, F24, FF24, KK24, C25, E25, D26, H26, FF26, C27, V28,
 BB28, E29, JJ29, LL29, D30, F30, K30, M30, P30, Z30, FF30, AA31, EE31,
 V32, BB32, FF32, C33, G33, N33, Q33, U33, AA33, CC33, JJ33, M34, V34,
 A35, LL35

197

PGA
PAD#

bond
share

PGA
PIN#

SIGNAL
TYPE

PLOC# SIGNAL NAME BITSLICE CELL
NAME

40 – m* VDL LEFT 1 VDL U2PADVDLDS

41 40 m* VDL LEFT 2 VDL U2PADVDLDS

42 40 m* VDL LEFT 3 VDL U2PADVDLDS

43 40 m* VDL LEFT 4 (NOBONDWIRE) U2PADVDLDS

44 – G27 I–ECL LEFT 5 SYNC_K0_H /*U2GSCCLK*/

45 40 m* VDL LEFT 6 (NOBONDWIRE) /*U2GSCCLK*/

46 – G29 I–ECL LEFT 7 SYNC_K0_L /*U2GSCCLK*/

47 – m* GND LEFT 8 GND /*U2GSCCLK*/

48 – E31 O LEFT 9 K0_RESET U2RSTOUT

49 – H28 I/O LEFT 10 K0_AD[8] U2GSCPBS2

50 – G25 I/O LEFT 11 K0_AD[9] U2GSCPBS2

51 – D32 I/O LEFT 12 K0_AD[10] U2GSCPBS2

52 47 m* DGND LEFT 13 DGND U2PADGNDD

53 – F28 I/O LEFT 14 K0_AD[11] U2GSCPBS2

54 – m* VDL LEFT 15 VDL U2PADVDLD

55 – H24 I/O LEFT 16 K0_AD[12] U2GSCPBS2

56 – E27 I/O LEFT 17 K0_AD[13] U2GSCPBS2

57 54 m* VDL LEFT 18 VDL U2PADVDLD

58 – C31 I/O LEFT 19 K0_AD[14] U2GSCPBS2

59 – m* DGND LEFT 20 DGND U2PADGNDD

60 – A33 I/O LEFT 21 K0_AD[15] U2GSCPBS2

61 – B34 I/O LEFT 22 K0_AD[16] U2GSCPBS2

62 – G23 I/O LEFT 23 K0_AD[17] U2GSCPBS2

63 – B32 I/O LEFT 24 K0_AD[18] U2GSCPBS2

64 59 m* DGND LEFT 25 DGND U2PADGNDD

65 – H22 I/O LEFT 26 K0_AD[19] U2GSCPBS2

66 – m* VDL LEFT 27 VDL U2PADVDLD

67 – D28 I/O LEFT 28 K0_AD[20] U2GSCPBS2

68 – A31 I/O LEFT 29 K0_AD[21] U2GSCPBS2

69 66 m* VDL LEFT 30 VDL U2PADVDLD

70 – A29 I/O LEFT 31 K0_AD[22] U2GSCPBS2

198

71 – m* DGND LEFT 32 DGND U2PADGNDD

72 – E23 I/O LEFT 33 K0_AD[23] U2GSCPBS2

73 – B30 I/O LEFT 34 K0_AD[24] U2GSCPBS2

74 – G21 I/O LEFT 35 K0_AD[25] U2GSCPBS2

75 – B28 I/O LEFT 36 K0_AD[26] U2GSCPBS2

76 71 m* DGND LEFT 37 DGND U2PADGNDD

77 – B26 I/O LEFT 38 K0_AD[27] U2GSCPBS2

78 – m* VDL LEFT 39 VDL U2PADVDLD

79 – C23 I/O LEFT 40 K0_AD[28] U2GSCPBS2

80 – A27 I/O LEFT 41 K0_AD[29] U2GSCPBS2

81 78 m* VDL LEFT 42 VDL U2PADVDLD

82 – E21 I/O LEFT 43 K0_AD[30] U2GSCPBS2

83 – m* DGND LEFT 44 DGND U2PADGNDD

84 – A25 I/O LEFT 45 K0_AD[31] U2GSCPBS2

85 – F20 I/O LEFT 46 K0_TYPE[2] U2GSCTBS2

86 – A23 I/O LEFT 47 K0_TYPE[3] U2GSCTBS2

87 – D22 I/O LEFT 48 K0_TYPE[0] U2GSCTBS2

88 83 m* DGND LEFT 49 DGND U2PADGNDD

89 – B24 I/O LEFT 50 K0_TYPE[1] U2GSCTBS2

90 – m* VDL LEFT 51 VDL U2PADVDLD

91 – B22 I LEFT 52 K0_BRL[0] U2GSCCBS2

92 – A19 I LEFT 53 K0_BRL[1] U2GSCCBS2

93 90 m* VDL LEFT 54 VDL U2PADVDLD

94 – E19 I LEFT 55 K0_BRL[2] U2GSCCBS2

95 – C21 I LEFT 56 K0_BRL[3] U2GSCCBS2

96 – G19 I LEFT 57 K0_BRL[4] U2GSCCBS2

97 – m* DGND LEFT 58 DGND U2PADGNDD

98 – m* VDD1 LEFT 59 VDD U2PADVDDIOL

99 97 m* GND LEFT 60 GND U2PADGNDIOL

100 98 m* VDD1 LEFT 61 VDD U2PADVDDIOL

101 97 m* GND LEFT 62 GND U2PADGNDIOL

102 98 m* VDD1 LEFT 63 VDD U2PADVDDIOL

199

103 97 m* GND LEFT 64 GND U2PADGNDIOL

104 97 m* DGND LEFT 65 DGND U2PADGNDD

105 – B18 I LEFT 66 K0_BRL[5] U2GSCCBS2

106 – E17 I/O LEFT 67 K0_ADDVL U2GSCCBS2

107 – B16 I/O LEFT 68 K0_READYL U2GSCCBS2

108 – m* VDL LEFT 69 VDL U2PADVDLD

109 – D16 I/O LEFT 70 K0_PARITY U2GSCPBS2

110 – A17 I/O LEFT 71 K0_ERRORL U2GSCCBS2

111 108 m* VDL LEFT 72 VDL U2PADVDLD

112 – A15 O LEFT 73 K0_BGL[0] U2GSCCBS2

113 – m* DGND LEFT 74 DGND U2PADGNDD

114 – A13 O LEFT 75 K0_BGL[1] U2GSCCBS2

115 – B14 O LEFT 76 K0_BGL[2] U2GSCCBS2

116 – A11 O LEFT 77 K0_BGL[3] U2GSCCBS2

117 – F16 O LEFT 78 K0_BGL[4] U2GSCCBS2

118 113 m* DGND LEFT 79 DGND U2PADGNDD

119 – D14 O LEFT 80 K0_BGL[5] U2GSCCBS2

120 – m* VDL LEFT 81 VDL U2PADVDLD

121 – H16 I LEFT 82 K0_LSL U2GSCCBS2

122 – A9 I LEFT 83 K0_INTERRUPTL U2GSCCBS2

123 120 m* VDLXX LEFT 84 VDL PADKHVDLBL

124 – C11 I/O LEFT 85 ADDR_DATA[0] PADIOSSFC

125 – m* DGND LEFT 86 DGND PADKHDGND

126 – G15 I/O LEFT 87 ADDR_DATA[3] PADIOSSFC

127 – B10 I/O LEFT 88 ADDR_DATA[1] PADIOSSFC

128 – E13 I/O LEFT 89 ADDR_DATA[5] PADIOSSFC

129 – B8 I/O LEFT 90 ADDR_DATA[2] PADIOSSFC

130 125 m* DGND LEFT 91 DGND PADKHDGND

131 – B6 I/O LEFT 92 ADDR_DATA[7] PADIOSSFC

132 – m* VDL LEFT 93 VDL PADKHVDL

133 – D10 I/O LEFT 94 ADDR_DATA[4] PADIOSSFC

134 – A5 I/O LEFT 95 ADDR_DATA[9] PADIOSSFC

200

135 132 m* VDL LEFT 96 VDL PADKHVDL

136 – A3 I/O LEFT 97 ADDR_DATA[6] PADIOSSFC

137 – m* DGND LEFT 98 DGND PADKHDGND

138 – E11 I/O LEFT 99 ADDR_DATA[11] PADIOSSFC

139 – H14 I/O LEFT 100 ADDR_DATA[8] PADIOSSFC

140 – G13 I/O LEFT 101 ADDR_DATA[13] PADIOSSFC

141 – D8 I/O LEFT 102 ADDR_DATA[10] PADIOSSFC

142 137 m* DGND LEFT 103 DGND PADKHDGND

143 – B4 I/O LEFT 104 ADDR_DATA[15] PADIOSSFC

144 – m* VDL LEFT 105 VDL PADKHVDL

145 – G9 I/O LEFT 106 ADDR_DATA[12] PADIOSSFC

146 – C5 I/O LEFT 107 ADDR_DATA[17] PADIOSSFC

147 144 m* VDL LEFT 108 VDL PADKHVDL

148 – E9 I/O LEFT 109 ADDR_DATA[14] PADIOSSFC

149 – H12 I/O LEFT 110 AD_PAR[0] PADIOSSFC

150 – G11 I/O LEFT 111 ADDR_DATA[16] PADIOSSFC

151 – m* DGND LEFT 112 DGND PADKHDGNDS

152 – m* VDD2 LEFT 113 VDD PADKHVDDS

153 151 m* GND LEFT 114 GND PADKHCGNDSU

154 152 m* VDD2 LEFT 115 VDD PADKHVDDS

155 151 m* GND LEFT 116 GND PADKHCGNDSU

156 152 m* VDD2 LEFT 117 VDD PADKHVDDS

157 151 m* GND LEFT 118 GND PADKHCGNDSU

158 152 m* VDD2 LEFT 119 VDD PADKHVDDS

159 151 m* GND LEFT 120 GND PADKHCGNDSU

160 151 m* GND LEFT 121 GND PADKHCGNDSU

161 151 m* GND LEFT 122 GND PADKHCGNDSU

240 – m* VDL TOP 1 VDL PADKHVDLS

241 240 m* VDL TOP 2 VDL PADKHVDLS

242 240 m* VDL TOP 3 VDL PADKHVDLS

243 240 m* VDL TOP 4 (NOBONDWIRE) PADKHVDLS

244 – J7 I–ECL TOP 5 SYNC_IOA0_L PADSYNCM

201

245 240 m* VDL TOP 6 (NOBONDWIRE) PADKHVDLS

246 – G7 I–ECL TOP 7 SYNC_IOA0_H PADSYNCM

247 – m* GND TOP 8 GND PADKHCGNDSU

248 – E5 I/O TOP 9 ADDR_DATA[19] PADIOSSFC

249 – H8 I/O TOP 10 ADDR_DATA[18] PADIOSSFC

250 – L7 I/O TOP 11 ADDR_DATA[21] PADIOSSFC

251 – D4 I/O TOP 12 ADDR_DATA[20] PADIOSSFC

252 247 m* DGND TOP 13 DGND PADKHDGND

253 – H6 I/O TOP 14 ADDR_DATA[23] PADIOSSFC

254 – m* VDL TOP 15 VDL PADKHVDL

255 – M8 I/O TOP 16 ADDR_DATA[22] PADIOSSFC

256 – J5 I/O TOP 17 ADDR_DATA[25] PADIOSSFC

257 254 m* VDL TOP 18 VDL PADKHVDL

258 – E3 I/O TOP 19 ADDR_DATA[24] PADIOSSFC

259 – m* DGND TOP 20 DGND PADKHDGND

260 – C1 I/O TOP 21 ADDR_DATA[27] PADIOSSFC

261 – B2 I/O TOP 22 ADDR_DATA[26] PADIOSSFC

262 – N7 I/O TOP 23 ADDR_DATA[29] PADIOSSFC

263 – D2 I/O TOP 24 ADDR_DATA[28] PADIOSSFC

264 259 m* DGND TOP 25 DGND PADKHDGND

265 – P8 I/O TOP 26 ADDR_DATA[31] PADIOSSFC

266 – m* VDL TOP 27 VDL PADKHVDL

267 – H4 I/O TOP 28 ADDR_DATA[30] PADIOSSFC

268 – E1 I/O TOP 29 ADDR_DATA[33] PADIOSSFC

269 266 m* VDL TOP 30 VDL PADKHVDL

270 – G1 I/O TOP 31 ADDR_DATA[32] PADIOSSFC

271 – m* DGND TOP 32 DGND PADKHDGND

272 – N5 I/O TOP 33 ADDR_DATA[35] PADIOSSFC

273 – F2 I/O TOP 34 ADDR_DATA[34] PADIOSSFC

274 – Q7 I/O TOP 35 ADDR_DATA[37] PADIOSSFC

275 – H2 I/O TOP 36 ADDR_DATA[36] PADIOSSFC

276 271 m* DGND TOP 37 DGND PADKHDGND

202

277 – K2 I/O TOP 38 ADDR_DATA[39] PADIOSSFC

278 – m* VDL TOP 39 VDL PADKHVDL

279 – N3 I/O TOP 40 ADDR_DATA[38] PADIOSSFC

280 – J1 I/O TOP 41 ADDR_DATA[41] PADIOSSFC

281 278 m* VDL TOP 42 VDL PADKHVDL

282 – Q5 I/O TOP 43 ADDR_DATA[40] PADIOSSFC

283 – m* DGND TOP 44 DGND PADKHDGND

284 – L1 I/O TOP 45 ADDR_DATA[43] PADIOSSFC

285 – R6 I/O TOP 46 ADDR_DATA[42] PADIOSSFC

286 – N1 I/O TOP 47 ADDR_DATA[45] PADIOSSFC

287 – P4 I/O TOP 48 ADDR_DATA[44] PADIOSSFC

288 283 m* DGND TOP 49 DGND PADKHDGND

289 – M2 I/O TOP 50 ADDR_DATA[47] PADIOSSFC

290 – m* VDL TOP 51 VDL PADKHVDL

291 – P2 I/O TOP 52 ADDR_DATA[46] PADIOSSFC

292 – S1 I/O TOP 53 AD_PAR[1] PADIOSSFC

293 290 m* VDL TOP 54 (NOBONDWIRE) PADKHVDLS

294 – S5 I–ECL TOP 55 SYNC_RW_L PADSYNCM

295 – m* GND TOP 56 GND PADKHCGNDSU

296 – S7 I–ECL TOP 57 SYNC_RW_H PADSYNCM

297 295 m* GND TOP 58 GND PADKHCGNDSU

298 – m* VDD3 TOP 59 VDD PADKHVDDS

299 295 m* GND TOP 60 GND PADKHCGNDSU

300 298 m* VDD3 TOP 61 VDD PADKHVDDS

301 295 m* GND TOP 62 GND PADKHCGNDSU

302 298 m* VDD3 TOP 63 VDD PADKHVDDS

303 295 m* GND TOP 64 GND PADKHCGNDSU

304 295 m* DGND TOP 65 DGND PADKHDGNDS

305 – T2 I/O TOP 66 ADDR_DATA[49] PADIOSSFC

306 – U5 I/O TOP 67 ADDR_DATA[51] PADIOSSFC

307 – V2 I/O TOP 68 ADDR_DATA[48] PADIOSSFC

308 – m* VDL TOP 69 VDL PADKHVDL

203

309 – V4 I/O TOP 70 ADDR_DATA[53] PADIOSSFC

310 – U1 I/O TOP 71 ADDR_DATA[50] PADIOSSFC

311 308 m* VDL TOP 72 VDL PADKHVDL

312 – W1 I/O TOP 73 ADDR_DATA[55] PADIOSSFC

313 – m* DGND TOP 74 DGND PADKHDGND

314 – Y1 I/O TOP 75 ADDR_DATA[52] PADIOSSFC

315 – X2 I/O TOP 76 ADDR_VALID PADIOSSFC

316 – AA1 I/O TOP 77 ADDR_DATA[54] PADIOSSFC

317 – V6 I/O TOP 78 ADDR_DATA[57] PADIOSSFC

318 313 m* DGND TOP 79 DGND PADKHDGND

319 – X4 I/O TOP 80 ADDR_DATA[56] PADIOSSFC

320 – m* VDL TOP 81 VDL PADKHVDL

321 – V8 I/O TOP 82 ADDR_DATA[59] PADIOSSFC

322 – CC1 I/O TOP 83 ADDR_DATA[58] PADIOSSFC

323 320 m* VDL TOP 84 VDL PADKHVDL

324 – AA3 I/O TOP 85 ADDR_DATA[61] PADIOSSFC

325 – m* DGND TOP 86 DGND PADKHDGND

326 – W7 I/O TOP 87 ADDR_DATA[60] PADIOSSFC

327 – BB2 I/O TOP 88 ADDR_DATA[63] PADIOSSFC

328 – Y5 I/O TOP 89 ADDR_DATA[62] PADIOSSFC

329 – DD2 I TOP 90 CLIENT_OP[1] PADIOSSFC

330 325 m* DGND TOP 91 DGND PADKHDGND

331 – FF2 I/O TOP 92 DATA_VALID PADIOSSFC

332 – m* VDL TOP 93 VDL PADKHVDL

333 – BB4 I TOP 94 CLIENT_ID PADIOSSFC

334 – GG1 I TOP 95 RW_EXTRA2 PADIOSSFC

335 332 m* VDL TOP 96 VDL PADKHVDL

336 – JJ1 I TOP 97 POWER_ON PADIOSSFC

337 – m* DGND TOP 98 DGND PADKHDGND

338 – AA5 I TOP 99 RW_EXTRA1 PADIOSSFC

339 – X8 I TOP 100 CLIENT_OP[0] PADIOSSFC

340 – Y7 I TOP 101 U2_ARB_IN PADIOSSFC

204

341 – DD4 I TOP 102 CLIENT_OP[2] PADIOSSFC

342 337 m* DGND TOP 103 DGND PADKHDGND

343 – HH2 O TOP 104 U2_ARB_OUT PADIOSSFC

344 – m* VDL TOP 105 VDL PADKHVDL

345 – CC7 I TOP 106 STOP_MOST_IN PADIOSSFC

346 – GG3 O TOP 107 STOP_IO_OUT PADIOSSFC

347 344 m* VDL TOP 108 VDL PADKHVDL

348 – CC5 I/O TOP 109 LONG_TRANS PADIOSSFC

349 – Z8 I/O TOP 110 CTL_PAR PADIOSSFC

350 – AA7 O TOP 111 STOP_MOST_OUT PADIOSSFC

351 – m* DGND TOP 112 DGND PADKHDGNDS

352 – m* VDD4 TOP 113 VDD PADKHVDDS

353 351 m* GND TOP 114 GND PADKHCGNDSU

354 352 m* VDD4 TOP 115 VDD PADKHVDDS

355 351 m* GND TOP 116 GND PADKHCGNDSU

356 352 m* VDD4 TOP 117 VDD PADKHVDDS

357 351 m* GND TOP 118 GND PADKHCGNDSU

358 352 m* VDD4 TOP 119 VDD PADKHVDDS

359 351 m* GND TOP 120 GND PADKHCGNDSU

360 351 m* GND TOP 121 GND PADKHCGNDSU

361 351 m* GND TOP 122 GND PADKHCGNDSU

440 – m* VDL RIGHT 122 VDL PADKHVDLS

441 440 m* VDL RIGHT 121 VDL PADKHVDLS

442 440 m* VDL RIGHT 120 VDL PADKHVDLS

443 440 m* VDL RIGHT 119 (NOBONDWIRE) PADKHVDLS

444 – EE9 I–ECL RIGHT 118 SYNC_IOA1_L PADSYNCM

445 440 m* VDL RIGHT 117 (NOBONDWIRE) PADKHVDLS

446 – EE7 I–ECL RIGHT 116 SYNC_IOA1_H PADSYNCM

447 – m* GND RIGHT 115 GND PADKHCGNDSU

448 – GG5 I/O RIGHT 114 MASTER_ID[2] PADIOSSFC

449 – DD8 I/O RIGHT 113 TRANS_ID[0] PADIOSSFC

450 – EE11 I/O RIGHT 112 TRANS_ID[1] PADIOSSFC

205

451 – HH4 I/O RIGHT 111 MASTER_ID[1] PADIOSSFC

452 447 m* DGND RIGHT 110 DGND PADKHDGND

453 – FF8 I/O RIGHT 109 TRANS_ID[2] PADIOSSFC

454 – m* VDL RIGHT 108 VDL PADKHVDL

455 – DD12 I/O RIGHT 107 TRANS_ID[3] PADIOSSFC

456 – GG9 I/O RIGHT 106 TRANS_ID[4] PADIOSSFC

457 454 m* VDL RIGHT 105 VDL PADKHVDL

458 – JJ5 I/O RIGHT 104 TRANS_ID[5] PADIOSSFC

459 – m* DGND RIGHT 103 DGND PADKHDGND

460 – LL3 O RIGHT 102 COH0[0] PADIOSSFC

461 – KK2 O RIGHT 101 COH0[1] PADIOSSFC

462 – EE13 O RIGHT 100 COH1[0] PADIOSSFC

463 – KK4 O RIGHT 99 COH1[1] PADIOSSFC

464 459 m* DGND RIGHT 98 DGND PADKHDGND

465 – DD14 I/O RIGHT 97 MASTER_ID[0] PADIOSSFC

466 – m* VDLXX RIGHT 96 VDL PADKHVDLBR

467 – HH8 I RIGHT 95 K1_INTERRUPTL U2GSCCBS2

468 – LL5 I RIGHT 94 K1_LSL U2GSCCBS2

469 466 m* VDL RIGHT 93 VDL U2PADVDLD

470 – LL7 O RIGHT 92 K1_BGL[5] U2GSCCBS2

471 – m* DGND RIGHT 91 DGND U2PADGNDD

472 – GG13 O RIGHT 90 K1_BGL[4] U2GSCCBS2

473 – KK6 O RIGHT 89 K1_BGL[3] U2GSCCBS2

474 – EE15 O RIGHT 88 K1_BGL[2] U2GSCCBS2

475 – KK8 O RIGHT 87 K1_BGL[1] U2GSCCBS2

476 471 m* DGND RIGHT 86 DGND U2PADGNDD

477 – KK10 O RIGHT 85 K1_BGL[0] U2GSCCBS2

478 – m* VDL RIGHT 84 VDL U2PADVDLD

479 – JJ13 I/O RIGHT 83 K1_ERRORL U2GSCCBS2

480 – LL9 I/O RIGHT 82 K1_PARITY U2GSCPBS2

481 478 m* VDL RIGHT 81 VDL U2PADVDLD

482 – GG15 I/O RIGHT 80 K1_READYL U2GSCCBS2

206

483 – m* DGND RIGHT 79 DGND U2PADGNDD

484 – LL11 I/O RIGHT 78 K1_ADDVL U2GSCCBS2

485 – FF16 I RIGHT 77 K1_BRL[5] U2GSCCBS2

486 – LL13 I RIGHT 76 K1_BRL[4] U2GSCCBS2

487 – HH14 I RIGHT 75 K1_BRL[3] U2GSCCBS2

488 483 m* DGND RIGHT 74 DGND U2PADGNDD

489 – KK12 I RIGHT 73 K1_BRL[2] U2GSCCBS2

490 – m* VDL RIGHT 72 VDL U2PADVDLD

491 – KK14 I RIGHT 71 K1_BRL[1] U2GSCCBS2

492 – LL17 I RIGHT 70 K1_BRL[0] U2GSCCBS2

493 490 m* VDL RIGHT 69 VDL U2PADVDLD

494 – GG17 I/O RIGHT 68 K1_TYPE[1] U2GSCTBS2

495 – JJ15 I/O RIGHT 67 K1_TYPE[0] U2GSCTBS2

496 – EE17 I/O RIGHT 66 K1_TYPE[3] U2GSCTBS2

497 – m* DGND RIGHT 65 DGND U2PADGNDD

498 – m* VDD5 RIGHT 64 VDD U2PADVDDIOL

499 497 m* GND RIGHT 63 GND U2PADGNDIOL

500 498 m* VDD5 RIGHT 62 VDD U2PADVDDIOL

501 497 m* GND RIGHT 61 GND U2PADGNDIOL

502 498 m* VDD5 RIGHT 60 VDD U2PADVDDIOL

503 497 m* GND RIGHT 59 GND U2PADGNDIOL

504 497 m* DGND RIGHT 58 DGND U2PADGNDD

505 – KK18 I/O RIGHT 57 K1_TYPE[2] U2GSCTBS2

506 – GG19 I/O RIGHT 56 K1_AD[31] U2GSCPBS2

507 – KK20 I/O RIGHT 55 K1_AD[30] U2GSCPBS2

508 – m* VDL RIGHT 54 VDL U2PADVDLD

509 – HH20 I/O RIGHT 53 K1_AD[29] U2GSCPBS2

510 – LL19 I/O RIGHT 52 K1_AD[28] U2GSCPBS2

511 508 m* VDL RIGHT 51 VDL U2PADVDLD

512 – LL21 I/O RIGHT 50 K1_AD[27] U2GSCPBS2

513 – m* DGND RIGHT 49 DGND U2PADGNDD

514 – LL23 I/O RIGHT 48 K1_AD[26] U2GSCPBS2

207

515 – KK22 I/O RIGHT 47 K1_AD[25] U2GSCPBS2

516 – LL25 I/O RIGHT 46 K1_AD[24] U2GSCPBS2

517 – FF20 I/O RIGHT 45 K1_AD[23] U2GSCPBS2

518 513 m* DGND RIGHT 44 DGND U2PADGNDD

519 – HH22 I/O RIGHT 43 K1_AD[22] U2GSCPBS2

520 – m* VDL RIGHT 42 VDL U2PADVDLD

521 – DD20 I/O RIGHT 41 K1_AD[21] U2GSCPBS2

522 – LL27 I/O RIGHT 40 K1_AD[20] U2GSCPBS2

523 520 m* VDL RIGHT 39 VDL U2PADVDLD

524 – JJ25 I/O RIGHT 38 K1_AD[19] U2GSCPBS2

525 – m* DGND RIGHT 37 DGND U2PADGNDD

526 – EE21 I/O RIGHT 36 K1_AD[18] U2GSCPBS2

527 – KK26 I/O RIGHT 35 K1_AD[17] U2GSCPBS2

528 – GG23 I/O RIGHT 34 K1_AD[16] U2GSCPBS2

529 – KK28 I/O RIGHT 33 K1_AD[15] U2GSCPBS2

530 525 m* DGND RIGHT 32 DGND U2PADGNDD

531 – KK30 I/O RIGHT 31 K1_AD[14] U2GSCPBS2

532 – m* VDL RIGHT 30 VDL U2PADVDLD

533 – HH26 I/O RIGHT 29 K1_AD[13] U2GSCPBS2

534 – LL31 I/O RIGHT 28 K1_AD[12] U2GSCPBS2

535 532 m* VDL RIGHT 27 VDL U2PADVDLD

536 – LL33 I/O RIGHT 26 K1_AD[11] U2GSCPBS2

537 – m* DGND RIGHT 25 DGND U2PADGNDD

538 – GG25 I/O RIGHT 24 K1_AD[10] U2GSCPBS2

539 – DD22 I/O RIGHT 23 K1_AD[9] U2GSCPBS2

540 – EE23 I/O RIGHT 22 K1_AD[8] U2GSCPBS2

541 – HH28 I/O RIGHT 21 K1_AD[7] U2GSCPBS2

542 537 m* DGND RIGHT 20 DGND U2PADGNDD

543 – KK32 I/O RIGHT 19 K1_AD[6] U2GSCPBS2

544 – m* VDL RIGHT 18 VDL U2PADVDLD

545 – EE27 I/O RIGHT 17 K1_AD[5] U2GSCPBS2

546 – JJ31 I/O RIGHT 16 K1_AD[4] U2GSCPBS2

208

547 544 m* VDL RIGHT 15 VDL U2PADVDLD

548 – GG27 I/O RIGHT 14 K1_AD[3] U2GSCPBS2

549 – DD24 I/O RIGHT 13 K1_AD[2] U2GSCPBS2

550 – EE25 I/O RIGHT 12 K1_AD[1] U2GSCPBS2

551 – m* DGND RIGHT 11 DGND U2PADGNDDS

552 – m* VDD6 RIGHT 10 VDD U2PADVDDIOLS

553 551 m* GND RIGHT 9 GND U2PADGNDIOLS

554 552 m* VDD6 RIGHT 8 VDD U2PADVDDIOLS

555 551 m* GND RIGHT 7 GND U2PADGNDIOLS

556 552 m* VDD6 RIGHT 6 VDD U2PADVDDIOLS

557 551 m* GND RIGHT 5 GND U2PADGNDIOLS

558 552 m* VDD6 RIGHT 4 VDD U2PADVDDIOLS

559 551 m* GND RIGHT 3 GND U2PADGNDIOLS

560 551 m* GND RIGHT 2 GND U2PADGNDIOLS

561 551 m* GND RIGHT 1 GND U2PADGNDIOLS

640 – m* VDL BOTTOM 122 VDL U2PADVDLDS

641 640 m* VDL BOTTOM 121 VDL U2PADVDLDS

642 640 m* VDL BOTTOM 120 VDL U2PADVDLDS

643 640 m* VDL BOTTOM 119 (NOBONDWIRE) U2PADVDLDS

644 – CC29 I–ECL BOTTOM 118 SYNC_K1_H /**********/

645 640 m* VDL BOTTOM 117 (NOBONDWIRE) /*U2GSCCLK*/

646 – EE29 I–ECL BOTTOM 116 SYNC_K1_L /* */

647 – m* GND BOTTOM 115 GND /**********/

648 – GG31 O BOTTOM 114 K1_RESET U2RSTOUT

649 – DD28 I/O BOTTOM 113 K1_AD[0] U2GSCPBS2

650 – AA29 I BOTTOM 112 K1_PACKL U2GSCCBS2

651 – HH32 I BOTTOM 111 K1_RETRYL U2GSCCBS2

652 647 m* DGND BOTTOM 110 DGND U2PADGNDD

653 – DD30 O BOTTOM 109 K1_PENDL U2GSCCBS2

654 – m* VDL BOTTOM 108 VDL U2PADVDLD

655 – Z28 O BOTTOM 107 K1_DRRL U2GSCCBS2

656 – CC31 I BOTTOM 106 K1_XQL U2GSCCBS2

209

657 654 m* VDLXX BOTTOM 105 VDL U2PADVDLDBR

658 – GG33 O BOTTOM 104 PADDR[20] UJ2PADPNIO

659 – m* DGND BOTTOM 103 DGND UJ2PADGNDD

660 – JJ35 O BOTTOM 102 PADDR[19] UJ2PADPNIO

661 – KK34 O BOTTOM 101 PADDR[18] UJ2PADPNIO

662 – Y29 O BOTTOM 100 PADDR[17] UJ2PADPNIO

663 – HH34 O BOTTOM 99 PADDR[16] UJ2PADPNIO

664 659 m* DGND BOTTOM 98 DGND UJ2PADGNDD

665 – X28 O BOTTOM 97 PADDR[15] UJ2PADPNIO

666 – m* VDL BOTTOM 96 VDL UJ2PADVDDD

667 – DD32 O BOTTOM 95 PADDR[14] UJ2PADPNIO

668 – GG35 O BOTTOM 94 PADDR[13] UJ2PADPNIO

669 666 m* VDL BOTTOM 93 VDL UJ2PADVDDD

670 – EE35 O BOTTOM 92 PADDR[12] UJ2PADPNIO

671 – m* DGND BOTTOM 91 DGND UJ2PADGNDD

672 – Y31 O BOTTOM 90 PADDR[11] UJ2PADPNIO

673 – FF34 O BOTTOM 89 PADDR[10] UJ2PADPNIO

674 – W29 O BOTTOM 88 PADDR[9] UJ2PADPNIO

675 – DD34 O BOTTOM 87 PADDR[8] UJ2PADPNIO

676 671 m* DGND BOTTOM 86 DGND UJ2PADGNDD

677 – BB34 O BOTTOM 85 PADDR[7] UJ2PADPNIO

678 – m* VDL BOTTOM 84 VDL UJ2PADVDDD

679 – Y33 O BOTTOM 83 PADDR[6] UJ2PADPNIO

680 – CC35 O BOTTOM 82 PADDR[5] UJ2PADPNIO

681 678 m* VDL BOTTOM 81 VDL UJ2PADVDDD

682 – W31 O BOTTOM 80 PADDR[4] UJ2PADPNIO

683 – m* DGND BOTTOM 79 DGND UJ2PADGNDD

684 – AA35 O BOTTOM 78 PADDR[3] UJ2PADPNIO

685 – V30 O BOTTOM 77 PADDR[2] UJ2PADPNIO

686 – Y35 O BOTTOM 76 PADDR[1] UJ2PADPNIO

687 – X32 O BOTTOM 75 PADDR[0] UJ2PADPNIO

688 683 m* DGND BOTTOM 74 DGND UJ2PADGNDD

210

689 – Z34 O BOTTOM 73 POEL UJ2PADPNIO

690 – m* VDL BOTTOM 72 VDL UJ2PADVDDD

691 – X34 O BOTTOM 71 PWEL UJ2PADPNIO

692 – U35 O BOTTOM 70 PADDRVL UJ2PADPNIO

693 690 m* VDL BOTTOM 69 VDL UJ2PADVDDD

694 – U31 A BOTTOM 68 XTAL1 RTC_PAD

695 – W33 I BOTTOM 67 RTC_VDD RTC_VDD

696 – U29 A BOTTOM 66 XTAL2 RTC_PAD

697 – m* GND BOTTOM 65 GND UJ2PADGNDIOL

698 – m* VDD7 BOTTOM 64 VDD UJ2PADVDDIOL

699 697 m* GND BOTTOM 63 GND UJ2PADGNDIOL

700 698 m* VDD7 BOTTOM 62 VDD UJ2PADVDDIOL

701 697 m* GND BOTTOM 61 GND UJ2PADGNDIOL

702 698 m* VDD7 BOTTOM 60 VDD UJ2PADVDDIOL

703 697 m* GND BOTTOM 59 GND UJ2PADGNDIOL

704 697 m* DGND BOTTOM 58 DGND UJ2PADGNDDX

705 – T34 I/O BOTTOM 57 PDATA[2] UJ2PADPNIOX

706 – S31 I/O BOTTOM 56 PDATA[7] UJ2PADPNIOX

707 – R34 I/O BOTTOM 55 PDATA[6] UJ2PADPNIOX

708 – m* VDL BOTTOM 54 (NOBONDWIRE) UJ2PADVDDD

709 – R32 I/O BOTTOM 53 PDATA[5] UJ2PADPNIOX

710 – S35 I/O BOTTOM 52 PDATA[4] UJ2PADPNIOX

711 708 m* VDL BOTTOM 51 (NOBONDWIRE) UJ2PADVDDD

712 – Q35 I/O BOTTOM 50 PDATA[3] UJ2PADPNIOX

713 – m* DGND BOTTOM 49 DGND UJ2PADGNDD

714 – N35 I/O BOTTOM 48 PDATA[1] UJ2PADPNIOX

715 – P34 I BOTTOM 47 TRST UPADPNIOX

716 – L35 I/O BOTTOM 46 PDATA[0] UJ2PADPNIOX

717 – R30 I BOTTOM 45 TCK UPADPNIOX

718 713 m* DGND BOTTOM 44 DGND UJ2PADGNDD

719 – P32 I BOTTOM 43 TOCL UJ2PADPNIOX

720 – m* VDL BOTTOM 42 (NOBONDWIRE) UJ2PADVDDD

211

721 – R28 O BOTTOM 41 FP_DATA UJ2PADPNIOX

722 – J35 I BOTTOM 40 TMS UPADPNIOX

723 720 m* VDL BOTTOM 39 (NOBONDWIRE) UJ2PADVDDD

724 – L33 O BOTTOM 38 FP_CLK UJ2PADPNIOX

725 – m* DGND BOTTOM 37 DGND UJ2PADGNDD

726 – Q29 I BOTTOM 36 PFAIL_WARNING_L UJ2PADPNIOX

727 – K34 I BOTTOM 35 ARESETL UJ2PADPNIOX

728 – N31 I BOTTOM 34 TDI UPADPNIOX

729 – H34 I BOTTOM 33 PDC_EXTRA1 UJ2PADPNIOX

730 725 m* DGND BOTTOM 32 DGND UJ2PADGNDD

731 – F34 O BOTTOM 31 TDO UPADPNIOX

732 – m* VDLXX BOTTOM 30 VDL U2PADVDLDBL

733 – K32 I BOTTOM 29 K0_XQL U2GSCCBS2

734 – E35 O BOTTOM 28 K0_DRRL U2GSCCBS2

735 732 m* VDL BOTTOM 27 VDL U2PADVDLD

736 – C35 O BOTTOM 26 K0_PENDL U2GSCCBS2

737 – m* DGND BOTTOM 25 DGND U2PADGNDD

738 – L31 I BOTTOM 24 K0_RETRYL U2GSCCBS2

739 – P28 I BOTTOM 23 K0_PACKL U2GSCCBS2

740 – N29 I/O BOTTOM 22 K0_AD[0] U2GSCPBS2

741 – H32 I/O BOTTOM 21 K0_AD[1] U2GSCPBS2

742 737 m* DGND BOTTOM 20 DGND U2PADGNDD

743 – D34 I/O BOTTOM 19 K0_AD[2] U2GSCPBS2

744 – m* VDL BOTTOM 18 VDL U2PADVDLD

745 – J29 I/O BOTTOM 17 K0_AD[3] U2GSCPBS2

746 – E33 I/O BOTTOM 16 K0_AD[4] U2GSCPBS2

747 744 m* VDL BOTTOM 15 VDL U2PADVDLD

748 – J31 I/O BOTTOM 14 K0_AD[5] U2GSCPBS2

749 – M28 I/O BOTTOM 13 K0_AD[6] U2GSCPBS2

750 – L29 I/O BOTTOM 12 K0_AD[7] U2GSCPBS2

751 – m* DGND BOTTOM 11 DGND U2PADGNDDS

752 – m* VDD8 BOTTOM 10 VDD U2PADVDDIOLS

212

753 751 m* GND BOTTOM 9 GND U2PADGNDIOLS

754 752 m* VDD8 BOTTOM 8 VDD U2PADVDDIOLS

755 751 m* GND BOTTOM 7 GND U2PADGNDIOLS

756 752 m* VDD8 BOTTOM 6 VDD U2PADVDDIOLS

757 751 m* GND BOTTOM 5 GND U2PADGNDIOLS

758 752 m* VDD8 BOTTOM 4 VDD U2PADVDDIOLS

759 751 m* GND BOTTOM 3 GND U2PADGNDIOLS

760 751 m* GND BOTTOM 2 GND U2PADGNDIOLS

761 751 m* GND BOTTOM 1 GND U2PADGNDIOLS

213

12. Electrical and Environmental Specifications

12.1. Chip Specification

Tables 1, 2, and 3 show the various DC and AC characteristics for UTurn. All voltages are references to
Vss = Ground = 0V.

����

 ��������� �	�	��� ���	���

�"" �� .0,,(3 1+(/�%# � � � �

�"(
�	� �� .0,,(3 1+(/�%# � � � �

�'��""� �*,0/ 1+(/�%# ��� ,'*.� ���� ���� �"" � ��� �

�'��"(� �*,0/ 1+(/�%# �
�
� ,'*.� ���� ���� �"(� ��� �

�" �+2#- "'..',�/#" � � � ���

�./% �/+-�%# /#),#-�/0-# ���° � �	�° �

��� �' (#.. /&�* ����)�3 $+-2�-" '�. /&# '*,0/ !(�),'*% "'+"# +* ��0-*
�	� �"()0./ �(2�3. # (#.. /&�* �"" +- /&# ��� ,-+/#!/'+* ���. 2'(($'-# �*" "#./-+3 /&# ���

�
��� � �������� �
����� �
�����

����

 ��������� �	�	��� ���	���

�"" �� .0,,(3 1+(/�%# ����� � ��
�� �

�"(�� .0,,(3 1+(/�%#
��� �
��
 �

�� �,#-�/'*% �) '#*/ /#),#-�/0-# �° � ��° �

�
��� �
���������� ����
���� ����������
�� �� ��
�
����������

����

 ��������� ��� ��	��

�'* %.!� �*,0/ ��,�!'/�*!# � ���� ,'*.
 ,�

�'* -2 �*,0/ ��,�!'/�*!# � �0*2�3 ,'*. � ,�

�'* ,"! �*,0/ ��,�!'/�*!# � ��� ,'*. � ,�

�
��� � ����
� 	�� ����� �
�
���
���

12.2. Individual Pin Specification

UTurn’s pins fit into the following categories for timing and electrical specification purposes:

� Runway Address/Data : ADDR_DATA[0:63].

� Runway Control : ADDR_VALID, DATA_VALID, CLIENT_ID, CLI-
ENT_OP[0:2], U2_ARB_IN, U2_ARB_OUT, STOP_MOST_IN,
STOP_MOST_OUT, STOP_IO_OUT, TRANS_ID[0:5], MASTER_ID[0:2],
COH0[0:1]. COH1[0:1].

214

� Runway Parity : AD_PAR[0:1].

� Runway Misc : POWER_ON.

� GSC+ IOA0 Control : K0_ADDVL, K0_READYL, K0_TYPE[0:3], K0_ER-
RORL, K0_INTERRUPTL, K0_RESETL, K0_BRL[0:5], K0_BGL[0:5],
K0_LSL, K0_PACKL, K0_PENDL, K0_XQL.

� GSC+ IOA1 Control : K1_ADDVL, K1_READYL, K1_TYPE[0:3], K1_ER-
RORL, K1_INTERRUPTL, K1_RESETL, K1_BRL[0:5], K1_BGL[0:5],
K1_LSL, K1_PACKL, K1_PENDL, K1_XQL.

� GSC+ Address/Data : K0_AD[31:0], K1_AD[31:0].

� GSC+ Parity : K0_PARITY, K1_PARITY.

� PDC I/O’s : PDATA[0:7]

� PDC Outputs : PADDR[0:20], PADDRVL, PWEL, POEL

� Test Signal Inputs : TDI, TMS, TRST

� Test Signal Outputs : TDO

� Asynchronous Inputs : TOCL, PFAIL_WARNING_L, ARESETL

� Chassis Outputs : FP_CLK, FP_DATA.

� System Clocks : SYNC_K0_H, SYNC_K0_L, SYNC_K1_H, SYNC_K1_L,
SYNC_IOA0_H, SYNC_IOA0_L, SYNC_IOA1_H, SYNC_IOA1_L,
SYNC_RW_H, SYNC_RW_L

215

Table 4 shows the required set-up, hold and propagation times for some of the previous groups of UTurn
pins.

�"���� ����������� ����� � ��!�� �

��� � ��� ��������

�.0� �0*2 3 ����. .#/40, /')# /+ ����� �'.'*% #"%# ��� *. �

�&� �0*2 3 ����. &+(" /')# $-+) ����� �'.'*% #"%# � *. �

�.0	 ��� � / .#/40, /')# /+ ����� $ (('*% #"%# ��� *. �

�&	 ��� � / &+(" /')# $-+) ����� $ (('*% #"%# ��� *. �

�.0
 ��� �+*/-+(.#/40, /')# /+ ����� $ (('*% #"%# ��� *. �

�&
 ��� �+*/-+(&+(" /')# $-+) ����� $ (('*% #"%# ��� *. �

�.0� ��� � -'/3 .#/40, /')# /+ ����� $ (('*% #"%# ��� *. �

�&� ��� � -'/3 &+(" /')# $-+) ����� $ (('*% #"%# ��� *. �

	 �� �
����� �������������

�,� ��� ����. "#(3 $-+) ���� ���� ����� -'.'*% �
� *.

�,	 �0*2 3 � / "#(3 $-+) ����� -'.'*% #"%# � � *.

�,
 �0*2 3 �+*/-+("#(3 $-+) ����� -'.'*% #"%# � � *.

�,� �0*2 3 � -'/3 "#(3 $-+) ����� -'.'*% #"%# � � *.

�,� ��� � / "#(3 $-+) ����� -'.'*% #"%# �
 *.

�,
 ��� �+*/-+("#(3 $-+) ����� -'.'*% #"%# �
 *.

�,� ��� � -'/3 "#(3 $-+) ����� -'.'*% #"%# �
 *.

��	�� � ��� �����
 ���
���
�����

Table 5 shows some additional electrical pin specifications.

�"���� ����������� ����� � ��!�� �

�� ��	��

�+& &'%&�(#1#(+0/,0/ 1+(/ %# � �+& � ��)� 	�� � �

�+((+2�(#1#(+0/,0/ 1+(/ %# � �+(�
�)� � ��� �

�'& &'%&�(#1#('*,0/ 1+(/ %# 	 � �

�'((+2�(#1#('*,0/ 1+(/ %# � ��� �

�+& &'%&�(#1#(+0/,0/ !0--#*/ ��)� �

�+((+2�(#1#(+0/,0/ !0--#*/
�)� �

�'& &'%&�(#1#('*,0/ !0--#*/ � �� µ�

�'((+2�(#1#('*,0/ !0--#*/ � ��� µ�

�� ��"������� �� ������� � �� ��� ���
��� 	 �� �

�+& &'%&�(#1#(+0/,0/ 1+(/ %# � �+& � ��)� 	�� � �

�+((+2�(#1#(+0/,0/ 1+(/ %# � �+(�
�)� � ��� �

�'& &'%&�(#1#('*,0/ 1+(/ %# 	 � �

�'((+2�(#1#('*,0/ 1+(/ %# � ��� �

216

�(�� �
�'��%�
����%���#�"�!$� �

��� �������!�� � �� � � ����� �	 �� �

��� ��"���!�� � �� � � ����� �� �� �

��� �������!�� ��� � � ����� � �� µ�

��� ��"���!�� ��� � � ����� � ��� µ�

�%�&�(���"�##���$�� �%�&�(� �$" �� �%�&�(��"�$(��� �!��#

��� �������!�� � �� � !������ � ��� � ��# ��
 � �

��� ��"���!�� � �� � !������ � ��� � ��# �
�� ��

��� �������!�� ��� � !������ ���� �

��� ��"���!�� ��� � !������ � ����

��� �������!�� � �� � � ����� � ��� � ��� ��� ���� �

��� ��"���!�� � �� � � ����� � ��� � ��� ��� �
�� �

��� �������!�� ��� � � ����� � �� �

��� ��"���!�� ��� � � ����� � � �� �

	�� ���"�##���$�� 	�� � �$" �� 	�� ��"�$(��� �!��#

��� �������!�� � �� � !������ � ��� � ��# ��
 � �

��� ��"���!�� � �� � !������ � ��� � ��# �
�� ��

��� �������!�� ��� � !������ ���� �

��� ��"���!�� ��� � !������ � ����

��� �������!�� � �� � � ����� � ��� � ��� ��� ���� �

��� ��"���!�� � �� � � ����� � ��� � ��� ��� �
�� �

��� �������!�� ��� � � ����� � �� �

��� ��"���!�� ��� � � ����� � � �� �

	�� �(��
� �(��� �� �� ��!%$ �!��#

��� �������!�� ��� � !������ ���� �

��� ��"���!�� ��� � !������ � ����

��� �������!�� ��� � � ����� � 	����

��� ��"���!�� ��� � � ����� � 	����

�(�� � ��#�"�!$� �
����%�
�'��%�

���������� ����������������� �� �� ��!%$ �!��#

��� �������!�� ��� � !������ �� � �

��� ��"���!�� ��� � !������ � ��� �

��� �������!�� ��� � � ����� � �	��

��� ��"���!�� ��� � � ����� � �	��

��	�� � ���������� ��� ���
���
�� ���
�
�
�����

217

12.3. GSC2X PVT Description

 PVT Block Diagram

PVT STATE
MACHINE

run_l

run_h

refen_h

refen_l

en_cmp_l

npvt_cnt[0:4]

count_up up/
down

PVT Counter

�����

down

���

count_down

wait_for_run
NQ[0:4]

npvt_ovrd_val[0:4]

pvt_ovrd_en

npvt_cnt[0:4]

PVT Sensor PAD

gclk

external resistor update_pvt_avg

gclk

enable

Q[0:4]

PVT Averaging
Circuit

PVT Overide
Circuit

PVT Main State
Machine

B

A
A>B

pvt_avg[0:4]

npvt_avg[0:4]

sensor pad control signals

npvt_apad[0:4]

GSC2X2 Pads

. . .
gclk

Q[0:4] D[0:4]

Up/Dn Counter

�����
reset

reset

early_gclk

Q[0:4] D[0:4]

pvt_cnt[0:4]

TAP_SEQ_MODE[0]

5’b10010

pre_npvt[0:4]

npvt[0:4]

gclk

idle

(For test override)

pvt_test_pad
Q[0:4] D[0:4]

pvt_test

PVT Synchronizing

12.3.1. Overview of PVT Design

�"� ��

�
)��, ���$���)�� �+#/�+�+���#/�+� �+� ��,#!'�� -(�+#/� � "#!" +�*.�'�2 �
 �(�+� �.,� ��,-

��,#!', "�/� ()-#�� -"� �+#/�+ �#+�.#-, #' -"�)��, -(�+#/� �.,�, 0�%% (+ '(&#'�% �('�#-#(', �'�)+(��,,

�.- "�/�)�+ (+&�� &�+!#'�%%2 �- -"� �1-+�&�, ()+(��,, /�+�-#(' �'� �'/#+('&�'-�% �('�#-#(',� ���

,-�'�, (+ �+(��,, �(%-�!� ��&)�+�-.+� �(&)�',�-#('� �"� ��� ��,#!' #, .,�� -(&�#'-�#' -"� (.-).- #&4

)���'�� (-"�)��, (/�+ � &.�" 0#��+ +�'!� ()+(��,, �"�'!� �'� ()�+�-#'! �('�#-#(',� �"� ��� ��,#!'

�(',#,-, (-"+�� �#,-#'�- �%(�$, +�,#�#'! #' �# �+�'- %(��-#(',� -"� ��� ,�',(+ ���� -"� ��� �('-+(%%�+� �'�

-"� ��

�
)��,� �"� ��� ,�',(+)�� �(''��-, -(�' �1-�+'�% +�,#,-(+ -#�� -(���� �'� -"� �#!#-�% (.-).-

(-"� ��� ,�',(+ ��� �'� -"� ��� �('-+(%%�+)+(!+�&, -"� ��

�
 ���,� (.-).- #&)���'�� -(�� �))+(14

#&�-�%2 ('� -�'-" -"� /�%.� (-"� �1-�+'�% +�,#,-(+� �"� ��� ,�',(+)�� �'� ��

�
)��, �+� %(��-�� #'

-"�)�� +#'!� 0"#%� -"� ���
('-+(%%�+ �#+�.#- +�,#��, #' -"� ,-�'��+� ��%% �(+� (-"� �"#)��"� ��

�
 ��

)�� #,)+(!+�&&��%� -(�� �#-"�+ �' ���+�,,���-��-2)��)�+#-2)�� (+ � �('-+(%)�� �-"� �('-+(%)�� "�, -"�

����� ��-.+� (,�% �-#&�� -+#,-�-#'! ('� �2�%� � -�+ -"� (.-).- ���,,�+-,�� �' ���#-#(' -(-"#, '(+&�% .'�4

-#('�%#-2� -"� �+#/� ,-+�'!-" (-"�)�� #,)+(!+�&&��%� /#� � #/���#- #').-)(+- ��%%�� ')/-�	���� �"� #'4

/�+-�� �#'�+2 /�%.� (')/-�	��� �('-+(%, -"� � ��-#/� ,#3� (-"� (.-).- �+#/� ���, �2)�+�%%�%%#'! ���, (

218

(/3'7>�<+/-.9+* 8/?+8� �./8 2+).'3/82 +,,+)9/;+1> 574;/*+8 (/3'7>)439741 4, 9.+ 4:95:9 ��� 8/?+� �47 '

814< 574)+88 '3* ./-. 9+25+7'9:7+� 9.+8+ (/98 8.4:1* '11 (+ '88+79+* ���� �47 ' ,'89 574)+88 '3* 14< 9+25+7'@

9:7+ 9.+8+ (/98 8.4:1* '11 (+ (+ *+'88+79+* �	�� �".+3 '11 (/98 '7+ *+'88+79+* �	�� 9.+7+ /8 ' 8/3-1+ ��� 9.'9

/8 89/11 9:73+* 43 4,)4:78+� �./8 ��� 2'> '184 (+ 9:73+* 4,, ,47 9+89 5:7548+8 (> '88+79/3- 9.+ �!�&����

8/-3'1� '114</3- +'). 5'7'11+1 ��� 94 (+ 9+89+* /3 9:73�� �.+ �!� 8+3847 �'* /8 9.+ '3'14- 5479/43 4, 9.+

+8/-3� �9 /8 /251+2+39+ /3 9.+ 9<4 5'*8)'11+* �!����� '3* �!������ ��:+ 94 9.+
)425'9/(/1/9>

24*+1� 9.+ �!����8 ,47 /4'� '3* /4'	 */,,+7 81/-.91> /3 9.+ /251+2+39'9/43 4, 9+89)/7):/97>�� �.+

�!������� /8)433+)9+* 94 '3 +=9+73'1 7+8/8947 <./). /8 5:11+* :5 94 !��� �.+ 8+3847)/7):/9)438/898

4, ')425'7'947 <./). .'8 ' !�� 94 ��� ;419'-+ */;/*+7)4257/8+* 4, */,,:8/43 7+8/89478 '8 ' 7+,+7+3)+

/35:9� '3* '349.+7 !�� 94 ��� ;419'-+ */;/*+7)4257/8+* 4, '3 +=9+73'1 7+8/8947 '3* '3 /39+73'1 3,+9 3+9@

<470 '8 9.+ 49.+7 /35:9� �.+ 3,+9 3+9<470 /8 ' 	�	� 8)'1+* *4<3 7+51/)' 4, 9.+ 3,+9 3+9<470 /3 9.+ ')9:'1

*7/;+7 5'*8 '3* /8)42548+* 4, 8/= 5'7'11+1 3,+98 4, 85+)/,/) 8/?+8� �/;+ 4, 9.+ 8/= 3,+98 '7+ 8/?+* </9. ' (/3'7>

<+/-.9/3- �+�-�
�� 	
� �� �� 	�
�� '3* '7+ 9:73+* 43 47 4,, </9. 9.+ 35;9$���% 1/3+8� �.+ 8/=9. 3,+9 /8 ' ('8+

;'1:+ <./). /8 '1<'>8 43 *:7/3- 3472'1 45+7'9/43��.+ ,/3'1 (14)0 /8 9.+ �!�)4397411+7� <./). /8 7+85438/(1+

,47)4397411/3- 9.+ '3'14- 8+)9/43 '3* :5*'9/3- 9.+ 35;9$���% ;'1:+� �.+ */-/9'1 14-/) /8 /251+2+39+* /3 89'3@

'7)+11 '8 5'79 4, 9.+)47+ 14-/) �5;9�;�� �.+ �!� 89'9+ 2')./3+ /8 7+85438/(1+ ,47)4397411/3- <.'9 /8 ('8/@

)'11> '3 ���)43;+79+7)4257/8+* 4, 9.+ �!���� '3* ')4:39+7 /3 9.+)439741 14-/) (14)0��.+ */-/9'1)43@

9741 14-/) '184 7+)+/;+8 /35:9 ,742 '3 4;+7/*+ 7+-/89+7� <./). 574;/*+8 9.+ '(/1/9> 94 4;+7/*+ 9.+ '3'14-)/7):/9

</9. ' 574-7'22'(1+ ;'1:+ ,47 9.+ 35;9$���% ;'1:+� <./). /8 4:95:9 94 9.+ ���
#
 5'*8� �.+)'1):1'9+*

;'1:+ 4, 35;9$���% /8 7+'*'(1+ ,742 9./8 8'2+ ���&�!�&�!������ 7+-/89+7�

12.3.2. PVT Controller State Machine

�.+ �!� �4397411+7 89'9+ 2')./3+ /8 7+85438/(1+ ,47)7+'9/3- 9.+ ,/;+�(/9 */-/9'1 8/-3'1 94)439741 9.+ 4:9@

5:9 /25+*'3)+ 4, 9.+ 5'*8� 35;9$���%� �.+ 8/-3'1 /8)7+'9+* :8/3- '3 ���)43;+79+7)4257/8+* 4, 9.+

)425'7'947 '3* 3,+9 3+9<470 /3 9.+ �!� �+3847 ��� '3* ')4:39+7 /3 9.+ 5;9 89'3*'7*)+11 (14)0� �.+

)4:39+7 '3*)425'7'947 '7+)4397411+* (> 9.+ �!� �4397411+7 �9'9+ �')./3+� �.+ /3;+79+* 4:95:9 4, 9.+

)4:39+7 /8 35;9&)39$���%� <./). /8 8+39 94 �!������� 94)439741 9.+ 3,+9 3+9<470� �.+ 7+8/89'3)+ 4, 9.+

3,+9 3+9<470 ,4728 9.+ 5:11*4<3 5479/43 4, ' ;419'-+ */;/*+7� <./1+ 9.+ +=9+73'1 7+8/8947 ,4728 9.+ 5:11:5�

�.+ 7+8:19/3- ;419'-+ 8++3 '9 9./8 */;/*+7 /8)425'7+* '-'/389 ' 7+,+7+3)+ ;419'-+ �!���
�� '3* /, 9.+ 7+8:19@

/3- ;419'-+ /8 944 ./-. �)4:39&:5���� 9.+ �!�)4397411+7 89'9+ 2')./3+ </11 *+)7+2+39 9.+ ;'1:+ 4, 5;9&)39�

�./8)439/3:+8 :39/1 9.+ 7+8/89'3)+ 4, 9.+ 3,+9 3+9<470 2'9).+8 9.'9 4, 9.+ +=9+73'1 5:11:5� 7+8:19/3- /3 '

;'1:+ 4,)4:39&:5 4, 	� �./8 7+8:198 /3 '3 35;9&)39$���% ;'1:+ 9.'9)':8+8 9.+ 3,+9 3+9<470 /3 9.+ 5'*8 94 .';+

'3 4:95:9 /25+*'3)+ 4, 74:-.1> 	�	� 9.'9 4, 9.+ +=9+73'1 7+8/8947��.+ 4:95:9 4, 9.+ �!� �4397411+7 89'9+

2')./3+)4:39+7 *4+8 349 -4 */7+)91> 94 9.+ ���
#
 5'*8� �.+ �!� ';+7'-+ 7+-/89+7 /8 :5*'9+* +'). 9/2+

9.+ 89'9+ 2')./3+)'1):1'9+8 ' 3+< ;'1:+ 4, 5;9&)39$���% 9.'9 8'9/8,/+8 9.+)43*/9/43 4, 2'9)./3- 9.+ +=9+73'1

7+8/89'3)+� �.+ ;'1:+ 4, 9.+ �!� ';+7'-+ 7+-/89+7 5;9&';-$���%)'3 431>).'3-+ (> 51:8 47 2/3:8 43+ ;'1:+

,47 +'). 3+< ;'1:+ 4, 5;9&)39$���% 9.'9 /8)'1):1'9+* 94 2'9).� �.+ ';+7'-+ 7+-/89+7 ')98 '8 ' 14<�5'88 ,/19+7

94 57+;+39 ' 34/8+ 574(1+2 ,742)':8/3- ' 1'7-+).'3-+ /3 4:95:9 /25+*'3)+ ,742 9/2+ 94 9/2+� �.+ /3/9/'1

;'1:+ 4, 5;9&';- /8)+39+7+* 94 8.479+3 9.+ 9/2+ 7+6:/7+* 94 7+'). 9.+ ,/789)477+)9 ;'1:+ '9 54<+7�43��.+

�!� �4397411+7 �9'9+ �')./3+ */'-7'2 ,4114<8� ��.+ 89'9+ 2')./3+ <'8 1+;+7'-+* ,742 9.+ �'1)43 �!�

)4397411+7� '3* 842+ 4, 9.+ 3'2/3-)43;+39/438 7+,+7 94 ,:3)9/438 <./). 34 143-+7 +=/89� 8:). '8

219

$��!'���'�"���(2*54 542> 7(4 �#! :6+(9,8 +:704. ���� 7,-7,8/ </02, "!"��:6+(9,8 *5489(49@

2>��

IDLE

PVT State Machine Diagram

RUN

COMPARE

WAIT_FOR_RUN

00

01

10

11

next_run_l=0

next_ecmp_l=1

nxt_pvt_counter=11111

next_run_l=0

next_ecmp_l=~signame_stable

next_run_l=

 compare_stable&count_up

next_ecmp_l=compare_stable

next_run_l=1

next_ecmp_l=1

nxt_pvt_counter=00000

signame_stable=0

(64 cycle delay)

compare_stable=0

(16 cycle delay)

compare_stable=1

& count_up=0
signame_stable=1

always

compare_stable=1
 & count_up=1

always

	� 6;9'*5:49,7%���& � 					� (88,79 7:4'2 (4+ 7:4'/ 5:96:98 �,4()2, �#! ,4857 �(+ 7,-,7,4*, (4+

8*(2,+�+5<4 6(+ 35+,2��

� $(09 �� *>*2,8 -57 6(+ ;529(., 95 89()020?, � ������' !�����	��

�� �88,79 ,4'*36'2 80.4(2 95 ,4()2, *536(7(957�

�� $(09 	� *>*2,8 -57 5:96:9 5- *536(7(957 95 89()020?,�

� �- *5:49':6 08 459 (88,79,+ 9/,4 +,*7,3,49 6;9'*5:49,7)> 	 (4+ +,�(88,79 ,4'*36'2� �,6,(9 89,68 �

� � :4902 *5:49':6 08 (88,79,+ 57 :4902 6;9'*5:49,7 7,(*/,8 (*5:49 5- ������

(� �- (;(2:, 5- 6;9'*5:49,7 08 -5:4+ 95 3(9*/ 9/, 97(4808957 4,9<571 7,67,8,4904. 9/, 6(+ 036,+(4*,

95 9/, ,=9,74(2 7,808957� :6+(9, 9/, 6;9 (;. 7,.089,7� !/, 6;9'(;. ;(2:, 08 04*7,3,49,+ 0- 9/, 6;9'*5:49,7

7,.089,7 08 .7,(9,7 9/,4 9/, 6;9'(;. 7,.089,7� !/, 6;9'(;. 7,.089,7 08 +,*7,3,49,+ 0- 9/, 6;9 *5:49,7 08

2,88 9/,4 9/, 6;9'(;,7(., 7,.089,7� !/, 6;9'(;. 7,.089,7 7,3(048 :4*/(4.,+ 0- 9/, ;(2:, 3(9*/,8 9/,

6;9'*5:49,7�

)� �- 9/, 30403:3 ;(2:, 5- ����� 08 7,(*/,+ (4+ *5:49':6 08 459 (88,79,+� :8, 9/, +,-(:29 ;(2:, 5-

6;9'5;7+';(2%���& -753 9/, 6;9 5;,70+, 7,.089,7�

12.3.3. PVT Override

!/, (4(25. *07*:09 5- 9/, �#! +,80.4 *(4), 5;,770++,4)> 8,9904. 9/, �#!'�#�����'���)09 (4+ 675@

.7(304. 9/, �#!'�#����� -0,2+ 04 9/,� �'�#!'�#������ 7,.089,7 04 "!"��� � ;(2:, 5- (22 54,8

220

04 :/, �" '�"����� -0,2+ 9,:9 :/, �� 6(+ +80<,89 :5 3(>03;3 +80<, �30403;3 5;:6;: 036,+(4*,� (4+

(<(2;, 5- (22 @,85,9 9,:9 :/, �� 6(+ +80<,89 :5 30403;3 +80<, �3(>03;3 5;:6;: 036,+(4*,�� /, *;88,4:

<(2;, 5- :/, �" �<,8(., 8,.09:,8 *(4), (295 8,(+ -853 :/, ���'�" '�"������ 8,.09:,8�

12.3.4. GSC2X2 Pad Driver

#0:/04 :/, 8,(23 5- :/, �" *54:852 9?9:,3 :/, ����$� 6(+ +80<,89 (8, 92(<,9 542?� /(: 09� :/, ����$�

6(+9 (8, 45: 685<0+04. (4? -,,+)(*1 :5 :/, �" *54:852� �: (4? -0>,+ 685*,99 58 :,36,8(:;8, :/, ����$�

6(+ 5;:6;: 036,+(4*, 3(?), 685.8(33,+ :5), 54, 5- �� +0--,8,4: <(2;,9� /, <(2;, 5- 46<:%	�
& 9,,4

(: :/, 658:9 5- ����$� =022 +,:,8304, =/0*/ 036,+(4*, <(2;, :/, 6(+ 09 685.8(33,+ :5 /(<,� /, 90@, 5-

:/, 6;22�+5=4 6(8(22,2 4,:=581 5- 4-,:9 04 ����$� (8, (
	$ 8,620*(5- :/, 6;22�+5=4 4-,: 4,:=581 04

:/, 9,4958 6(+ ��" ������� :/(: 09 *544,*:,+ :5 :/, ,>:,84(2 8,9090:58� #/,4 :/, �" *54:852 9?9:,3

*54<,8.,9 ;654 (<(2;, 5- 46<:%	�
& :/(: 3(:*/,9 :/, 036,+(4*, 5- :/, 4-,: 4,:=581 04 �" ������ :5

:/, ,>:,84(2 8,90:58� :/09 9(3, <(2;, 5- 46<:%	�
& +80<,4 :5 ����$� =022 685+;*, (4 036,+(4*,
	 :03,9

2,99 :/(4 :/, ,>:,84(2 8,909:58 <(2;,� �$������ �,>:,84(2 � �		5/3� =022 685.8(3�5;:6;:�����$��

� �	 5/3����$� /(9)5:/ :/, ()020:? :5 6;22�+5=4 (4+ 6;22�;6 :/, ���);9 *544,*:,+ :5 ! !���

 /, �" *54:852 *08*;0: /5=,<,8 542? *259,9 :/, 2556 (85;4+ (
�
	:/ 8,620*(5- :/, ����$� 6;22�+5=4

-,:9� /;9� :/, 4-,: 95;8*, -5225=,89 -,:9 04 :/, 6;22�;6 9,*:054 5- :/, 6(+ +80<,8 (8, 9*(2,+ 8,2(:0<, :5 :/,

6;22�+5=4 +,<0*,9� /, 8(4., 5- 5;:6;: 036,+(4*, 5- ����$� =(9 */59,4 9;*/ :/(: 5<,8 :/, ,>6,*:,+

<(80(:054 04)5:/ 685*,99 (4+ :,36,8(:;8, :/, 6(+ +80<,8 *5;2+), 685.(333,+ :5), (4? <(2;,),:=,,4

	 (4+ �� 5/3� /09 8(4., *588,9654+9 :5 8(4., 5-
		 :5 ��	 -58 :/, ,>:,84(2 8,909:58� /, <(2;, 5- 46<:%	�
&

9,,4 (: ����$� 09 ;6+(:,+ 9?4*/8545;92? ,<,8? 6590:0<, 6/(9, 5- ��� +80<,4 (: :/, 6(+� /09 3,(49 :/(:

4,= <(2;,9 5- 46<:%	�
& 3;9: 9,: ;6),-58, :/, 80904. ,+., 5- ��� �9,:;6� 	49,*� (4+ /52+ :5 :/, -(2204. ,+.,

5- ����/52+:03,�
49,* -853 -(2204. ,+., 5- �����

12.3.5. PVT Test

 /, ����$� 6(+ +80<,89 (8, (22 *544,*:,+ 04 6(8(22,2� �4 58+,8 :5 :,9: :/, 5;6;:9 04+0<0+;(22?� :/, �")0:9

�46<:%	�
&� 3;9:), (99,8:,+ 54, (: (:03,� (4+ :/, 5;:6;:9 +80<,4 :5 9/5= :/(: ,(*/ �� 09 =58104.� /,

A)(9, <(2;,� �� 9� =/0*/ (8, ;9,+ =/,4 (22)0:9 5- :/, 46<:%	�
&);9 (8, +,(99,8:,+3;9:), +09()2,+ 04 58+,8

:5 :,9: ,(*/ �� 04+,6,4+,4:2?� �99,8:04. :/, �" ' ��)0: +09()2,9 :/, A)(9, <(2;,� �� 9� (225=04. :,9:B

()020:? 5- :/, 6(8(22,2 +80<,89� /, :,9: -58 :/,����$� 6(+9 -5225=9 :/09 9,7;,4*,�The core is set up to drive
the GSC2X2 pads out low and then high using scan. The npvt[0:4] bus is deasserted (11111)The pads
are tested for driving low then high.The PVT_TEST bit is asserted (turning off the base value drivers)The
npvt[0:4] bus is asserted one bit at a time, and the pads are tested for driving low then high.Finally, the
npvt[0:4] bus is deasserted (11111), with the PVT_TEST bit still asserted, disabling the pads completely.
The pads are then tested as before, and measured to assure that they are NOT driving low then high to
assure that there are no bits stuck on.

221

13. UTurn internal timing and physical implementation

This chapter contains information about internal timing, critical signals that require special attention dur-
ing physical implementation and opportunities to improve the performance of UTurn by removing cycles
of latency. This chapter also has details on UTurn’s known bugs and anomalous behaviors.

13.1. Multi–cycle paths

UTurn’s goal is to meet the clock period for all FF to FF paths in the same clock domain. This will allow
universal application of the double strobe timing technique. In U2, there were a number of paths to and
from custom modules (or pads) that were multicycle paths. The U2 paths are listed below.

� Power_onI(falling) to FFs.
There is an asynchronous path from this pad input falling to all versions of reset, this
creates lots of timing violations. However since we are being reset this should be ok. The
rising edge of Power_onI is synchronized to the various clock domains and there are no tim-
ing violations.

� R2clk(TLB address) to TLB RAM.
The TLB RAM access for reads only takes one cycle to get the data out of the RAM, and
then one cycle to get the valid data to the inQctrl and inbDpath. Thus reads take two cycles.
inQctrl generates two signals called inQ_valid_delayed and inQ_valid_delayed_two to make
sure the data is not used until valid. inQctrl then relays this to the inbDpath via control sig-
nals. TLB RAM writes take two cycles to get the data hold time correct. In the first cycle
the read_writebar line is pulled low to write, and data is drive to RAM. In the second cycle
read_writebar is returned to read state, and data CONTINUES to be driven to get correct
hold time.

� R2clk FFs to iopad(ad_parO[0:1]).
These paths have multiple cycles to go through the parity tree, only the final mux and tri–
state driver are on the critical path. This path is similar the the critical path for the
adO[0:63] going from the ioa to the pads(see next item).

� R2clk FFs to iopads.
These FFs are set up before Rstart_arb is signaled. There is a good picture of this with tim-
ing in chapter 6 in the section: TWO to One Interface . The muxes are structured as follows:

 Rcycle0 ––
 |
 Rcycle2 –– 3–1 mux –––
 | |
 Rcycle4 –– |__ 2–1 mux –– tristate –– to pads
 |
 Rcycle1 –– |
 | 2–1 mux –––
 Rcycle3 ––

222

The muxes are controlled such that first level of muxes is set up the previous cycle. The
critical path is only from the select of the last 2–1 mux through the tri–state to the pads.
The select for the last 2–1 mux is reg_pntr[5] – 0 selects an odd word, 1 selects an even
word.

� OutQ to gclk FFs.
These are all 2 cycle paths except for Data_out[27] to gmaster_state machine. Data_out[27]
path must be 4ns or less, the rest of OutQ has 20ns(gclk period) + 4ns

� gclk to PDATA pads.
The timing for gclk to PDC Data pins is not critical, only gclk to GSC bus pads.

� RRQ entries to gclk FFs
These are not real timing paths due do the the synchronizer and the valid bit. The data is
written to the RRQ entry several clocks before it is read from the RRQ. This (may) shows
up in veritime when looking at timing paths from iopad(R2clk) to gclk storage or in timing
paths from R2clk FFs to gclk FFs.

13.2. Other timing/routing information

The following is a list of U2 timing/physical routing items that could be confusing and need to be kept
in mind. The UTurn design will need to evaluate how to handle each of these items.

� Squashing k_InQ_load early.
There is a special gate to squash k_InQ_load signal going to the InQ datapath very early in
the cycle after the InQ is loaded(k_InQ_load active). This is to speed up the falling edge
since that was much more critical – to prevent writing to incorrect queue locations.

� inQout to hpa_reg_out is near the limit of R2clk period.
This is really a multicycle(>=2 cycles) path but to allow universal double strobe met the
R2clk period.

� Narrow power signals were added through the top routing channel to divide channel – this
should eliminate any possibility of inductance problems.

� There were many driver size changes to the netlist after synthesis (hand in place optimiza-
tion) – these changes are not reflected in the constraint file or the verilog.

� The Runway arbitration block (u2_arb) was a very challenging block. One of the most criti-
cal paths is to the runway_drive signal valid. The diming analysis tools did not predict this
timing path correctly because of the parallel drive fights seen by runway_drive due to weak
drive feedback inverters in the Runway pads.

� The placement of R2clk relative to ckrw is VERY important.
The longest path from the pads(ckrw rising) to the ioa R2clk FFs is about 4.5ns. This im-
plies that:
 (external skew between ckrw and R2clk) +
 Minimum R2clk tree insertion > 4.5ns

The number of signals that must go from R2clk FFs to ckrw domain are very limited. They

223

are:
 1) Rstart_arb – from IOA to U2_arb
 2) Trans_len[0:2] – from IOA to U2_arb
 3) Rcoh[0:1] – from IOA to ckrw FF within IOA
 4) Rdata_return_in – from IOA to U2_arb
 5) stop_most_out – from IOA to U2_arb
Currently the FFs in the IOA are all clocked off the R2clk at the end of the clock tree. The
output of the FF goes directly to the ckrw FF (except for Rcoh – there is a 2–1 mux). This
implies that:
 (external skew between ckrw and R2clk) +
 Maximum R2clk tree insertion + FF delay + Mux delay < 8.33ns

To make the above requirement easier to meet in UTuirn, the list of above signals could be
clocked from an earlier version of R2clk (no clock tree), removing about 2ns from the above
equation. The Rcoh FFs were clocked on a delayed version of ckrw since the timing to
Rcoh R2clk FFs was already quite critical.

13.2.1. Routing details

This is a list of signals that must be routed carefully. Usually this means a low resistance path and/or
wider metal for electromigration.

� R2clk0,R2clk1 – outside and inside IOA – from pad to IOA –
to first level of clock buffers.

� nR2clk0,nR2clk1 – outside and inside IOA – from pad to IOA to Datapaths

� ckrw – outside and inside IOA – from pad to IOA

� very_early_r2clk2, very_early_r2clk1 – inside IOA – EM

� runway_drv1 and runway_drv2 – from arb to pads. All 3 output ports of the SPBFK3 must
be connected to wide metal (signal needs very low resistance)

� ioa0_select , ioa1_select – from arb to inside IOA. All 3 output ports of the SPBFK3
must be connected to wide metal – this needs to be VERY low resistance

� from left side and right side runway pads to IOA – low resistance on signals from
pad to core

� Power_onI – from the POWER_ON pad to the point where the signal divides to
go to both IOAs. There is a large C on this signal.

� from k1_AD[31:21] pads to core – this was only necessary because in U2
the port order was reversed on the IOA

� GSC clock signals – k0_ckb and k1_ckb

� Tap signals – due to the very large load on TAP signals used by the runway pads a
buffer was placed near the arb block to reduce the RC problems.

� All Double strobe signals should be treated like clocks – pre–route in M3 at the
source

224

� R2clk_DP_N to outbnd Datapath – this clock has more than 5pF load – it needs to be
routed in M3 or wide M1,M2 for electromigration

� Force NSPBFJs (tri–state drivers in ioa) to be closer to top of IOA with ports directly above
them.

� The addr_dataI and addr_dataO buses were interspersed and routed with wider metal and
wider spacing, reducing coupling impacts (since the buses switch at different times within
the runway bus period).

� The eight signals from FFs that cross from R2clk to ckrw domains should be kept very
short. For most of the signals this means placing the FFs close to the arb block. Rcoh FFs
should be in a location close the RCOH pads.

Other misc routing details

� The k_ad pin order was reversed from the pad order on the IOA. This was due to a connec-
tion at the top level from k_adI[0:31] to k0_adI[31:0]. This bus swapping was caused by
GSC bus notation that is not consistent with HPPA convention.

� The pin order of the addr_dataI and addr_dataO buses is opposite from U2. We used the
IOA furthest from the pad to determine the order, keeping the addr_dataI and addr_dataO
buses above the outbnd Datapath and inbnd Datapath respectively. Reversing the pin order-
ing will reduce the top level capacitances of these signals.

There is a set of regions that was defined to help the placer. This was done for several reasons. The most
important reason was to make sure all R2clk and ckrw clock domain stuff was above the datapaths and
all gclk domain stuff was below the datapaths. The rest of the region definition was to help the placer
put things into lesser congested areas, place spare gates in appropriate places, etc.

13.3. Signals that clock tree synthesis was used on

The following is a list of signals that clock tree synthesis was used to buffer the signal within the IOA.
R2clk and BGclk are the most critical for maintaining clock skew and insertion delay. The total clock
skew goal for these signals is ~300ps. This guarantees no race conditions between FFs because the mini-
mum time from CLK to Q on the FFs is just over 300ps. The name in () is the name that occured at the
base of the tree after clk tree synthesis.

� R2clk (R2clk_bin) – 2 levels of buffering, 1st level is NSPBFK, 2nd level is NSPBFJ –
~2.4ns insertion

� BGclk (gclkX) – 2 levels of NSPBFJ’s – ~2ns insertion

� Rreset (RresetX) – 1 level of NSPBFJ

The following all have 2 levels of NSPBFJ’s:

� TAP_ML_TCK_Bioa1 (IOA_ML1)

� TAP_DBL_STRBioa1 (IOA_DS1)

� TAP_INT_SHIFTioa1 (IOA_ACLK1)

� TAP_INT_NSHIFTioa1 (IOA_BCLK1)

� TAP_ML_TCK_Bioa2 (IOA_ML2)

� TAP_DBL_STRBioa2 (IOA_DS2)

225

� TAP_INT_SHIFTioa2 (IOA_ACLK2)

� TAP_INT_NSHIFTioa2 (IOA_BCLK2)

13.4. Timing opportunities

There are 3 potential places to pull out an R2clk cycle of latency. They are:

1) TLB RAM currently receives an inverted (early/late?) version of R2clk. This made address setup easi-
er, but read data comes out later. The TLB RAM could receive a normal R2clk, and the generation of
tlb_hit could then be done in the same cycle as read data coming out of RAM. This would require signifi-
cant changes to inQctrl (see multicycle paths above), and the TLB RAM BIST logic. It would allow
inQctrl to branch out of ”IDLE” one cycle earlier for EVERY transaction (however see 2 below also).

2) The inQctrl state machine was designed to be pipelined to hide some of the TLB RAM access to tlb_hit
latency. When we combined the inbound RAM with the inbound queue, we killed this pipeline effect.
Since there is a staging register for inQout, even if the queue is FULL (or has multiple transactions in
it) the inQ_valid that comes from sychro.v must be de–asserted for the time it takes to load the staging
register. So the pipeline never appears to be full due to the added latency of the staging register. The
obvious fix here is to separate the inbound RAM and queue so that the staging register can be eliminated.
This actually has two effects. First, the latency of the staging register is eliminated (one cycle!). Second,
the synchronizer pipe now appears to stay full (when multiple transactions are in the queue), and the
inQctrl pipelining will actually do some good (one more cycle savings when multiple transactions are
in the queue – though it does depend on the type of transactions in the queue). Both 1 and 2 together
are NOT completely additive improvements. The pipelining in inQctrl counts on the latency of TLB
RAM accesses, and attempts to hide one cycle worth. If the TLB RAM data to tlb_hit latency is reduced,
then inQctrl would have to be re–written to take advantage of the ’new’ pipelining delays. Both 1 and
2 together do provide an incremental advantage (bv: I think; I haven’t gone through this completely, just
looking at my notes, and thinking on the fly).

3) Allow reading and writing to the InQ at the same time. (Hani H. to finish details)

13.5. UTurn Implementation Details

13.5.1. Behavioral Verilog Hierarchy

On the following page is the hierarchical diagram of Uturn. This hieararchy is valid for the behavioral
files only. For the netlist, we flatten everything under ioa_g into a single level, and also we flatten ioa_r
into a single level. The “core” block is removed. This creates a chip with only the blocks iopad, u2_arb,
ioa0_g, ioa1_g, ioa0_r, ioa1_r, and misc_block for the netlist. In our design methodology, all verilog
files are found in directories with the same name, and all are at the same UNIX directory level. In other
words, if one wants to find the block “u2_arb,” one should look under vlog/u2_arb/u2_arb.v. The block
“pdh”, at a completely different logical hierarchy, is still found in the UNIX directory vlog/pdh/pdh.v.
Because there is no hierarchy information imparted by the UNIX directories, only by the verilog instan-
tiations, this diagram is a helpful guide.

13.5.2. TRST used in Real Time Clock circuit

The TRST signal, a reset signal for the Test Access Port (TAP), is also used as an input to the real time
clock (RTC) to prevent false writes to the RTC counter/register during power–up. TRST is a low–true

226

U2 (a.k.a. Uturn)

(multiple instances)

gatg gckgen gerror ghvrev ginmuxglatchO gmisc goutdecode goutmuxgmaster

gtop

ioavmux

iQ_state_ininq

synchro_g

rQ_state_out

RRQ_g

dp_q oQ_state_out

OutQ_g

gparin

pvt

iQ_g_mov_ptr

gperf

PADLIB: contains:

spare_gsc

iQ_g

gregsgslave

pnio_iosreg

pdh

topvmuxReal–time–clock

Clock buffersRW,GSC,NIO,etc. pads

test_glue

ioa_g

twice under core)

ioa_r

OutQ_r inQout_r RRQ_r

ioa_g_test

iQ_r

iQ_state_out

bist_ram tlbRAMcache

inbnd

outbvmux timeoutperfcntr

ram8x9

tlb

misc_block

misc_sync_rinbDpath

hv_rev

new_sap
(”ioa” instantiated

rQ_state_in

inQctrl

test_cell

core
iopadu2_arb

synchro_r

spare_run

ioa1ioa0

oQ_state_in

funnel r2u2

pool parcheck outbctrl

two2one

outbDpath Rerrlog adrbounds outbccc outbmisc hparegs

outbnd

ioa

garb

iosregf_PNIO

Uturn Behavioral Hierarchy

227

asynchronous reset signal, and should be low during the period of time that power rails are coming up
and clocks are starting up. TRST should be negated (driven high) to UTurn only after all external power
rails are within tolerance and after external clocks have been oscillating within expected voltage and fre-
quency limits for several clock cycles. Internal to UTurn, the received version of TRST is connected to
the RTC’s chip select input such that if TRST is high (negated), accesses of the RTC counter/register are
enabled. It should be noted, then, that TRST must not be tied low external to UTurn. If TRST does not
go high, accesses to the RTC value will be impossible. In Kitty Hawk systems, TRST is actually tied
to the ARESETL signal external to UTurn. ARESETL comes from the power supply, and is driven high
after all voltages are in tolerance (and well after clocks have begun oscillating).

13.6. UTurn Known Bugs and Anomalies

13.6.1. Dual ERRORLs at reduced Runway:GSC clock frequency ratios (SABE bug S188)

When a GSC guest device masters a connected read transaction on GSC and, in the process of fetching
the read data, UTurn encounters an error in the Runway clock domain, UTurn is supposed to assert ER-
RORL to the guest, informing it that the transaction cannot be completed successfully. As frequency
ratios between the Runway ckrw clock and the GSC GCLK decrease below 3:1, UTurn will assert ER-
RORL twice in such error circumstances. Devices in existence today as well as all devices that comply
with the GSC specification should not have any trouble with this dual ERRORL assertion; the second
ERRORL is ignored. The fix for this bug is in the gerror block, which should use a signal from gslave
called conn_rtn_valid instead of the currently used signal k_conn_rtn_valid. Signal conn_rtn_valid is
generated in the gslave block but is not currently ported out of that block.

13.7. Next Time

There are always things in a design that could have been done differently to improve the design from one
perspective or another. The UTurn design is no exception. In this section are documented the things we’d
consider changing in a “Son of UTurn” design.

13.7.1. Cache line writes to I/O space

For graphics performance improvement, the single most effective extension to the UTurn design would
be to accommodate a cache–line sized write to I/O space. Obviously we’d need a processor that could
generate such a transaction (no such PA processor currently exists). Absent this hurdle, UTurn could be
modified to accept a cache line sized write to I/O space with its existing queue structure with several key
modifications. First, the write transaction would have to be broken into3 or 4 OutQ entries. In the 4 entry
option, the line–sized write would be made to look like 4 separate coalesceable write_short transactions.
This may not be feasible from a timing perspective, but if it could be accomplished, no GSC logic would
have to be changed in UTurn. An alternative scheme for accommodating line–sized I/O writes would
store the line–sized write in 3 specially–formatted OutQ entries. The first entry being the “header” entry,
possibly containing 2 words of data, and the next 2 entries would be data–only entries. With this 3–entry
option, the GSC logic would need to be modified to accommodate the new OutQ entry type(s).

In addition to the OutQ entry organization issues, the OutQ full indicator (which translates to STOP_IO
on Runway) would likely have to be changed such that a full OutQ was indicated earlier, given the possi-
bility that 4 OutQ entries could be filled as a result of a single Runway transaction.

228

13.7.2. DMA Forward Progress improvements

UTurn implements a DMA forward progress mechanism to ensure that guests have a chance to master
transactions on GSC in the face of long streams of processor–mastered I/O write traffic (as might be gen-
erated for graphics display operations). The UTurn mechanism counts OutQ entries acknowledged, al-
lowing a guest to be granted GSC bus ownership after each 16 OutQ entries processed. Given architectur-
al directions planned for SPPA–based graphics, a better scheme would be to count bus cycles instead of
OutQ entries processed. In a future version of UTurn, it would be wise to incorporate a register that could
be configured with the number of GSC clocks to wait after a guest bus request is issued until OutQ entry
processing is suspended, enabling a guest to be granted ownership of the GSC bus. The register would
be located in the GSC bus specific register set (suggest register offset 6), and the OutQStreamBreak logic
in block garb would be changed to count GCLKs.

����� �
�# �%$� ��'��%� "�$���# ���� �

����� � ��� ������� !�"�$��� � ���$� �# ��� �� ���"��$�"�#$��# ���� � � � � � � � �

����� � ������ ��� ��!%$ ��!���$���� ���� �

����� � ��� ������ �!�������$� � ���� �

����� � ����&��%�� ���
���$"���� �!�������$� � ��	� �

�� �������
���� �� �
���� �:4+9154*2 �6-7*9154
� �

��	� �-*9:7- "-9 �� �

��
� "-2,53 $8-, $#:74 �-*9:7-8
� �

���� "1?14/ 5. $#:74 �49-74*2 "97:+9:7-8
� �

������ �"� *4, �"�� �1319*91548
� �

����	� $#:74 �1319*91548
� �

����
� "1?14/ 5. $#:74 �49-74*2 "97:+9:7-8
� �

���� #7*48*+9154 �*6 �� �

�� ��

���
���	� ������������ ��� �
	��� !:4<*> �*7, �0>81+*2 �,,7-88 ����� "6*+- ��� �

	����� !:4<*> ":6-7;1857> !-/189-7 "-9 �!-/189-7 "-9 �� ��� � � � � � � � � � � � � � � � � � � �

	������� !:4<*> ��)��)��#� !-/189-7 ��� �

	�����	� !:4<*> ��)��)���!�"" !-/189-7 �	� �

	�����
� !:4<*> ��� ��)������� !-/189-7 �	� �

	������� !:4<*> ��)"#�#$" !-/189-7 �
� �

	������� !:4<*> ��)���#!�� !-/189-7 ��� �

	���	� !:4<*> �:=121*7> !-/189-7 "-9 �!-/189-7 "-9 �� ��� �

	���	��� !:4<*> ��)�!!)!�"�)�� *4, ��)�!!)!�"� !-/189-78 �
� � � � � � � � �

	���	�	� !:4<*> ��)�!!)���� !-/189-7 �
� �

	���	�
� !:4<*> ��)�!!)!� !-/189-7 ��� �

	���	��� ��)#��)��#!(!-/189-78 ��� �

	���	��� ��)���!)��"� !-/189-7 ��� �

	���	�
� ��)�����)��)��"� !-/189-7 ��� �

	���	��� ��)��)��&�)�%� *4, ��)��)�����)�%� !-/189-78 ��� � � � � � � � � � � �

	���
� $#:74 "6-+1.1+ !-/189-7 "-9 �!-/189-7 "-9 ��� 	�� �

	���
��� $�$������)���#�)�#� !-/189-7 	�� �

	���
�	� ���)����!��)���)�!�$� !-/189-7 	�� �

	���
�
� #��)����!��)�����#)�� !-/189-7 		� �

	���
��� !���)#��)#�� !-/189-7 	
� �

	���
��� !���)#�� !-/189-78 	
� �

	���
�
� #�"#)���!�"" !-/189-7 	�� �

	���
��� #�"#)����������� !-/189-7 	�� �

	���
��� �"��)"����&)���' !-/189-7 	
� �

	���
��� !:4<*> ��!�)�#!� *4, ��!�)�#!	 !-/189-78 	
� � � � � � � � � � � � � � � � �

	���
���� !:4<*> ��!�)���� !-/189-7 	�� �

	�	� �"�� �*7, �0>81+*2 �,,7-88 ����� "6*+- 	�� �

	�	��� �"�� ":6-7;1857> !-/189-7 "-9 �!-/189-7 "-9 �� 	�� �

	�	����� �"�� ��)��)��#� !-/189-7 	�� �

	�	���	� �"�� ��)��)���!�"" !-/189-7 	�� �

	�	���
� �"�� ��)"#�#$" !-/189-7
�� �

	�	����� �"�� ��)���#!�� !-/189-7
�� �

	�	�	� �"�� �:=121*7> !-/189-7 "-9 �!-/189-7 "-9 ��
�� �

	�	�	��� �"�� ��)�!!)!�"� !-/189-7
�� �

	�	�	�	� �"�� ��)�!!)���� !-/189-7
�� �

	�	�	�
� �"�� ��)�!!)!� !-/189-7
�� �

	�	�
� $#:74 !-*, !-9:74 !�� !-/189-7 "-98
	� �

	�	�
��� $#:74 !-*, !-9:74 !�� !-/189-7 "-9 � �!-/189-7 "-9 �
�
	� � � � � � � � � � �

	�	�
�	� $#:74 !-*, !-9:74 !�� !-/189-7 "-9 	 �!-/189-7 "-9 ���

� � � � � � � � � � �

�������� &%=:6 #/,. #/<=:6 #�� #/13;</: $/< � �#/13;</: $/<
�� ��� � � � � � � � � � �

������
� &%=:6 #/,. #/<=:6 #�� #/13;</: $/<
 �#/13;</: $/<
�� ��� � � � � � � � � � �

�������� &%=:6 #/,. #/<=:6 #�� #/13;</: $/< � �#/13;</: $/< �	� ��� � � � � � � � � � �

�������� &%=:6 #/,. #/<=:6 #�� #/13;</: $/< � �#/13;</: $/< �
� �
� � � � � � � � � � �

�������� &%=:6 #/,. #/<=:6 #�� #/13;</: $/< � �#/13;</: $/< ��� �
� � � � � � � � � � �

����
� �$�� �=; $8/-303- #/13;</: $/< �#/13;</: $/< �	� �
� � � � � � � � � � � � � � � � � � � �

����
�
� �$��+%#� $+%���!&% #/13;</: �
� �

����
��� �$��+"� �+%���!&% #/13;</: ��� �

����
��� �$��+�! ��� #/13;</: ��� �

����
�
� �$��+(�+%���!&% #/13;</: ��� �

����
��� �$�+"'%+!'�##��� #/13;</: ��� �

����
��� �$�
��)+�! ��� #/13;</: ��� �

����
��� �$��)+�! ��� #/13;</:

� �

������ �$�� "/:07:5,6-/ �7=6</: #/13;</: $/< �#/13;</: $/< �
�
�� � � � � � � � � � �

������
� �$��+"�#�+��$�+	 ,6.
 #/13;</:;
�� �

�������� �$��+"�#�+�!�"+	 ,6.
 #/13;</:;
�� �

�������� �$��+"�#�+�!& %+	 ,6.
 #/13;</:;

� �

������
� �$��+"�#�+�! ���

� �

���� #=6>,@ �:7,.-,;< "2@;3-,4 �..:/;; $8,-/
�� �

����
� #=6>,@ �7-,4 �:7,.-,;< #/13;</: $/< �#/13;</: $/< 	�
�� � � � � � � � � � � � � � � �

����
�
� #=6>,@ �!+���) #/13;</:
�� �

������ #=6>,@ �=; $8/-303- #/13;</: $/< �#/13;</: $/< �	�
�� � � � � � � � � � � � � � � � � �

������
� #& (�*+%���!&% #/13;</:
�� �

��
� �$�� �:7,.-,;< "2@;3-,4 �..:/;; $8,-/
�� �

��
�
� �$�� �:7,.-,;< #/13;</: $/< �#/13;</: $/< 	�
�� �

��
�
�
� �$�� �!+���) #/13;</:
�� �

���� �..:/;; �/-7./ #/9=3:/5/6<;
�� �

���� �..:/;; $8,-/ ",:<3<376361 �	� �

���� �:-23</-</. ��! (:3</; �
� �

���� �::7: �,6.4361 �
� �

	� ��(%" $�%�#%!�"�� $%#���'�#"& ��� �
��
� �?</:6,4 �;;=58<376; ��� �

���� �6</:6,4 %35361 �;;=58<376; ��� �

���� �$���764@ 8/:07:5,6-/ �
� �

��
� ���(:3</ "/:07:5,6-/ %2:7=12 &%=:6�; �!�; ��� �

��
�
� �=/;<�363<3,</. ����� >:3</; ��� �

���� ��� #/,. "/:07:5,6-/ %2:7=12 &%=:6�; �!�; ��� �

����
� �766/-</. ��� :/,.;� 67 8:/0/<-2 ��� �

������ "/6./. ��� :/,.;� 67 8:/0/<-2 ��� �

������ �766/-</. ��� :/,.; >3<2 8:/0/<-2 �	� �

����
� "/6./. ��� :/,.; >3<2 8:/0/<-2 ��� �

���� ��! >:3</; ��� �

���� ��! :/,.; ��� �

���� �76-4=;376; ��� �

� �*"��%#"�+�'�#"
�� �

�� �('�#("� ��(")�*�'#������ �%�"&��'�#"���'� � #)

� � � � � � �
��
� %35361 �
� �

��	� �36+29 ��� �

��	��� �-.:)5, !1/0: "1,- �-+6,- �36+29 ��� �

��	�	� �663 �;..-89 �
� �

��	�
� �;:*6;5, �644)5, ;-;- ��� �

��	��� �;:*6;5, !-), !-:;85 ;-;- ���� �

��	��� �655-+:-, !-), !-:;859 ��	� �

��	�
� �;:*6;5,)5, �8-.-:+0 !�� ��	� �

��	��� ��� !-/19:-8 �36+2 ��	� �

��	��� �)+0- ��81<):- !-), !-:;859� ��
� �

��	��� �)+0- �60-8-5+> ;-;- ��
� �

��
� #8)59)+:165)5, �):) �36= ���� �

��
��� �;3:1��>+3- #8)59)+:1659 ���� �

��
�	� "15/3- �>+3- #8)59)+:1659 ���� �

��
�
� �8-.-:+0 !-:;859 ���� �

��
������ ���
� �� ������� ����������� ���� ��	� � � � � � � � � � � � � � � �

��� �)91+ �-9+817:165 6. �5*6;5, �7-8):165 ���� �

�	� �60-8-5: �� ���� �

�
� �)+0- 36+):165)5, +65:863 ���� �

��� #=6 :6 �5- !;5=)> �5:-8.)+- ��	� �

��� #�� �7-8):165 ��	� �

����� #�� �,,8-99 #8)593):165 �6,-9 ��	� �

������� #8)593):165 6. �"� �� 97)+-),,8-99-9 ���� �

�����	� !-)3 �6,- ���� �

�����
� �8868 �6,- ���� �

������� �684)3 �6,- ��
� �

���	� �51:1)31?15/ :0- #��)5, �)517;3):15/ #�� �5:81-9 ��
� � � � � � � � � � � � � � � � � �

���	��� �51:1)31?15/ :0- #�� .68 ��!��� 46,- ���� �

���	�	� �51:1)31?15/ :0- #�� .68 �!!�! 46,- ���� �

���	�
� #�� 151:1)31?):1659 �$"#" ���� �

���	��� #1415/ 6. #�� +644)5,9)5, +65:863 8-/19:-8 =81:-9 =1:0 8-97-+: :6 ���)+:1<1:> �
�	�

���	��� �..-+:9 6. #�� 151:1)31?):165 �	�� �

���	�
� ��(�����(��(��"� %)3;-9)5, $9)*3- �"�),,8-99-9 �	�� � � � � � � � � �

���
� #�� !��),,8-99 /-5-8):165 �		� �

���
��� ��(�����(��(��"� 8;3-9 �		� �

���
�	� #�� !��),,8-99 /-5-8):165 �	
� �

����� �++-9915/ :0- ��(���! 65) #�� 4199 �	�� �

����� #�� -5:8> .684): �	�� �

������� �189: 0)3. 6. #�� -5:8> ���(#��(��#!'(� 68 =68, � .864 �� ���!� � � � � � � �
�	�

�����	� "-+65, 0)3. 6. #�� -5:8> ���(#��(��#!'(� 68 =68, � .864 �� ���!� � � � � �
�	�

���
� �++-9915/ :0- #�� �	�� �

����� �-.151:165 6. :0- ���� #'�� *1:9 �	
� �

������� !;3-9 .68 �*:)1515/ :0- �-9: ��� 7-8.684)5+- �	�� � � � � � � � � � � � � � � � � � �

�����	� �5:-8)+:165 6. :0- ���� #'�� =1:0 �"�� & � �78-.-:+0�)5, �"� �36+2� 315-9 � �
�	�

�
� "-4)7068- 97-+1.1+):165 65 �"�)5, �"�� �	�� �

�
��� "-4)7068- 97-+1.1+):165 65 �"� �
�� �

�
�	� "-4)7068- 97-+1.1+):165 65 �"�� �
�� �

���� !:./.<,1260 26 <1. � �
�
� �

����
� �.<.:5262;<2, >; $8.,=4*<2>. !:./.<,1 26 <1. � �
�
� � � � � � � � � � � � � � � � � � � �

������ �.<.:5262;<2, !:./.<,1 �584.5.6<*<276
��� �

������ !:./.<,1 #=4.; *6- �6>*42-*<276 7/ !:./.<,1 �6<:2.;
��� � � � � � � � � � � � � � � � � �

���� %:*6;*,<276 �*8 ��$����#=6?*A�
�
� �

����
� $75. 0.6.:*4 67<.; 76 <1. <:*6;*,<276 5*8 <*+4. *6- <1. *<752,2<A <*+4.
�

���� �*:-?*:. �47,3;
��� �

����
� �6+7=6- "=.=.
��� �

����
�
� �6+7=6- 9=.=. .6<:A �	 � �$� 5*;<.:.- <:*6;*,<276�
��� � � � � � � � � � � � � �

����
��� �6+7=6- 9=.=. .6<:A �
 � �$� -*<* :.<=:6;� 26<.:6*4 -*<* :.<=:6;� %�� ,755*6-;�

	

������ !774

� �

������
� !774 /2.4-; /7: 67:5*4 :.*-;

� �

�������� !774 /2.4-; /7: 8:./.<,1 :.*-;

� �

������ %��

�� �

����
� �*,1.

�� �

��
	� �6+7=6- $2-. �!� :.02;<.:;

�� �

� ����� ���� ��� ����� ��	� �
��
� #=6?*A !*-;

�� �

���� $206*4; �766.,<260 #=6?*A !*-; '2<1 � �;

�� �

���� #=6?*A �:+2<:*<276

�� �

����
� �407:2<152, �.<*24;

�� �

������ �7:?*:- !:70:.;; �=*:*6<..

�� �

������
� $<*:>*<276 �.<*8:7<7,74

�� �

�������� �.*-47,3 �.<*8:7<7,74

�� �

�������� �*,37//;

�� �

������ ��6A� !:27:2<A �=6,<276

�� �

����
� #7=6- #7+26 !:27:2<A �=6,<276
�
� �

������ $<78 �7;< !:27:2<A �=6,<276
��� �

�� ����� ��
� ��� ����� ���� �
��
� >.:>2.?
��� �

���� #.;.< *6- ,47,3 ;A6,1:762B*<276
��� �

���� �$� �:+2<:*<276
��� �

��
� %:*6;*,<276 %A8.;
��� �

���� %:*6;*,<276 �=:*<276
��� �

���� �$���*;<.: 26<.:/*,.
��� �

����
� >.:>2.?
��� �

������ !:7<7,74 2584.5.6<*<276
��� �

������
� �*;2, �$� 8:7<7,74
��� �

�������� ("� 8:./.<,1 126<
��� �

�������� �$�� 8:7<7,74 .@<.6;276;
��� �

��������
� !.6-.- :.*-;
�	� �

���������� #�%#)
�
� �

������
� �$�
��(*6- �$��(.@<.6;276;
��� �

������
�
� �76/20=:*<276 7/ �$�
��(*6- �$��(,*8*+242<A
��� � � � � � � � � � � � � � � � �

������
��� ':2<.& 8:7<7,74
��� �

������
��� �� ?:2<. 8:7,.;;260 *6- ,7*4.;,260 :=4.;
�
� �

������
�
� �--2<276*4 8:7<7,74 :.;<:2,<276;
�
� �

������ �8842,*<276; 26/7:5*<276
�
� �

��� ���� �.%7(�05(3)%&(��
� �

����� �7(37,(8 ��
� �

����� �6(45��%45(3(' �(%' 53%04%&5,104 ��
� �

����� �6(45��%45(3(' #3,5(3%04%&5,104 ��
� �

���	� ��� �(%' �(5630 3%04%&5,104 ��
� �

���
� �6(45��%45(3(' �.(%3 3%04%&5,104 ��
� �

����� �6(45��%45(3(' �3313 3%04%&5,104 ��
� �

����� �%3'8%3(�7(054 ���� �

������� �� ���!� � �44(35,10 ���� �

������� �3313 �%4(4 ���� �

�
� ���� �135 �3313 �%0'.,0* ���� �

�
��� �/2%&5 1) �3313 �1'(4 ���� �

�
��� �''3(44 �.,*0/(05 ",1.%5,104 ��
� �

�
��� �(0'(' ��� �(%' �33134 ��
� �

��� �(0(3%. ��
� �

����� �,4&(..%0(164 �15(4 ��
� �

����� �6(45�51��6(45 3%04)(34 ���� �

� ��
 �!���� �� ��!�� �	�� �
���� ! 630�,05(30%. ��� �(*,45(34 ���� �

������ �(%. 5,/(&.1&- ���� �

������ �(/%2+13(3(*,45(3 ���� �

������ �3105 2%0(. '%5% 3(*,45(3 ���� �

����	� !064(' ! 630�,05(30%. ��� 42%&(���� �

���� ! 630�(95(30%. ��� �2%&(���� �

���� �5+(3 ��� �(%563(4 ���� �

������ �3105 �%0(. �05(3)%&(���� �

������ 3%04)(3 �) �10531. �&&1//1'%5,10 ���� �

������ �(%. ,/(�.1&- �622135 ��	� �

����	� (45 �(%563(4 ��	� �

��� ��!�� ��� ����� # �	�� �
����� �05(30%. .1*,& 5(45,0* ��
� �

����� ! 630 �� &10531..(3 ��
� �

������� ! 630 �� �10531..(3 �04536&5,104 %0' �(+%7,13 ���� � � � � � � � � � � � � � � � � � �

����� �0,5,%.,:%5,10 1) ! 630)13 � �� 12(3%5,10 ��
� �

���	� ",(82135 �(4&3,25,10 ���� �

���
� ��� �(.) (45 �
�� �

���
��� ���� ��� �(%'4 �
�� �

���
��� ���� ��� �(%' �(56304 ���� �

���
��� ���� ���#3,5(4 ���� �

��� ��!�� ����! �
�� �

��� ���� ����� ��� ��"������� �� ��������� ���� ���� � � � � � � � � � � � � � � � �
����� �+,2 �2(&,),&%5,10 ���� �

����� �0',7,'6%. �,0 �2(&,),&%5,10 ���� �

����� ����$ �" �(4&3,25,10 ���� �

������� �7(37,(8 1) �" �(4,*0 ���� �

������� �" �10531..(3 �5%5(�%&+,0(��
� �

�	�
�
� %# �;+77/*+ 	��� �

�	�
��� �"�	&	 '* �7/;+7 		�� �

�	�
��� %# #+89 		�� �

��� ����� �������� ������ ��
 �
���	�� �������������� ���� � � � � � � � � �
�
��� �:19/�)>)1+ 5'9.8 		�� �

�
�	� �9.+7 9/2/3-�74:9/3- /3,472'9/43 			� �

�
�	��� !4:9/3- *+9'/18 		
� �

�
�
� "/-3'18 9.'9)14)0 97++ 8>39.+8/8 <'8 :8+* 43 		�� �

�
��� #/2/3- 455479:3/9/+8 		�� �

�
��� $#:73 �251+2+39'9/43 �+9'/18 		�� �

�
����� �+.';/47'1 %+7/14- �/+7'7).> 		�� �

�
���	� #!"# :8+* /3 !+'1 #/2+ �14)0)/7):/9 		�� �

�
�
� $#:73 �34<3 �:-8 '3* �342'1/+8 		�� �

�
�
��� �:'1 �!!�!�8 '9 7+*:)+* !:3<'>��"�)14)0 ,7+6:+3)> 7'9/48 �"��� (:- "���� �
		�

�
��� �+=9 #/2+ 		�� �

�
����� �').+ 1/3+ <7/9+8 94 ��� 85')+ 		�� �

�
���	� ��� �47<'7* 74-7+88 /2574;+2+398 		�� �

