
ReFUSE: Userspace FUSE Reimplementation Using puffs

Antti Kantee
Helsinki University of Technology

pooka@cs.hut.fi

Alistair Crooks
The NetBSD Foundation

agc@NetBSD.org

Abstract

In an increasingly diverse and splintered world,
interoperability rules. The ability to leverage code
written for another platform means more time and re-
sources for doing new and exciting research instead
of reinventing the wheel. Interoperability requires
standards, and as the saying goes, the best part of
standards is that everyone can have their own. How-
ever, in the userspace file system world, the Linux-
originated FUSE is the clear yardstick.

In this paper we present ReFUSE, a userspace
implementation of the FUSE interface on top of the
NetBSD native puffs (Pass-to-Userspace Framework
File System) userspace file systems framework. We
argue that an additional layer of indirection is the
right solution here, as it allows for a more natural
export of the kernel file system interface instead of
emulating a foreign interface in the kernel. Doing
so also reaps other minor benefits such as clarifying
the license as the whole chain from the kernel to the
file system is BSD-licensed. Another obvious bene-
fit is having a fully performant native userspace file
system interface available.

We summarize the puffs and FUSE interfaces and
explain how the mapping between the two was done,
including experiences from the implementation. After
this we show by example that FUSE file systems work
with ReFUSE as expected, present a virtual direc-
tory extension for the FUSE interface and conclude
by outlining future work in the area.

1. Introduction

Userspace file systems are a growing phenomenon
in Unix-type operating systems. Their use opens up
many unforeseen opportunities. Most of these oppor-
tunities are related to being able to integrate informa-
tion behind the file system namespace using userland
tools and utilities. Examples include GmailFS [6]

for using Gmail as a file system storage backend and
FUSEPod [5] which facilitaties iPod access and man-
agement.

Userspace file systems operate by attaching an in-
kernel file system to the kernel’s virtual file system
layer, vfs [17]. This component transforms incoming
requests into a form suitable for delivery to userspace,
sends the request to userspace, waits for a response,
interprets the result and feeds it back to caller in the
kernel. The kernel file system calling conventions
dictate how to interface with the virtual file system
layer, but other than that the userspace file systems
framework is free to decide how to operate and what
kind of interface to provide to userspace.

While extending the operating system to userspace
is not a new idea [12, 21], the FUSE [2] userspace
file systems interface is the first to become a veri-
table standard. It originated in Linux, but support
has since been added to multiple different operat-
ing systems. This paper’s main focus is explor-
ing ReFUSE, the FUSE interface implementation in
NetBSD [9]. ReFUSEis a reimplementation of a
subset of the FUSE interfaces1 and is implemented
on top of the NetBSD’s native userspace file systems
framework:puffs, Pass-to-Userspace Framework File
System. The goal is to eventually have the entire
FUSE API supported.

The question, in essence, is where to implement
compatibility for a foreign interface which is kernel-
influenced. Unlike other systems which implement
the whole FUSE chain starting from the kernel, the
NetBSD implementation is only a lightweight emu-
lation library in userspace. We maintain that this is
the right way to implement support for a foreign com-
ponent and nudge the community in the direction of
more lightweight kernel components.

The remainder of this paper is laid out in the fol-
lowing manner. Chapter 2 gives a short overview of

1See Chapter 5 for deeper dissertation of what is implemented
currently and what is not. The short version: enough to run almost
all classes of file systems.



puffsnecessary for the rest of the paper and Chap-
ter 3 does the same for FUSE. Chapter 4 presents
FUSE work in other operating systems.ReFUSEis
presented in Chapter 5, while Chapter 6 talks about
a virtual directory add-on the help with a commonly
encountered problem in writing a FUSE file system.
Chapter 7 summarizes key experiences with FUSE
file systems underReFUSE, including performance
figures. Finally, Chapter 8 presents conclusions and
outlines future efforts.

2. A Short Introduction to puffs

This chapter provides readers unfamiliar with
puffsthe necessary overview to be able to follow this
paper. A more complete description ofpuffscan be
found elsewhere [15, 16, 19]. Readers previously fa-
miliar with puffsmay skip this chapter or merely skim
over it.

puffs is a framework for building file servers in
userspace. It provides an interface similar to the ker-
nel virtual file system interface, vfs [17], to a user
process.puffsattaches itself to the kernel vfs layer.
It passes requests it receives from the vfs interface in
the kernel to userspace, waits for a result and provides
the caller with the result. Applications and the rest of
the kernel outside the vfs module cannot distinguish
a file system implemented on top ofpuffsfrom a file
system implemented purely in the kernel.

The file system interface in userspace consists of
two sets of callbacks. Just as the kernel interface is
divided into file system wideVFSoperations and in-
dividualvnodeoperations (VOPs), thepuffsinterface
is divided intofsoperations andnodeoperations. For
reference, these callbacks are listed in Appendix B.

For the userspace implementation a library,
libpuffs, is provided. libpuffs not only provides a
programming interface to implement the file sys-
tem on, but also includes convenience functionality
frequently required for implementing file systems.
An example of such convenience functionality is the
pathname framework described later in this chapter.

To operate, a file server registers a number of call-
backs with libpuffs and requests the kernel to mount
the file system. After this, control is either passed to
the library mainloop or kept with the caller which
processes requests manually, although almost always
the file server will want to hand control over topuffs.
The library provides routines to decode file system
requests from the kernel and call the appropriate call-
backs. The results are passed to the kernel using rou-
tines provided by the library.

Figure 1. puffsand ReFUSE Architecture

application

kernel

puffsvfs module

libpuffs

librefuse

FUSE ${file server}

syscall

/dev/puffs

user

kernel

user

2.1. Multitasking: Continuations

For multitasking the typical approach is for each
application to create threads as it pleases.puffstakes
a different route. It provides continuations as part
of the library framework. A continuation cookie is
passed to the file server from the framework. This
cookie can be used to yield the current execution
context and continue directly from it at a later mo-
ment. In a sense, it is much like threads with explicit
scheduling points. For example thepuffsframework
for distributed file systems uses this extensively [16].

An important distinction between threads and con-
tinuations is that while continuation provide schedul-
ing points to defeat the latency of e.g. network I/O,
they do not parallelise. From a programmer’s per-
spective explicit scheduling usually means a simpler
program without having to worry about data structure
locking.

2.2. Files and pathnames

Kernel file systems have only minimal involve-
ment with file names. More importantly, the kernel’s
abstract file entity, the vnode, does not contain a path-
name. This has several benefits. First, it avoids con-
fusion with hardlinks where there are several path-
names referring to a single file. Second, it makes
directory rename a cheap operation, since the path-
names of all nodes under the given directory do not
need to be modified. Only operations which require



a pathname component are passed one. Examples are
lookup, create and rmdir. The latter two require the
pathname component to know the name of the direc-
tory entry they should modify.

However, most file system backends operate on
paths and filenames. Examples include the sftp back-
end used by sshfs and in this case specifically the
FUSE regular interface. To facilitate easier imple-
mentation of these file systems,puffs provides the
mount flagPUFFS FLAG BUILDPATH to include
full pathnames starting from the mountpoint in com-
ponentnames passed to interface functions as well as
store the full path in nodes for direct use by the file
server.

In addition to providing automatic support for
building pathnames,puffsalso provides hooks for file
systems to register their own routines for pathname
building in case a file system happens to support an
alternative pathname scheme. This can be used to im-
plement, for example, a layer making each pathname
case-insensitive. In Chapter 7.3 this paper presents a
comparison of the implementation of such a file sys-
tem implemented both on top of thepuffsand FUSE
interfaces.

The advantage of having pathnames as an optional
feature provided by the framework is that file servers
implemented more in the style of classical file sys-
tems do not need to concern themselves unnecessar-
ily with the drawbacks of dealing with pathnames,
and yet backends which require pathnames have then
readily available. The framework also handles direc-
tory renames and modifies the pathnames of all child
nodes of a renamed directory. In essence, this enables
the provision of a single interface to the file system,
regardless of the requirements.

2.3. Current status and future development

After a year of active development in the NetBSD
tree,puffshas gained a number of features apart from
the basic support for implementing userspace file sys-
tems. In addition to the pathname framework men-
tioned above, there is support for:

• file server defineable file handles (file systems
with ”stable” files can use it for proper nfs ex-
port support)

• a generic event and network buffer framework
for distributed file systems [16] (used by e.g. the
sshfs and 9p file system drivers)

• kernel file system suspension API

• kernel cache flushing and invalidation opera-
tions

• notification messages for kernel page cache read
and write accesses

• running unmodified kernel file systems such as
ffs in userspace (useful especially for testing and
development)

Current and future items under active development
are improving the user-kernel communication barrier,
providing accessors for the structures exposed by the
interface in the early stages of development, adding
support for caching metadata in the kernel and sup-
port for layering. Also, a code security audit of the
kernel interface will soon be performed so thatpuffs
can be enabled by default on NetBSD installations.

3. FUSE

This chapter summarizes FUSE for the parts nec-
essary to understand the rest of this paper. Readers fa-
miliar with FUSE may skip this chapter or only skim
over it.

FUSE stands for ”Filesystem in Userspace”
and, like puffs, provides an interface for building
userspace file system servers. When we talk about
FUSE in this paper, we are usually referring to the
interfaces the FUSE userspace library, libfuse, pro-
vides. Of course, for a system to provide FUSE sup-
port, it must implement the full chain of intergration
from the kernel virtual file system right up to the
userspace file system server.

As puffs is influenced by the NetBSD kernel vfs
interface, FUSE is influenced by the Linux kernel vfs
interface. This is more evident from the semantics
of how the interfaces are called instead of the inter-
face linkage itself. For example, theflush() operation
mimics the Linux kernel habits [3].

Similarly to puffs, FUSE can be logically split in
two:

• A set of file system callback interfaces which are
used to process incoming requests from the ker-
nel.

• A set of forward operations which are
used to control the operation of FUSE,
e.g.fuse main() andfuse opt parse().

Both of these are of interest to use if we wish to be
compatible with file servers written against the FUSE
interface.



Various language bindings are available for FUSE
- the most used is, obviously, C, but C++, Python,
Perl and Mono/C# bindings are all available. They
enable file system development in other languages
besides the native C: for example, the file system in-
terface for GmailFS is implemented in Python.

3.1. Callback Interfaces

For the file system callbacks, FUSE provides two
different interfaces against which to write a file sys-
tem. A single file system will only implement one of
these.

• The standard FUSE interface is based on path
names. The operations resemble system calls
more closely than the virtual file system inter-
face. The file node the operation is affecting is
identified using the pathname. This is a simple
interface enough for all but the most demanding
file systems. This interface is presented in Ap-
pendix C.

• The FUSE low level interface provides a com-
pletely different set of interface operations for
the file system. It resembles the kernel virtual
file system interface closely. Additionally, it re-
quires that the file system manually handles all
operation traffic between the file system and ker-
nel. This interface is presented in Appendix D.

Almost all available FUSE file systems are writ-
ten against the first interface. The most prominent
examples of file systems written against the low level
interface are ZFS, which is the FUSE implementation
of Sun’s ZFS and GlusterFS, which is a clustered file
system, capable of scaling to several petabytes - it
aggregates storage bricks over Infiniband or TCP/IP
interconnect into one large parallel network file sys-
tem.

To initialize the callback interfaces, C99 initializ-
ers are commonly used to fill out a structure. An ex-
ample is presented in Figure 2.

FUSE presents a multi-threading interface, as well
as the standard one, with the suffix ”mt” being added
to the function names. This provides a speed up, and
can be made very parallel. For example, the the ZFS
file system running under FUSE on Linux uses multi-
ple threads for listening to incoming requests and can
go over 150 threads runtime [11].

3.2. Backward Compatibility

The FUSE interface has evolved over time. Sup-
ported systems such as Linux have to provide both

Figure 2. FUSE callback initialization

/* operations struct */
struct fuse_operations id3fs_ops = {

.getattr = id3fs_getattr,

.readlink = id3fs_readlink,

.readdir = id3fs_readdir,

.open = id3fs_open,

.read = id3fs_read,

.statfs = id3fs_statfs
};

Figure 3. FUSE backward compatibility
/*
* Set the default version to use

* for the fuse interface. This value

* determines the API to be used

*/

#ifndef FUSE_USE_VERSION
#define FUSE_USE_VERSION 26
#endif

#if FUSE_USE_VERSION >= 26
#define fuse_main(argc,argv,op,arg) \

fuse_main_real(argc,argv,op, \
sizeof(*(op)), arg)

#else
#define fuse_main(argc, argv, op) \

fuse_main_real(argc, argv, op,\
sizeof(*(op)), NULL)

#endif

API and ABI compatibility for the old interfaces to
keep old file systems running.

To enable older functionality, the
FUSE USE VERSION definition is set by the
file system writer to the value required.

The default FUSE API version currently is 2.6.
Note that this number bears no connection with the
Linux kernel version number. For example, to enable
the FUSE 2.2 API, the file system writer would define
FUSE USE VERSION to 22.

4. Related Work

This section briefly discusses the measures other
operating systems have taken to implement FUSE
support.

The Linux FUSE implementation consists of both



Table 1. FUSE implementation sizes
OS # of lines % of Linux

Linux 5149 100%
OpenSolaris 5675 110%
FreeBSD 8788 171%
Mac OS X 12195 237%

libfuse and headers 10369

a kernel component and a userspace library. The ker-
nel components of the Linux FUSE functionality are
made available under the GPL and the userland li-
brary is distributed under the LGPL.

Other systems mentioned here use two parts from
the original Linux implementation:

1. libfuse: the userspace library which provides the
programming interface toward the userspace file
server and communicates with the kernel. This
means that the library implementation can be
used as such, but also dictates that the kernel
component must be compliant with the library
protocol.

2. fusekernel.h: the header which describes the
messages between the kernel and the library.
This file is special in the sense that it is dis-
tributed in FUSE under a dual BSD/GPL li-
cense.

FreeBSD provides FUSE support in a package
called fuse4bsd [4]. The FreeBSD FUSE module in
the kernel is a file system implementation conforming
to the FUSE user-kernel protocol using the original
FUSE user-kernel protocol.

OpenSolaris FUSE support [8] is another kernel
level reimplementation of the FUSE requirements. It
is mostly licensed under CDDL, although a part of
it is derived from the fuse4bsd implementation and
comes with a BSD license.

MacFUSE [7] is also derived from the fuse4bsd
project and is available under a 3-clause BSD license.

A very simple comparison of the various imple-
mentations is presented in the form of code lines for
the kernel module in Table 1. This table is produced
by calculating the raw number of lines in the com-
ments, comments and blank lines included. While it
is not possible to draw deep conclusions from such
a simple analysis, we present rough size figures. It
is clear that Linux comes out with the least lines of
code. Also, by definition, Linux implements the full
set of FUSE features. Hence, either other systems
have more complex kernel file system interfaces, are

Table 2. ReFUSEcomponent sizes
Component # of lines

puffsvfs 6606
libpuffs 6212
librefuse 2102

implemented in a more loose style of coding, or the
implementation of the FUSE kernel module on a non-
Linux platform is a more complex operation than im-
plementing it on Linux.

5. ReFUSE

Whilst puffs provides the equivalent functional-
ity of FUSE, it is an interface which is specific to
NetBSD and there are just a handful of file systems
written against it. FUSE, on the other hand, has a
wealth of file systems readily available. To support
those file systems on NetBSD withpuffs all that is
necessary is a thin emulation library in userspace on
top of libpuffs. This emulate-in-userspace approach
provides both a cleaner kernel implementation for
the userspace file systems framework, and a BSD-
licensed implementation.

ReFUSEsupports only the FUSE regular API and
not the lowlevel API. Work to support that is under-
way, but is unfinished at the time of writing.

The implementation and API considerations are
further described in this chapter. Unless otherwise
mentioned, this section discusses the regular FUSE
API, i.e. not the low level version.

A similar Table as was presented for other FUSE
implementations in Table 1 is presented forpuffs+
ReFUSEin Table 2. Thepuffsportions of the Table
are presented only for general interest, and cannot be
used for any comparisons as they are not function-
ally equivalent with FUSE. However, ourReFUSE
userspace library is less code than what other systems
have had to implement in the kernel for FUSE func-
tionality. Of course, a full comparison of the effort
can be made only when the FUSE API is fully sup-
ported.

5.1. Compatibility

ReFUSEprovides an interface which is source
code compatible with the FUSE API. This means
that existing FUSE file systems can be compiled
and linked againstReFUSEas-is. While currently
ReFUSEdoes not need to support older ABI ver-



sions2, ABI compatibility will be tracked once the
ReFUSElibrary has been part of a NetBSD release.
API compatibility will naturally follow the lead of
FUSE.

As explained in Chapter 3.2, many revisions of the
FUSE interface already exist. Since we wish to sup-
port all file systems regardless of the FUSE version
they are written against, we also implement support
for older versions in the translation layers. This in-
cludes making a runtime decision about calling for
instance the oldergetdir() FUSE interface func-
tion or the new replacementreaddir().

The default FUSE version supported byReFUSE
is 2.6. It is possible to compile file systems based on
the earlier 2.4 interface, although there are not many
of those file systems in existence at the present time.

In general working, we have found that there are
no common changes which need to be made to FUSE
file systems to allow them to work with librefuse.
Earlier versions of theReFUSEheader files did not
include the options file in the same way, but that was
corrected very early on in development.

5.2. ReFUSEImplementation

ReFUSEis implemented as a translation layer be-
tween libpuffs and a FUSE file server, recall Fig-
ure 1. It registers itself as a normal file system to
puffs, while the file server in turn registers itself to
the (Re)FUSE interface. Upon receiving a request,
ReFUSEtranslates it from thepuffs format to the
FUSE format, calls the appropriate FUSE interfaces
and changes the returned data to a format expected
by puffs. Two examples follow. See also Appendix B
and Appendix C to view the interfaces.

• mkdir: ReFUSEreceives the directory, path
component information and attributes from
puffs. Using the full pathname constructed by
libpuffs, it calls the FUSE file system’smkdir()
method. If the call is successful,ReFUSEcre-
ates an internal node for its bookkeeping, which
corresponds to the newly created directory and
returns that node as the cookie topuffsand the
kernel to be used for future references to the
newly created directory.

• setattr: ReFUSEreceives attributes and the
node to be changed frompuffs. FUSE does not
contain a singlesetattr() interface but rather
splits it up intochmod(),chown(),utimens()

2There trivially are no programs compiled againstReFUSE
with an older FUSE ABI sinceReFUSEhas never provided that
ABI.

/ utime() andtruncate() / ftruncate().
The relevant FUSE interface functions are called
depending on the set of attributes received in the
call. The pathname required for the FUSE call
is built by libpuffs into theReFUSEnode.

5.3. Differences Between puffsand FUSE

Here we list some minor differences betweenpuffs
and FUSE which had to be taken into account when
authoringReFUSE.

1. Node attributes are represented in the POSIX
API by struct stat. FUSE also uses this struc-
ture for the same purpose. In the BSD kernel the
structure for this purpose is calledstruct vattr
and this is whatpuffsuses. Conversion is mostly
a straightforward operation and is actually han-
dled by a routine which was already provided by
libpuffs.

2. The error return values in Linux are returned as
negative integers. In BSD, these values are pos-
itive integers. These values need to be manipu-
latedin librefuse after processing any FUSE call-
back function.

3. puffsalways passes full context to all callback
functions in the form of both the complete argu-
ments from the kernel and astruct puffscc con-
text cookie pointer. FUSE relies on a routine
called fuse get context(void) and thread
local storage to provide some of this informa-
tion. We must set up the information before call-
ing the callback so that it is available if the call-
back callsfuse get context().

4. The directory read inpuffsand FUSE is buffered
in a different fashion. Inpuffsand any BSD ker-
nel file system, multiple calls to thereaddir()
routine are issued with different offsets. In
FUSE, there is no offset parameter and only
one call is made and the whole directory is pro-
duced in one go.ReFUSEmust internally buffer
this list to satisfypuffsreaddir() calls starting
from nonzero offsets.

5.4. Development Technique

The development of librefuse was done by first
writing a skeleton implementation, which imple-
mented only the bare minimum to get the ”hello
world” file system running. After that, various file
systems were tested against this interface. At first



most file systems refused to compile and did not work
because of missing interface support. But as more and
more file systems were tested, some started compil-
ing against librefuse without any modification to li-
brefuse. Some even worked ”out of the box”. This
approach, as opposed to aiming to write a complete
implementation in the first try, was selected because
some of the FUSE interfaces were not obvious with-
out example file systems to use them. Also, it allowed
people tracking NetBSD-current to use some known-
to-work file systems in pkgsrc, such as ntfs-3g, while
librefuse was still under development. In retrospect,
it was the right development technique.

5.5. Restrictions

The current restrictions in using FUSE-based file
systems with librefuse are:

• File systems using the FUSE lowlevel API are
not supported. Support for that is in progress.

• puffs is logically a single-threaded entity, al-
though its continuation framework provides
multitasking support. Some of the FUSE
operations currently require multithreading to
be handled properly. For example the
fuse unmount() call can be called from file
server context. However, this is the same
context as the context for handling the kernel
events. Therefore, simply callingunmount()
from ReFUSEwill deadlock the process. There
is currently no clean solution for these kinds of
problems inReFUSE, but it does its best not to
deadlock.

Typically single-threadedness means that appli-
cations will be less parallel, not that they will fail
function properly. We could introduce threading
to ReFUSE, but as extending the worker mod-
els provided bypuffs is planned, we will rather
solve the problem at that level.

Aside from those restrictions, FUSE file systems
will work properly on NetBSD.

5.6. Solutions

By default, extended attributes are not supported
in NetBSD’s ffs. For support, a kernel compilation
option needs to be enabled. It is arguable how best
to add extended attribute support to ffs - one method
would be to write a librefuse-based file system to do
this. This shows how powerful the FUSE mechanism
is - that a FUSE layer can be added to any existing

file system to enable extended attributes to be used
on that lower-level filesystem. Extending this idea
still further allows us to think of Mac OS resource
fork support on existing file systems, or long-name
support for filesystems which currently use 8.3 file
name formats.

5.7. Integration with pkgsrc

The third-party packaging system for NetBSD,
pkgsrc [10], uses a number of features to abstract
packages from the operating system instances. This
dramatically increases portability of third-party soft-
ware.

At the time of writing, the following file systems
are known to work on NetBSD and are provided in
pkgsrc/filesystems. This is not to say others will not,
merely that we have not gotten around to adding them
to pkgsrc yet.

• fuse-afpfs-ng
• fuse-archivemount
• fuse-cddfs
• fuse-cryptofs
• fuse-curlftpfs
• fuse-encfs
• fuse-gmailfs
• fuse-gphotofs
• fuse-httpfs
• fuse-loggedfs
• fuse-lzofs
• fuse-ntfs-3g
• fuse-obexfs
• fuse-pod
• fuse-unionfs
• fuse-wdfs
• fuse-wikipediafs

To achieve platform abstraction, pkgsrc uses a
buildlink file to control building and linking of the
third party package. One example is as follows:
NetBSD has alibrefuse.so, and nolibfuse.so. In ad-
dition, NetBSD requires that the resulting programs
are linked withlibpuffs.so. This is actually already
done in the build stage oflibrefuse.so, but it means
that libpuffs.somust be present at run time.

To enable pkgsrc entries to use eitherReFUSEon
NetBSD, and FUSE on other operating systems3, a
line including the proper buildlink file is added to the
Makefile for the pkgsrc entry. An example of the last
two lines in a proper FUSE pkgsrc Makefile are pre-
sented in Figure 4.

3pkgsrc runs on more than 13 platforms, where NetBSD is con-
sidered one platform.



Figure 4. pkgsrc buildlink example
.include "../../mk/fuse.buildlink3.mk"
.include "../../mk/bsd.pkg.mk"

Any package which uses either FUSE orReFUSE
simply needs the fuse.buildlink3.mk file included in
the Makefile for their own pkgsrc entry.

6. The Virtual Directory Interface

It was found, whilst writing various FUSE based
file systems, that a number of them share a common
need - that of being able to provide a consistent means
of manipulating virtual information to present it as
file system directories and directory entries to the sys-
tem calls. The virtual directory interface was devel-
oped to do this, in a (key, value) pair architecture,
and is used by a number of FUSE based file systems,
including icfs (to cache the lower case name of the
directory entry), id3fs (to cache the name and target
file names of the virtual mp3-based hierarchy), and in
dmesgfs (having parsed the dmesg information to de-
termine parent and child nodes in the device informa-
tion). In a sense, a virtual directory interface can be
thought to be a lighter weight, in-code, dynamic ver-
sion of a file system generating language [23]. The
virtual directory interface is presented for reference
in Appendix A.

The traversing interface (openvirtdir, readvirtdir,
closevirtdir) was designed to mirror that of the direc-
tory(3) routines, using an opaque VIRTDIR cookie in
an analogous way to the corresponding DIR cookie.
The other routines manipulate entries in the virtual
directory database. These routines allow a file sys-
tem writer to build up a list of file names, and as-
sociate either a structure or another string with them
(labelled ”value” in the routines), and to locate (by
ordered search of names, or by sequential search of
values) virtual directory entries. Traversal is then by
means of an openvirtdir(), readvirtdir(), closevirtdir()
sequence of calls.

These routines can be found in the NetBSD CVS
repository insrc/share/examples/refuse/virtdir.

Since some file systems may contain virtual en-
tries, standardising on a set of routines makes sense
for writers of userland file systems. For exam-
ples of their use, please see the id3fs file system
in src/share/examples/refuse/id3fs, and the icfs file
system insrc/share/examples/refuse/icfs, both in the
NetBSD CVS repository.

7. Experiences with ReFUSE

7.1. Porting FUSE File Systems

There are a large number of FUSE-based file sys-
tems, almost all of them written for Linux. In porting
these file systems from Linux to NetBSD, it is appar-
ent that there are a lot of assumptions made about the
target operating system - ”all the world’s a Linux”.
Whilst this is understandable, it can prove annoying
at times. This has nothing to do with FUSE per se and
regular Unix software porting skills [18] help here.

Some examples are the use of internal timespec
values in the stat structure, the implicit assumption
that certain functions will be available, definitions
present only upon Linux systems, and the assumed
presence of certain header files.

7.2. Writing a new File System

In addition to usingReFUSE to make FUSE
based file systems on NetBSD, several file systems
have been written against the FUSE interface with
ReFUSEas the starting point.

The typical way of writing a new file system is to
use an existing FUSE based file system as a template.
To that end, the examples provided in the NetBSD
CVS repository insrc/share/examples/refuseare use-
ful:

• dbfs: this file system allows an existing Berke-
ley B-tree db-based file to be mounted as a file
system. The key value is used as the file sys-
tem pathname, and the value can either be rep-
resented as the target of a symbolic link, or as
the contents of virtual files.

• dmesgfs: uses the devices found and announced
via dmesg to form a virtual directory hierarchy.
Buses show up as virtual directories, and devices
attached to the bus are represented as directory
entries within the bus ”directory”.

• fanoutfs: a fanout file system is a layered file
system that acts like a ”fan” and can access data
from multiple file systems below [22]. This
functionality is implemented by our fanoutfs in
userspace. Another example of a fanout file sys-
tem is the BSD union file system [20]

In fanoutfs, the ”first” directory hierarchy is a
writable directory hierarchy, and all the other di-
rectory hierarchies (there may, of course, be no
others) are treated as read-only hierarchies. If an
”existing” file needs to be opened for writing, its



existing directory hierarchy is first created in the
writable hierarchy, and the file copied to there
before being opened for write. A useful exam-
ple for this is an easy way to enable package
views [14], and mirrors the way that Microsoft
Windows installs software in a ”transactional”
manner.

• icfs: this file system allows an existing directory
hierarchy to be mounted and accessed with the
path names presented and manipulated in lower
case. Newly-created files are made in a case-
retentive manner. There is also an analogous
puffs-based icfs, for comparison purposes.

• id3fs: this file system presents an interface sim-
ilar to some personal mp3 players, whereby an
existing mp3 file hierarchy can be accessed by
Artist and Genre, as well as by existing path-
name.

• pcifs: this file system uses pcictl to present a
read-only list of devices attached to the PCI
buses in a system in a virtual hierarchy

While written against the FUSE interface, some
of these file systems such as dmesgfs depend on
NetBSD for their backend. Others are fully indepen-
dent of the host they are run on and can be run on
Linux.

7.3. Example by comparison: icfs

As a method for comparing the FUSE andpuffs
interfaces, a file system layer translating all names to
lowercase is discussed. The same functionality was
implemented both on top of FUSE using theReFUSE
virtual directory interface and on top ofpuffsusing
thepuffspathname framework.

7.3.1 puffsicfs

The puffsversion for achieving a case-insensitising
layer uses thepuffspathname framework. It defines
only therenamecallback operation and points all the
other operations to thepuffsnull layer implementa-
tion4. The readdir operation calls the null layer also,
but before returning, it converts all read directory en-
tries to lowercase.

Additionally, puffs icfs registers two callbacks to
the puffs pathname framework: a path comparison

4The null layer works just like nullfs in the kernel. The only ex-
ception is that it is pathname-based instead of vnode-based, since
it does the actual operations through system calls, which take path-
names as arguments.

routine and a path transformation routine. The com-
parison routine is used by the framework to determine
if two paths are equal and this case the comparison
routine doesstrcasecmp() instead of the regular
strcmp().

The path transformation routine transforms the in-
put pathname into a format used by the file system.
In this case the routine scans the underlying mount’s
directory for pathnames which have a case-insentive
match with the pathname under translation. If one
is found, it is stored in the node. Further operations
will then use the correct underlying pathname instead
of the case-insentive one. For example, if ”muusi”
from the path ”/nakit/ja/muusi” is under translation,
the actual filename returned by the translation rou-
tine might be ”/NaKiT/Ja/MuuSi”. This properly-
capitalised path is then used for all the operations on
the node.

7.3.2 FUSE icfs

The FUSE API does not provide functionality sim-
ilar to the path translation API ofpuffs. Instead,
the FUSE version of icfs has to register a full set of
file system callbacks and manipulate paths in each of
those entry points.

At startup the FUSE icfs builds a directory hierar-
chy mapping the proper pathnames to lowercase path-
names. Whenever creating or removing a file in icfs,
this mapping is updated.

7.3.3 Comparison

There are two main differences in the approaches of
the two implementations:

1. Thepuffsversion uses a local, per-directory stor-
age for the mappings from lowercase to path-
name. This can conveniently be done, because
there is the concept of a data structure pointer
in thepuffsinterface. The FUSE version, on the
other hand, uses a global list, namely the virtual
directory database.

2. Thepuffsversion does processing in the path-
name translation routines as part of the frame-
work and needs to implement onlyreaddir()
specially. Since the FUSE interface lacks this
kind of pathname hook, it must do processing in
each individual operation.

These differences result in the fact that thepuffs
version is about a third of the code size of the FUSE
version.



Figure 5. Sequential Performance

Output

char block rewrite

kB
/s

0

1024

2048

3072

4096

413

1581

2344

410

3942

3013

FUSE Linux ReFUSE NetBSD

Input

char block

kB
/s

0

1024

2048

3072

4096

5120

6144

7168

8192

1612

6662

721

7514

FUSE Linux ReFUSE NetBSD

7.4. Performance

In the course of this work, some very rough per-
formance measurements were made. These mea-
surements were performed inside qemu [13]. The
Linux qemu environment was a Knoppix bootable
CD, while the NetBSD one was a regular installation
to a disk image. The test was runningbonnie++
with a 128MB file while qemu was started with
64MB of RAM. The FUSE file system used for test-
ing was ntfs-3g.

There are too many variables in the equation to
draw any conclusive results about the performance,
as the underlying operating systems have great effect
on the results. However, it can clearly be seen that our
userspace emulation layer of the FUSE interface has
nothing to be ashamed of in terms of performance.

The standard bonnie results for sequential and ran-
dom access performance are presented in Figure 5
and Figure 6, respectively.

7.5. Stability

The stability ofReFUSEhas been found to be ex-
cellent in approximately the six months it has been in
use in NetBSD. We know of a number of people who
useReFUSEin daily real-world operation and have
never complained about a crash or lost data. Natu-
rally we use it ourselves also.

Figure 6. Seek Performance

Seeks

seeks

se
ek

s 
/ s

ec

0

256

512

768

1024

644

819

FUSE Linux ReFUSE NetBSD



8. Conclusions and Future Work

The ReFUSEfunctionality presented in this pa-
per builds on the existingpuffs functionality to pro-
vide source code compatibility for FUSE-based file
systems. Some observations were made on the lev-
els at which thepuffsand FUSE interfaces were ar-
chitected. FUSE-based file systems were examined,
and some examples were illustrated. Work contin-
ues onReFUSEto provide compatibility with file
systems implemented using the FUSE low-level in-
terface. BothpuffsandReFUSEare being actively
maintained and developed in the NetBSD repository.

The excellent thing about FUSE is that the in-
terface is a universal de-facto standard for writing
userspace file systems. The interface is also versioned
and will support backward compatibility for the fore-
seeable future. This means that programs once writ-
ten and compiled against FUSE will continue to func-
tion even though new versions of the interface might
bring new features. This allows the development of
puffsto take a more internal route and track the oper-
ating system VFS more closely without worrying too
much about interface compatibility issues.

The development strategy forReFUSEis consid-
ered, in retrospect, to have been optimal. Further
work will continue over the next months to refine fur-
ther the functionality; in particular, the FUSE low-
level functionality will be implemented.

Rough performance figures are similar, when mea-
sured between FUSE andReFUSE. However, more
work needs to be done in this area, so that true com-
parisons can be made.

There are also plans to extend the scope of the
puffsframework to support devices as well as file sys-
tems. Similar work was done for an earlier version of
Linux in FUSD - a Linux Framework for User-Space
Devices [1].

Use and Availability

ReFUSEis part of the current NetBSD develop-
ment branch. It will be included in the NetBSD 5.0
release.

For more information on using and developing
puffsandReFUSE, please see the NetBSD website:
http://www.NetBSD.org/docs/puffs/

Acknowledgements

Miklós Szeredi, the author of FUSE, provided
help in reviewing this paper. Part of this work was
funded by the Finnish Cultural Foundation.

References

[1] FUSD - a Linux Framework for User-Space Devices.
http://www.circlemud.org/ jelson/software/fusd/.

[2] FUSE - Filesystem in Userspace.
http://fuse.sourceforge.net/.

[3] FUSE FAQ. Which method is called on the close()
system call?

[4] Fuse for FreeBSD.http://fuse4bsd.creo.hu/.
[5] FUSEPod.http://fusepod.sourceforge.net/.
[6] Gmail file system.http://richard.jones.name/google-

hacks/gmail-filesystem/gmail-filesystem.html.
[7] macfuse: A FUSE-Compliant File System

Implementation Mechanism for Mac OS X.
http://code.google.com/p/macfuse/.

[8] OpenSolaris Project: Fuse on Solaris.
http://www.opensolaris.org/os/project/fuse/.

[9] The NetBSD Project.http://www.NetBSD.org.
[10] The pkgsrc Guide.

http://www.NetBSD.org/docs/pkgsrc.
[11] thread: ”zfs-fuse 0.4.0 beta1 released”.Google

groups: ZFS-FUSE.
[12] A. D. Alexandrov, M. Ibel, K. E. Schauser, and C. J.

Scheiman. Extending the operating system at the user
level: the Ufo global file system. InUSENIX, pages
77–90, 1997.

[13] F. Bellard. QEMU, a fast and portable dynamic trans-
lator. InUSENIX, pages 41–46, 2005.

[14] A. Crooks. Package views: a more flexible infras-
tructure for third-party software. In2nd European
BSD Conference, 2002.

[15] A. Kantee. puffs - Pass-to-Userspace Framework File
System. InAsiaBSDCon 2007, pages 29–42, 2007.

[16] A. Kantee. Using puffs for implementing client-
server distributed file systems. Technical Report
TKK-TKO-B157, Helsinki University of Technol-
ogy, 2007.

[17] S. R. Kleiman. Vnodes: An architecture for multiple
file system types in sun UNIX. InUSENIX Summer,
pages 238–247, 1986.

[18] G. Lehey.Porting UNIX software: from download to
debug. O’Reilly & Associates, Inc., 1995.

[19] NetBSD Library Functions Manual.puffs – Pass-to-
Userspace Framework File System development in-
terface, July 2007.

[20] J.-S. Pendry and M. K. McKusick. Union mounts in
4.4BSD-lite. InUSENIX, 1995.

[21] B. Welch and J. Ousterhout. Pseudo Devices: User-
Level Extensions to the Sprite File System. In
USENIX Summer, pages 37–49, 1988.

[22] C. P. Wright, J. Dave, P. Gupta, H. Krishnan, D. P.
Quigley, E. Zadok, and M. N. Zubair. Versatility
and unix semantics in namespace unification.ACM
Transactions on Storage (TOS), 2(1):1–32, February
2006.

[23] E. Zadok. FiST: A System for Stackable File System
Code Generation. PhD thesis, Computer Science De-
partment, Columbia University, 2001.



Appendix A ReFUSEvirtdir Interface

int virtdir_init(virtdir_t *tp, const char *rootdir, struct stat *d,
struct stat *f, struct stat *l);

void virtdir_drop(virtdir_t *tp);

char *virtdir_rootdir(virtdir_t *tp);

int virtdir_add(virtdir_t *tp, const char *name, size_t size,
uint8_t type, const char *tgt, size_t tgtlen);

int virtdir_del(virtdir_t *tp, const char *name, size_t size);

virt_dirent_t *virtdir_find(virtdir_t *tp, const char *name,
size_t namelen);

virt_dirent_t *virtdir_find_tgt(virtdir_t *tp, const char *tgt,
size_t tgtlen);

VIRTDIR *openvirtdir(virtdir_t *tp, const char *d);
virt_dirent_t *readvirtdir(VIRTDIR *dirp);
void closevirtdir(VIRTDIR *dirp);

int virtdir_offset(virtdir_t *tp, virt_dirent_t *dp);



Appendix B puffsCallback Interface

fs type operations:

int puffs_fs_statvfs(struct puffs_cc *pcc, struct statvfs *sbp,
const struct puffs_cid *pcid);

int puffs_fs_sync(struct puffs_cc *pcc, int waitfor,
const struct puffs_cred *pcr,
const struct puffs_cid *pcid);

int puffs_fs_fhtonode(struct puffs_cc *pcc, void *fid, size_t fidsize,
struct puffs_newinfo *pni);

int puffs_fs_nodetofh(struct puffs_cc *pcc, void *cookie, void *fid,
size_t *fidsize);

void puffs_fs_suspend(struct puffs_cc *pcc, int status);
int puffs_fs_unmount(struct puffs_cc *pcc, int flags,

const struct puffs_cid *pcid);

nodetype operations:

int puffs_node_lookup(struct puffs_cc *pcc, void *opc,
struct puffs_newinfo *pni,
const struct puffs_cn *pcn);

int puffs_node_create(struct puffs_cc *pcc, void *opc,
struct puffs_newinfo *pni,
const struct puffs_cn *pcn,
const struct vattr *vap);

int puffs_node_mknod(struct puffs_cc *pcc, void *opc,
struct puffs_newinfo *pni,
const struct puffs_cn *pcn,
const struct vattr *vap);

int puffs_node_open(struct puffs_cc *pcc, void *opc, int mode,
const struct puffs_cred *pcr,
const struct puffs_cid *pcid);

int puffs_node_close(struct puffs_cc *pcc, void *opc, int flags,
const struct puffs_cred *pcr,
const struct puffs_cid *pcid);

int puffs_node_access(struct puffs_cc *pcc, void *opc, int mode,
const struct puffs_cred *pcr,
const struct puffs_cid *pcid);

int puffs_node_getattr(struct puffs_cc *pcc, void *opc, struct vattr *vap,
const struct puffs_cred *pcr,
const struct puffs_cid *pcid);

int puffs_node_setattr(struct puffs_cc *pcc, void *opc,
const struct vattr *vap,
const struct puffs_cred *pcr,
const struct puffs_cid *pcid);

int puffs_node_poll(struct puffs_cc *pcc, void *opc, int *events,
const struct puffs_cid *pcid);

int puffs_node_mmap(struct puffs_cc *pcc, void *opc, int flags,
const struct puffs_cred *pcr,
const struct puffs_cid *pcid);



int puffs_node_fsync(struct puffs_cc *pcc, void *opc,
const struct puffs_cred *pcr, int flags,
off_t offlo, off_t offhi,
const struct puffs_cid *pcid);

int puffs_node_seek(struct puffs_cc *pcc, void *opc, off_t oldoff,
off_t newoff, const struct puffs_cred *pcr);

int puffs_node_remove(struct puffs_cc *pcc, void *opc, void *targ,
const struct puffs_cn *pcn);

int puffs_node_link(struct puffs_cc *pcc, void *opc, void *targ,
const struct puffs_cn *pcn);

int puffs_node_rename(struct puffs_cc *pcc, void *opc, void *src,
const struct puffs_cn *pcn_src, void *targ_dir,
void *targ, const struct puffs_cn *pcn_targ);

int puffs_node_mkdir(struct puffs_cc *pcc, void *opc,
struct puffs_newinfo *pni,
const struct puffs_cn *pcn,
const struct vattr *vap);

int puffs_node_rmdir(struct puffs_cc *pcc, void *opc, void *targ,
const struct puffs_cn *pcn);

int puffs_node_readdir(struct puffs_cc *pcc, void *opc, struct dirent *dent,
off_t *readoff, size_t *reslen,
const struct puffs_cred *pcr,
int *eofflag, off_t *cookies, size_t *ncookies);

int puffs_node_symlink(struct puffs_cc *pcc, void *opc,
struct puffs_newinfo *pni,
const struct puffs_cn *pcn_src,
const struct vattr *vap, const char *link_target);

int puffs_node_readlink(struct puffs_cc *pcc, void *opc,
const struct puffs_cred *pcr,
char *link, size_t *linklen);

int puffs_node_read(struct puffs_cc *pcc, void *opc, uint8_t *buf,
off_t offset, size_t *resid,
const struct puffs_cred *pcr, int ioflag);

int puffs_node_write(struct puffs_cc *pcc, void *opc, uint8_t *buf,
off_t offset, size_t *resid,
const struct puffs_cred *pcr, int ioflag);

int puffs_node_print(struct puffs_cc *pcc, void *opc);
int puffs_node_reclaim(struct puffs_cc *pcc, void *opc,

const struct puffs_cid *pcid);
int puffs_node_inactive(struct puffs_cc *pcc, void *opc,

const struct puffs_cid *pcid);



Appendix C FUSE Regular Interface

int (*getattr) (const char *, struct stat *);
int (*readlink) (const char *, char *, size_t);
int (*getdir) (const char *, fuse_dirh_t, fuse_dirfil_t);
int (*mknod) (const char *, mode_t, dev_t);
int (*mkdir) (const char *, mode_t);
int (*unlink) (const char *);
int (*rmdir) (const char *);
int (*symlink) (const char *, const char *);
int (*rename) (const char *, const char *);
int (*link) (const char *, const char *);
int (*chmod) (const char *, mode_t);
int (*chown) (const char *, uid_t, gid_t);
int (*truncate) (const char *, off_t);
int (*utime) (const char *, struct utimbuf *);
int (*open) (const char *, struct fuse_file_info *);
int (*read) (const char *, char *, size_t, off_t, struct fuse_file_info *);
int (*write) (const char *, const char *, size_t, off_t,

struct fuse_file_info *);
int (*statfs) (const char *, struct statvfs *);
int (*flush) (const char *, struct fuse_file_info *);
int (*release) (const char *, struct fuse_file_info *);
int (*fsync) (const char *, int, struct fuse_file_info *);
int (*setxattr) (const char *, const char *, const char *, size_t, int);
int (*getxattr) (const char *, const char *, char *, size_t);
int (*listxattr) (const char *, char *, size_t);
int (*removexattr) (const char *, const char *);
int (*opendir) (const char *, struct fuse_file_info *);
int (*readdir) (const char *, void *, fuse_fill_dir_t, off_t,

struct fuse_file_info *);
int (*releasedir) (const char *, struct fuse_file_info *);
int (*fsyncdir) (const char *, int, struct fuse_file_info *);
void *(*init) (struct fuse_conn_info *conn);
void (*destroy) (void *);
int (*access) (const char *, int);
int (*create) (const char *, mode_t, struct fuse_file_info *);
int (*ftruncate) (const char *, off_t, struct fuse_file_info *);
int (*fgetattr) (const char *, struct stat *, struct fuse_file_info *);
int (*lock) (const char *, struct fuse_file_info *, int cmd,

struct flock *);
int (*utimens) (const char *, const struct timespec tv[2]);
int (*bmap) (const char *, size_t blocksize, uint64_t *idx);



Appendix D FUSE Low Level Interface

void (*init) (void *userdata, struct fuse_conn_info *conn);
void (*destroy) (void *userdata);
void (*lookup) (fuse_req_t req, fuse_ino_t parent, const char *name);
void (*forget) (fuse_req_t req, fuse_ino_t ino, unsigned long nlookup);
void (*getattr) (fuse_req_t req, fuse_ino_t ino, struct fuse_file_info *fi);
void (*setattr) (fuse_req_t req, fuse_ino_t ino, struct stat *attr,

int to_set, struct fuse_file_info *fi);
void (*readlink) (fuse_req_t req, fuse_ino_t ino);
void (*mknod) (fuse_req_t req, fuse_ino_t parent, const char *name,

mode_t mode, dev_t rdev);
void (*mkdir) (fuse_req_t req, fuse_ino_t parent, const char *name,

mode_t mode);
void (*unlink) (fuse_req_t req, fuse_ino_t parent, const char *name);
void (*rmdir) (fuse_req_t req, fuse_ino_t parent, const char *name);
void (*symlink) (fuse_req_t req, const char *link, fuse_ino_t parent,

const char *name);
void (*rename) (fuse_req_t req, fuse_ino_t parent, const char *name,

fuse_ino_t newparent, const char *newname);
void (*link) (fuse_req_t req, fuse_ino_t ino, fuse_ino_t newparent,

const char *newname);
void (*open) (fuse_req_t req, fuse_ino_t ino, struct fuse_file_info *fi);
void (*read) (fuse_req_t req, fuse_ino_t ino, size_t size, off_t off,

struct fuse_file_info *fi);
void (*write) (fuse_req_t req, fuse_ino_t ino, const char *buf,

size_t size, off_t off, struct fuse_file_info *fi);
void (*flush) (fuse_req_t req, fuse_ino_t ino, struct fuse_file_info *fi);
void (*release) (fuse_req_t req, fuse_ino_t ino, struct fuse_file_info *fi);
void (*fsync) (fuse_req_t req, fuse_ino_t ino, int datasync,

struct fuse_file_info *fi);
void (*opendir) (fuse_req_t req, fuse_ino_t ino, struct fuse_file_info *fi);
void (*readdir) (fuse_req_t req, fuse_ino_t ino, size_t size, off_t off,

struct fuse_file_info *fi);
void (*releasedir) (fuse_req_t req, fuse_ino_t ino, struct fuse_file_info *fi);
void (*fsyncdir) (fuse_req_t req, fuse_ino_t ino, int datasync,

struct fuse_file_info *fi);
void (*statfs) (fuse_req_t req, fuse_ino_t ino);
void (*setxattr) (fuse_req_t req, fuse_ino_t ino, const char *name,

const char *value, size_t size, int flags);
void (*getxattr) (fuse_req_t req, fuse_ino_t ino, const char *name,

size_t size);
void (*listxattr) (fuse_req_t req, fuse_ino_t ino, size_t size);
void (*removexattr) (fuse_req_t req, fuse_ino_t ino, const char *name);
void (*access) (fuse_req_t req, fuse_ino_t ino, int mask);
void (*create) (fuse_req_t req, fuse_ino_t parent, const char *name,

mode_t mode, struct fuse_file_info *fi);
void (*getlk) (fuse_req_t req, fuse_ino_t ino, struct fuse_file_info *fi,

struct flock *lock);
void (*setlk) (fuse_req_t req, fuse_ino_t ino, struct fuse_file_info *fi,

struct flock *lock, int sleep);
void (*bmap) (fuse_req_t req, fuse_ino_t ino, size_t blocksize,

uint64_t idx);


